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MOMENT MATRICES: APPLICATIONS IN MIXTURES!

BY BRUCE G. LINDSAY
The Pennsylvania State University

The use of moment matrices and their determinants are shown to
elucidate the structure of mixture estimation as carried out using the method
of moments. The setting is the estimation of a discrete finite support point
mixing distribution. In the important class of quadratic variance exponential
families it is shown for any sample there is an integer # depending on the
data which represents the maximal number of support points that one can
put in the estimated mixing distribution. From this analysis one can derive
an asymptotically normal statistic for testing the true number of points in
the mixing distribution. In addition, one can construct consistent nonpara-
metric estimates of the mixing distribution for the case when the number of
points is unknown or even infinite. The normal model is then examined in
more detail, and in particular the case when o2 is unknown is given a
comprehensive solution. It is shown how to estimate the parameters in a
direct way for every hypothesized number of support points in the mixing
distribution, and it is shown how the structure of the problem yields a
decomposition of variance into model and error components very similar to
the traditional analysis of variance.

1. Introduction and summary. Although the method of moments has long
been in disfavor because of its inefficiency relative to maximum likelihood, there
are times that its simple form can be an instrument of convenience. The
objective of this article is to demonstrate that in the technically difficult problem
of determining an unknown mixing distribution there is an elegant and useful
mathematical structure behind the method of moments. With this as a tool one
can explore in a straightforward way a number of problems which are consider-
ably more formidable in a likelihood analysis. For example, questions concerning
the number of support points to the distribution can be answered by considering
the determinants of certain matrices of moments. Estimators of discrete mixing
distributions will be unique, when they exist, with easy to solve equations. In the
normal mixture problem, one can directly estimate the normal component
variance associated with an unknown p-point mixing distribution. The methods
are easily programmed in any language that offers direct matrix manipulation.
As such, these estimators also provide a computationally fast way to find
consistent initial values for a likelihood maximization algorithm. Further com-
ments on computation will be relegated to the discussion in Section 6; the main
objective here is to lay out the theory. For a general background on the discrete
mixing distribution problem the book by Titterington, Smith and Makov (1985)
is recommended.
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We start with the formal problem of interest: The random variable X is said
to have a mixture distribution relative to a parametric family of distributions
{Fy: 0 € Q} if X has the distribution function

Fo(x) = [Fy(x) dQ(8).

Here Q, the mixing distribution, is a distribution on the parameter space . This
article focusses upon the so-called finite mixtures problem [e.g., Everitt and
Hand (1981) and Titterington, Smith and Makov (1985)], in which @ is assumed
to be a discrete distribution with a finite number of points of support. That
number will be denoted » = »(Q). We will write the mixing distribution as

Q(a) = Z'”js(oj)v

with 6,,...,6, being the unknown support points and w,,...,w, being the
unknown masses. The discussion will start by assuming that » is known, but
inference on this number will be discussed, as will inference on € in the presence
of an unknown scale parameter ¢ in the normal model.

The primary tool used in this analysis is the moment matrix, which we now
define. Let G be a distribution with 2p moments, say m, = m,(G) = E[ X],
myG),..., my,(G) = E[X?P]. The pth moment matrix of G is

1 m my, --- m,
m my; myg o My
— DRI m
(1.1) M, (G)=|M2 M3 My p+2 |.
mp . . . m2p

Of crucial interest to us is the way that the structure of M, reveals information
about the number and location of the support points for a discrete distribution
G. A companion article [Lindsay (1989)] discusses a number of features of these
matrices. Of particular relevance to this article is the following representation of
det M, (G): If X,, X,,..., X, are independent and identically distributed with

distribution G, then

det M,(G) = E[l’[(x,. - X,)Z].
i>j
We will repeatedly draw upon representations of this form to gain insight into
the form of certain related determinants; all these results can be proved by the
method described in the Appendix of Lindsay (1989).

These results relate to the method-of-moments mixture problem as follows:
One method to estimate an unknown mixing distribution @ might be to estimate
a set of its moments m,(Q) = /07 dQ(0) and then, from these estimated mo-
ments, determine the corresponding distribution function. If we wish to estimate
@ with a p-point distribution, then it is clear that we will need to estimate
2p — 1 moments in order to have enough constraints to determine the 2p — 1
dimensional parameter set 8,,...,0,, m,..., 7,
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Implicit so far in this discussion is the potential to use the moments of a
function of 0, say g(0), chosen so that the moment system can be easily and
consistently estimated. There may, in fact, be more than one way to construct
the function g(#). One construction described here applies if the parametric
family {F,} is a quadratic variance exponential family [ Morris (1982, 1983)]. For
them it is possible to construct unbiased estimators #,, of the moments m (Q)
of the mixing distribution @ on the mean-value parameter; these estimators use
a linear combination of the sample moments of X of order p and lower. This and
other methods of construction will be discussed in Section 2.

However, when we construct estimates of moments, the sequence of estimated
values 1, ..., M,,_; need not correspond to any distribution @. Section 2
presents simple methods to determine from the estimated moment matrices
whether a solution exists. When it exists, the construction is straightforward. In
the process it will be shown that there is a random number # such that for every
p <7 a p-point estimate @, exists, whereas for p > # there does not exist a
method-of-moments estimate. The theory can easily be modified so that the
estimated support points satisfy constraints placed on the parameter space.

The above analysis leads in a straightforward way to the consideration of
inferential methods for testing hypotheses about the value of »(@). In Section 3
it is shown how to construct an asymptotically normal test statistic for the
adequacy of any particular number of points. In contrast to the likelihood ratio
test for this hypothesis, the test statistic is explicitly defined and the limiting
distribution is known and simple. The logical next step is to consider nonpara-
metric estimation of @ by @,. The consistency of this method is verified in
Section 3 also.

The above results apply in particular to the normal mixtures model in which
there is a mixing distribution @ on p and the variance o2 is known. In Sections 4
and 5, the method-of-moments analysis is extended to the case where o is
unknown. It will be shown that for every value of p = »(Q) there exists a
consistent estimator G, for ¢ and a corresponding uniquely defined p-point
mixing distribution Qp such that the first 2 p sample moments of X are equal to
the first 2 p moments of the estimated distribution. The structure of the solution
as a function of p yields a decomposition similar to the analysis of variance in a
sequence of nested linear models, the nesting in this case being upon the number
of components in the mixing distribution.

2. The moment estimators.

2.1. The construction of moment estimators. The objective of this section is
to provide a concise description of the method-of-moments estimators of mixing
distributions in certain important families of distributions. Some of the results
have been presented before in Titterington, Smith and Makov (1985). We

_provide here a unified treatment, together with new results concerning the
existence of the solution and appropriate corrections for solutions outside the
parameter space.
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Morris (1982, 1983) identified an important useful common element the
normal, binomial, negative binomial, gamma and Poisson families of distribu-
tions. He called them quadratic variance natural exponential families because
within each family the variance of the random variable X is a quadratic function
of the mean-value parameter E[ X ]. Morris demonstrated that there are just six
such natural exponential families (modulo certain transformations), the one not
yet mentioned being the generalized hyperbolic secant. This “quadratic variance
property” has a large range of statistical implications, one of which we now
exploit.

That is, for each family in the class of quadratic variance exponential families
(QVEF) there is a polynomial of degree p in X which is an unbiased estimator of
the power pu? of the mean value parameter p. In particular, if f(x; p) is the
density function in its mean-value parametrization and if p,, is a particular value
of pu, then there exists a constant ¢, depending on the family such that for
Ypo(%) = ¢ {dPf(x; p)/dpP} /f(x; p), evaluated at p,, one has [Morris (1982),
8.8)]

E[v(X);n] = (b - po)”

It follows that if @ is a mixing distribution on the mean-value parameter pof a
QVEF family and X has the corresponding mixture distribution Fy,, then v,(X)
is an unbiased estimator of the pth moment of p about g, m ,(Q). For example,
in the Poisson model we have y,(x) = x(x — 1)...(x — p + 1) as an unbiased
estimator of u”. If we observe a sample of size n from the mixed distribution F,,
then i, = ¥,, the mean value of v, is an unbiased estimator of m @),

En(7,) = [v(x.) dB,(x,) dQ(n)

= [(1 = 1o)” dQ(n).

When the number of support points of the unknown mixing distribution @ is
given to be “p” we define the method-of-moments estimator of @ to be any
p-point distribution @, which satisfies the 2p — 1 equations

A

(2.1) mi=m;i(Q,), Jj=1,...,2p—1.

We note that @ has 2p — 1 unknown parameters, so this appears to be a
well-determined system.

The choice of the point p, will have no impact on the solution because this
method of moments is translation-equivariant. It can therefore be chosen so that
the estimators have a simple structure. In fact, the system (2.1) could equiva-
lently have been derived by setting the first 2p — 1 sample moments of X equal
to their expectations under Fj. Therefore this estimator is the usual method-of-
moments estimator. The advantage of formulation in terms of the moments of @,
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as in (2.1), comes in determining whether there exists a feasible solution to the
equations, as will be shown in Corollary 2B below.

The following results will apply as well to moment estimators constructed
from other sequences of moments than those of the mean-value parameter. For
example, we could use the following relationships:

Normal:
E|ert0-atps2] = [ew]”,
Exponential:
E[I[X >pt]] =[e?]" [Brockett (1977)].
Poisson:

E[nI[X =n]] = pPe* ['I‘u(‘:ker (1963)] .

The last example illustrates a case where one estimates a system of weighted
moments [0Pw(8)dQ(F). In this case, provided the weight function w(8) is
strictly positive, one solves for an estimate of @ by first estimating the weighted
distribution @* defined by d@*(0) = w(8) dQ(8), then performing the appropri-
ate transformation.

2.2. Solving the moment equations. The following theorem establishes the
relevant properties of moment sequences to determine whether a moment solu-
tion exists. This result can also be found in Mammana (1954), and has been
applied to the mixture problem by Tucker (1963) and Brockett (1977).

THEOREM 2A. (a) A sequence of numbers 1, m;, m,,..., m,, are the mo-
ments of a distribution with exactly p points of support if and only if detM, >
0,detM, > 0,...,detM,,_, > 0 and detM, = 0.

(b) If the sequence of numbers 1,m,, m,,..., my, , satisfies detM, >

.,detM,_, > 0 and m,,_, is any scalar, then there exists a unique p-point
distribution with exactly those initial 2p — 1 moments.

PROOF. Part (a) is implicitly given in Uspensky (1937). Part (b) comes from
(a) as follows: Since detM, is linear in m,,, with coefficient detM,_, being
strictly positive, one can choose m,, so that the conditions for part (a) are
satisfied, regardless of the value of m,,_,. (The uniqueness of the distribution
will be clear from the method of reconstruction given below.) O

This leads in an obvious fashion to the following corollary Let M ‘have the
form of a moment matrix but with estimated moments 7,. Let d be its
determinant. Define # =1 + sup{p: detM > 0}; that is, we have d >
0,...,d;_, > 0but d; <0.

COROLLARY 2B. If p > 9, then there does not exist a solution to the moment
equations. If p < 7, then there exists a unique solution Q
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Reconstruction of the mixing distribution from its moments is presented in
Titterington, Smith and Makov (1985); a brief recapitulation is offered here
because it will be useful in discussing the boundary problem.

The first step in reconstructing the distribution from its moments is to
determine the points of support. We start by defining a polynomial,

1 Ay ey, 1

M, oy, e, ¢
(2.2) S,(t) = det

, Bgp_y °

THEOREM 2C. If a solution Qp to the moment equations exists, then it has
support points equal to the roots of Sy(t) = 0.

This is again a standard result which can be found in Uspensky (1937). We do
note, however, that by using the representation methods of Lindsay (1989) one
can prove

5,(0 = E[ [1(% - %)'TI(e - D) /L,

J<k

where Y, Y,,...,Y, are a random sample from the distribution having the
required moments. This representation makes the result clear, and in particular,
we see that if the support points of the distribution are r,,..., r,, then S,(¢) =
I(¢ - r)detM,,_,.

An interesting and computationally useful feature of the support points is
presented in the following lemma.

LEmMA 2D. If # > p and the roots to S(t) and S,_((t) arer, < -+ <,
and s, < --- <s,_,, respectively, then the roots are interwoven:

<8 <ry<s§< <8, <T,

ProorF. In Uspensky (1937) it is shown (page 369) that
S5(0)S, () ~ S54(£)S,(2)

is a positive number. Hence at zeros of S,, S,_, has the same sign as S;. Since S,
has a full complement of zeros, its derivative must alternate sign as we proceed
through them left to right, which in term implies that S,_; has a zero between
each of them. Since it has exactly p — 1 zeros, this describes the location of all of
them. O

Given the roots fi,, fi,, ..., i, to the polynomial S,(¢), it is straightforward to
solve for the masses 7, at each support point fi; by solving the linear system of
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equations
1 1 e 1 7, 1
iy fig o By || A m,
(2.3) . . . =
[t S 7 | A M

The matrix on the left is nonsingular, being a Vandermonde matrix, so that there
is a unique solution to these equations.

A final important point is that the moment equations will have a solution
with the right number of points, at least in the limit.

THEOREM 2E. If the mixing distribution has v points of support, where
v = o0 is allowed, then on a set of realizations with probability 1,

liminf?, > ».
n— oo

ProOF. The strong law of large numbers implies that the estimated mo-
ments and hence the determinants d,,..., d,, for any value of p, converge
almost surely. If » is finite, then it follows that on a set of realizations w with
probability 1, there exists an N(w) such that for all n > N(w) the determinants
cfl, ceey J,_l are strictly positive, and so 7,(w) > »v. If » = o0, the same argument
shows that liminf #, > p for every p. O

From this result we can safely conclude that the estimator is consistent: We
know that the first 2p — 1 moments of Qn converge to those of @, but since
p-point distributions are completely determined by those 2p — 1 moments
through (2.2) and (2.3), we have almost sure convergence of the masses and
support points to their true values.

2.3. Satisfying constraints on the parameter space. If a solution exists, then
the estimated weights in (2.3) are necessarily positive. However, it is not
necessarily true that the support points [the roots of S (¢) = 0] are within the
parameter space of the mean-value parameter. In this section we describe
modifications to the moment estimators which are designed so that the mixing
distribution will be consistently estimated even when it does place mass on the
boundary of the parameter space.

The appropriate modification to the solution when support points fall outside
the parameter space requires careful thought. Consider for illustration the
Poisson model, for which the mean-value parameter space is [0, c0). Suppose that
p = 0 is a support point in the true mixing distribution. As n — oo it can be
shown that there will exist nonvanishing probability that the leftmost support in
the estimated distribution will be negative. A simple repair to use on a method-
of-moments estimator when one support point lies outside the boundary of the
parameter space would be to simply replace that support point with the bound-
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ary value, in this case 0, using the same mass. The arguments of the previous
section indicate that this would be a consistent procedure.

Simple as this method is, it has some undesirable features. The estimated
distribution no longer matches any moments, and in particular, the described
procedure clearly shifts the mean of @ and reduces the variance. We propose
instead a procedure which puts mass on the boundary in such a way that the
initial moments of order 1 to 2p — 2 are matched. In addition to preserving the
natural moments of the distribution, it eliminates the dependence of the estima-
tor on the highest-order moment, which is often the one with the largest
variability.

We suppose that the parameter space is [0, c0), and we start by describing the
key features of the moment sequence which indicate a violation of the boundary.
First, define the shifted moment matrix M} as that p + 1 X p + 1 matrix with
(i, ))th entry m,, ;,,. Thus M§ = m,, M} = [:; ::Z] and so forth. Let d} =
det M, and use " to denote the corresponding matrices and determinants using
estimated moments. Note that if ¥, Y},...,Y, are a random sample from the
distribution generating M}, then we have the representation [4 la Lindsay
(1989)]

dy=detM = E|[TY]1(Y, - Y})z]/(p + L.
ik

From this it is clear that the determinant sequence for a »-point distribution on
[0, o) which has positive mass at 0 will have the form d* > 0,...,d}*, > 0,
d¥,=d}¥= --- =0.If it has no mass at 0, d,* will be the first zero determi-
nant. In fact, it can be shown [Shohat and Tamarkin (1943)] that the sequence of
numbers 1,, My, ..., My, are the moments for a nonnegatwe d1stnbut10n with
p points by verifying (1n addition to Theorem 2A) that d d * >0
and d 1 = 0, where the last determinant is 0 if and only 1f one of the support
points of the distribution is 0.

Based on this, one can define the modified method-of-moments solution as
follows. First, we define #* = 1 + sup{p: df > 0}. We suppose that # > p, so
that a p-point solution to the original moment problem exists, and we consider
the following cases:

Case I: #* > p implies that the solution to the original moment problem has
all support points in the interior of the parameter space.

Case II: #* = p — 1 implies that the p-point solution to the original moment
problem puts one support point in (— o0, 0].

Case III: 7* < p — 1 implies that the p-point solution has more than one
negative mass point.

Case I needs no correction. In case III, there is no sensible way to create a
suitable p-point distribution. In Case II, we can create a p-point distribution
with positive mass at 0, the remaining mass on positive values, which fits the
moments 1, i, ..., ity,_,. (Note that one less moment is needed because of the
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forced inclusion of 0.) The nonzero support points of this distribution can be
found as the roots of the polynomial of degree p — 1 [compare with (2.2)]

ﬁll "Alz e I’flp_l 1
. m, ot
Sx(t) = .
,’r\t oo m tp_l
P . 2p—-2

The key role of this polynomial can be seen in the representation

sp(8) = E|TIXIL (% - ¥)'TI¢ - ) |/p,

1

where Y, ...,Y,_, is a sample from the distribution with the given moments.

We next consider the problem of keeping the estimated distribution in a fixed
range, which, without loss of generality, we can suppose to be [0, 1]. An example
of this would be the binomial (N, p) distribution. From the root interlacing
property we can see that it is possible that if @,_, has mass in (0,1), then Qp
has at most two support points violating the constraints of the parameter space,
one to the left of 0 and one to the right. We now augment our skills to determine
if a violation to the right has occurred. Define yet another moment matrix by
Mp* = M, — M,*, with determinant d}*, and let »** =1 + sup{p: dJ* > 0}.
Again, we have several cases to consider: If # > p, then the p-point distribution
@ has support points

(a) in (0,1) if »* > p and »** > p;

(b) one point negative, the rest in (0,1) if »* = p — 1 and »** > p;

(c) one point greater than 1, the rest in (0,1), if »* > p and »** =p — 1;

(d) one negative point, one point greater than 1, if »* =p — 1 and »** =
p— 1

In other cases it is not feasible to correct the distribution in a way yielding
p-points in the space [0, 1]. In cases (b) and (c), the first attempt is to correct the
fitted distribution by fitting just the first 2p — 2 moments, as described above.
We do note, however, that in shifting the negative mass point to the right, we
may shift the rightmost point into violation of right boundary point, or vice
versa. In:this case and in case (d), we fit only the first 2p — 3 moments, using a
distribution with mass at 0,1 and the roots of the polynomial

m; —m, m, — mg M, _3— My, 1
my, — mgy mg—m, Mm,_o— My, t
det
- - - p-3
M, o—m, ; m, ,—m, Moy gy — Mgy 3 ¢

It is an easy exercise to construct the appropriate representation which shows
that this polynomial identifies all non-{0,1} mass points.
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The polynomial (2.2) which yields the support points for Qp was given for the
binomial by Blischke (1964) and for the Poisson by Everitt and Hand (1981).
Titterington, Makov and Smith (1985) generalized it to the families of the
quadratic variance type (without explicitly identifying this feature). An addi-
tional family, the Weibull, is shown there to share the property of having an
unbiased estimator of the pth moment of @ which is polynomial of degree p in
X. Thus this method applies to it as well.

3. Extended method of moments. We have now completed a description
of the classical method-of-moments estimators for an unknown mixing distribu-
tion when the number of points p in the distribution is treated as known. An
important aspect was the role of # in determining the existence of a solution. In
this section we suppose that »(Q), the number of support points in @, is
unknown. The methods developed in Section 2 provide a natural framework for
developing methods for inference on »(Q) and for defining an estimator for @
which relies on no assumptions concerning its structure, and hence could be
called nonparametric.

3.1. Testing for the number of points in the mixing distribution. First,
consider the hypothesis testing problem

H#:v(Q)=p versus X:»(Q) > p.

The results of Section 2 suggest that det M pcould be used as a test statistic, as it
has limiting value 0 under the null hypothesis, and positive limit under the
" alternative. We suppose that for each value of ¢ up to p we have an unbiased
estimator yq(X ) of the gth moment of Q.

It is easiest to develop the theory of the test using the ideas of U-statistics.
First, form a sequence X, X;, X,,..., X, of i.i.d. replicates from distribution Fj,.
We start by defining a kernel K

1 YI(XI) U Yp(Xp)
Yl(Xo) Yz(X1) Yp+1(Xp)
Kp(XO’ X, X,,..., Xp) = det| v2(Xo)

| v(Xo) oo ap(Xp) |

The first observation is that E[K,] = detM (Q). This follows because the
construction of the matrix allows us to commute the expectation and determi-
nant operators. Since K, is not permutation-invariant in its arguments, next
define an invariant vers10n K to be the average value of K, over the (p + 1)!
permutations of its arguments Finally, define d based n i.i. d observations, to
be the mean value of K over all n-choose- ( p + 1) subsets of the sample
X, Xooon X, Clearly E[d 1=d,, and indeed it is similar to being a bias-cor-
rected version of d = detM ; - thls latter is, in Serfling’s terminology (1980), the
corresponding V-statistic.
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Although it is easiest to describe the theory from the U-statistic point of view,
the results below apply as well to the V-statistic versions. However, we note in
aside that small scale simulation results indicate that d, can show considerable
bias as an estimator of d,, so that bias correction can be a significant issue. On
the other hand, the above scheme for constructing the bias-corrected version is
clearly very computationally intensive unless one can find algebraic shortcuts.
One compromise solution with great ease of computation relative to the above
scheme, and some further advantages, is the jackknife, which we will discuss
further below.

The following theorem is a standard result on U-statistics, such as found in
Serfling (1980) and treated originally by Hoeffding (1948).

THEOREM 3A. Suppose that @ has 4p moments. Then Vn (cip —d,) con-
verges in distribution to a normal distribution with mean 0 and variance

1, = (p + 1)’ Var{E[K,(Xy, X;, X,,..., X, )1 X] },

provided that the latter is nonzero. If 7, = 0, as is the case if and only if @ has
fewer than p-points of support, then d is 0,(1/ Vn).

Proor. First, we note that 7, is finite if @ has 4p moments, as the
conditional expected value is a polynomial of degree 2p in X,,.

Next, to evaluate 7, when @ has fewer than p points of support, we show
that the indicated conditional expectation is the zero polynomial in X,. Consider
any component summand K as above, generated by a sequence of replicates
X4, X3,. .., X,. Compute the expected values by first computing the conditional
expected values given a sequence of replicates p,,..., p, from Q. These condi-
tional expected values are all 0 since linear dependencies in the columns of the
matrix show that the determinant is 0. O

We are now in a position to discuss the construction of the test. The
hypotheses under question correspond roughly to testing H: M, is nonnegative-
definite versus K: M, is positive-definite. This suggests that one should dec1de
to reject H if there is strong evidence for positive definiteness. If M
positive-definite, then 7 is greater than p. Provided M is positive-definite, then
a measure of the degree of positive definiteness lS its determinant dp
indicated by the Tchebycheff type bound in Lindsay (1989), Theorem 2D, ltS
magnitude is a measure of departure from p-pointedness, so gives power in a
desired direction.

CoRrOLLARY 3B. Let a < 0.5. Suppose that 7, is a consistent estimator of ,.

Define the set A, = {(# < p} and the set B, = {Vn d~p/+‘p > 2,}. The test based on
rejecting >¢ on the set

A UB,

is asymptotically size a and is consistent for testing > against X .
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Proor. Under both null and alternative hypotheses, the event A, has
probability tending to 1. O

It should be pointed out that in the important case p = 1 this method of
testing for the number of support points reduces to another well-known test.
That is, for distributions in the exponential family the C(«) test for homogeneity
[Neyman and Scott (1956)], just as the proposed test, can be expressed as a
normalized contrast between the sample variance and the variance as estimated
under the assumption p = 1. It has been shown to have certain optimal proper-
ties as a test of the parametric model against any location-scale family of mixing
distributions. [See Moran (1971) for further comments on optimality.]

REMARK. Consistent estimation of 7, could be done in an obvious fashion
from moments. An alternative track which is easy to program is to use the
jackknife both to debias detM and to estimate its variance. That is, in the
examples described above, M has as entries linear combinations of sample
moments. It is therefore a sunple programming matter to delete observations one
at a time from the matrix, then compute the determinant. One can then directly
apply the standard jackknife methodology to derive the bias correction and the

estimated variance.

A more difficult question involves the size of the proposed test under the more
general null hypothesis, #: »(@) < p. Although the U-statistic machinery can
be used to derive the distribution of d,, the size now also depends in a
nonobvious fashion on the estimator 7, which is estimating 0 when »(Q) is
strictly less than p. For this more general null hypothesis, a more natural test
statistic might be the smallest eigenvalue of Mp, together with a bootstrap

approach to constructing a confidence interval for it.

3.2. A nonparametric estimator of @. Next consider the estimation of »(Q)
by #. Note that one cannot estimate »(@) consistently in the usual sense, as,
regardless of the sample size, there are p + 1-point distributions sufficiently
close to any p-point distribution so as to be statistically lndlstmgulshable
However, we will show that under mild assumptions Qn Q is consistent, in
the sense of weak convergence with probability 1, for the true distribution .
Tucker (1963) derived a result of this type in the case of the Poisson distribution.
Brockett (1977) attempted to show the result more generally; however, the proof
is flawed. (On page 36, the polynomial ¢*(x) is identically 0, not degree d, when
¢ > d; this is easily checked for d = 1, mass 1 at 0.)

We first need the following lemma: It is an extension of the simple but
powerful result that if E(Y,) - a and Var(T,) — 0, then Y, -, a.

LEMMA 3C. Let {Q,} be a sequence of distribution functions. If det M,(Q,)
converges to 0, and if m}(Q,) > m(@Q), 1 < j < 2p — 1, for some p-point distribu-
tion Q, then Q, — @ weakly.
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PrROOF. From @, one can construct a distribution @,,, with p or fewer
points of support, which matches the first 2p — 1 moments of @,. The conver-
gence of the moments implies convergence of corresponding moment determi-
nants, and so from some value of n on @, , will have p points. Since all the
moments of a p-point distribution are determined by the first 2p — 1, we have
convergence of all the moments of @,, to @, and hence weak convergence.

Next, one applies the Tchebycheff type result from Lindsay (1989), Theorem
2D,

P{inf{IX —-rl} > £> <d,/d, &

where r; are the support points of the p-point distribution that matches the first
2p — 1 moments of X. Letting X correspond to the distribution @,, then @, ,
has support points corresponding to r;, and it is clear that, since weak conver-
gence of @,, implies convergence of the r; to the support points of @, that the
above inequality gives weak convergence of @, to @. O

THEOREM 3D. Suppose that @ is a distribution with all moments existing
that is determined uniquely from its moment sequence. Then Q - Q weakly
with probability 1.

Proor. First suppose that »(Q) is finite. From the construction of # we do
have (on a set of probability 1) that for n sufficiently large, # will be greater than
or equal to p = »(Q). Thus in particular, from this value of n on the first 2p — 1
moments of F, are matched to those of the empirical distribution. Since the
latter converge to the moments of F,, we have that the estimated moments
m (Q ) converge to my(Q), for j = 1,...,2p — 1. Moreover, either detM <0,
in Wthh case Q is a _p-point estimator, and so detM (Q) 0, or detM >0,in
which case detM (Q) detM Thus it is clear from Theorem 3A above that
detM (Q) converges to 0. Now apply Lemma 3C.

If Q has an infinite number of support points, then # diverges to co with
probability 1. This implies that in the limit, all moments of the mixing distribu-
tion are estimated consistently, which in turn implies weak convergence of the
estimated distributions. O

REMARK. Lambert and Tierney (1984) considered the efficiency of the non-
parametric estimator of an unknown mixing distribution @ in the Poisson model.
One result was: Provided that the true distribution @ has infinitely many points
of support, maximum likelihood based estimators of certain functionals of the
model could be no more efficient than estimators based on the empirical cumula-
tive distribution function. In particular, this implies that the maximum likeli-
hood estimator of m (@) would be no more efficient at estimating m,(Q) than
m, = ¥,. This suggests that the proposed method-of-moments nonparametric
estimator of the mixing distribution might not suffer quite the severe failings in
efficiency in a nonparametric model [infinite »(Q)] that it does in the parametric,
fixed finite »(Q), model.
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4. Normal distribution, known variance. The normal case will now be
considered in greater detail. In particular, suppose that X has a distribution F
which is a mixture of the form [n(x; p, o) dQ(p), where n(x; , 6) is the normal
density function. This distribution will be denoted N(Q), 02). Since in a location
family mixing is equivalent to convolution, the model for X is

X=p+o0Z,

where p and Z are independent with distributions @ and N(0, 1), respectively. In
this section it will be assumed that the variance 62 is known; the 02 unknown
case will be considered thereafter.

Since the normal model with fixed o is a quadratic variance exponential
family, the results of Section 2 apply. For the normal, the unbiased estimators
Yp(x) of the moments of @ are the Henmte polynomlals Thus, for example,
Y1(%) = %, vy(x) = 2% — 0® and y,(x) = x° — 362%x. The following lemma pro-
vides us with an algebraically useful representation (4.1) for their form in terms
of the moments of a complex-valued random variable. This will eventually result
in a number of important simplifications.

LEMMA 4A. Let Z be a standard normal variate independent of X. Let
i=vy-1.

(1) Suppose that the moment generating function for X ~ N(Q, ¢2) exists on
some domain. Then on that same domain, the moment generating function for @
exists and has the representation

fexp(tu) dQ(p) = my(t) = E[e®X+ioD)],
(i) Define
(4.1) Yo(%,0) = E[(X + i0Z)"X = z].
This polynomial of degree p in X has expectation m (Q) when X ~ N(Q, o?).

PROOF. Straightforward, with (ii) following by differentiation of the repre-
sentation of the moment generating function in (i). O

Next, for an arbitrary distribution F, with corresponding expectation E,
define the matrix T, = T(F, o) by letting the (i, j)th entry be E[y,, A(X, 0)], for
i=01,...,p and j= 0 1,..., p. As in Section 2, the use of the empmcal
dlstnbutlon function for F in I‘p provides an estimated moment matrix M 2(0)
for the unobserved distribution Q.

The next theorem provides a U-statistic representation for det T, which will
be used in Section 5.

THEOREM 4B. Let Xo» Xy Xy, X, be zndependent replicates from a
distribution F with 2p moments. Let ZO, Z,. -» Z,, be independent standard
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normal variates. Then

(4.2) detT(F,0) = E l!:[j[xk - X; +i0(2, - 2,)]*|.

ProoF. Lindsay (1989) proved the general result that for any moment
matrix M,, detM, = E[II(Y, — Y})Z], where Y;,Y,,...,Y, are independent
replicates from the distribution involved. Simply apply this representation to the
complex-valued random variable X + i0Z and use (4.1). O

REMARKS. There are two important corollaries to this theorem. First, the
determinant is invariant under location changes in the distribution of X, so that
later we may with impunity use central moments in the estimation of 6. Second,
if one takes the conditional expectation given the X-variates of the argument in
(4.2), one obtains a symmetric kernel in the sequence (X,, X,,..., X,,) which
could be used for U-statistic estimation of the value of the determinant; it is an
explicit representation of the symmetric kernel K of Section 3.

5. Normal theory method of moments. Assume now that X ~ N(Q, ¢?)
but that o is unknown. For the purposes of deriving estimators, it will first be
assumed that the number of support points in the mixing distribution @ is
known to be p. The following lemma indicates that with this assumption the
value of o can be identified from the first 2p true moments of X. This will
directly lead to a consistent method of estimation of o from the sample
moments. The next task will be to verify that substitution of this consistent
solution into the moment equations of Section 2 leads to a set of moment
equatlons for which a solution Q exists, thereby yielding a joint solution

Q ) to the set of 2p moment equatlons

5.1. Consistent estimation of the parameter sigma. For simplicity, we will let
d (o) represent det I'(F, o) whenever the distribution F of random variable X
has been clearly defined by context. The symbol d,(c) then refers to the use of
the empirical distribution of the data in the place of F. Viewed as functions of
o2, with F fixed, these are both polynomials of degree p(p + 1)/2, and the first
lemma indicates some useful behavior of the roots when F is a mixed normal
distribution.

LEMMA 5A. Suppose that X ~ N(Q, o2) and that Q is a distribution with
exactly p points of support [v(Q) = p). Then

(i) For every integer m > 0, d,, ,(0,) =0
(ii) For any positive o < o, we have d, (o) > 0, for all m > 0.
(iii) At its first positive root, d (o) undergoes a strict sign change,

3[d,(0)]/90%,,, <O.
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ProoF. The result (i) holds simply because I'(F, o) is the moment matrix
for the distribution @ which has p points of support. Part (ii) will be verified
if we show that the matrix I (F,¢) is the moment matrix for a distribution
@Q* with infinitely many points of support. However, we may here use the
identity N(Q, of) = N(Q*, 6%), where Q* is the convolution of @ with a
normal (0, o2 — 02) random variable, and note that T o(F, 0) must therefore be
the moment matrix for @*.

Proving (iii) requires some algebra, which we outline here. Using the above @*
representation, as a function of 72 = (6 — 02) the determinant has the repre-
sentation

dp(o) = E[n{m T (Z, - Zj)}2]/§P + 1)1,

where the p’s are a sample from @ and the Z’s are an independent standard
normal sample. Expand the square and analyze the terms which have coefficients
72. Some of them have the form

E[Z, - Z)"E[ T (s, - )],
where the product includes all a > b not equal to (i, ). It is easily checked that

this expectation is strictly positive for a p-point distribution.
It remains to check that all other 72 terms are 0. These will have the form

E|(Z - Z)(Z, — Z)(ps — 1) (e — 2) T (o — 1)

The expectation over the Z’s is 0 unless one member of the pair (i, j) equals one
member of the pair (%, /). But under this last condition the expectation over the
p’s is 0. To show this, consider an expectation of the form

E[(py = #o) (o = 1o) (B — B1) (B2 — m) TT (ko — 1s)7].

where the product indicates all pairs a > 8 not among (1,0), (2,0) or (2,1).
Taking the expectation conditionally on u,,..., p, and the ordered values of
Kos 15 Moy @ simple calculation shows that the result is 0. O

The above theorem indicates that if F' is known to be a normal mixture with
»(Q) = p, then o can be identified as the smallest nonnegative root of d,(o) = 0.
We might therefrom identify a method for estimating ¢ from the sample
moments by

6, = smallest nonnegative root of d,(0).

We first consider the consistency of this method.

Certainly the coefficients of the polynomial d, are continuous functions of the
consistent sample moments, being products of sums of moments, and so d (o) —
d (o) almost surely. '

The smallest root of a polynomial, however, is not an everywhere continuous
function of the coefficients; for example, if the smallest root is a double root,
then a slight change in coefficients may make turn these roots into complex
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values, and the smallest real root could jump to somewhere else. However, part
(iii) of the above lemma shows that d (o) undergoes a strict sign change at its
first root; continuity of the function d, (o) as a function of the moments then
shows 6, to be consistent when »(@) = p. Moreover, the usual Taylor expansion
argument shows it to be asymptotically normal, since d,(a,) is, with asymptotic
variance E[d2]/— E[d}].

As a more practical matter, one wishes to know if d »(0) necessarily has a first
root. This matter is nicely resolved below, in Theorem 5C. However, it is clear
that there can be several nonnegative roots, as the polynomial d,(¢) is positive
at 0 and for some values of p has a positive coefficient for its highest power, and
hence goes to + o0 as 6 — oo. (For p = 2 there is a unique nonnegative root.)

Before proceeding to the estimation of @, we consider the consequences of this
approach when »(Q) is unknown. The normal mixture model, with discrete
mixing distribution @, is conceptually similar to a one-way analysis of variance
model in which the individual observations are known, but the group identifica-
tion for each observation is missing. Here »(Q) represents the number of groups.
Thought of in this way, the parameter 62 represents the “error” variance and
the variance of p under @ the “model” variance. As we increase the number of
parameters being estimated in a one-way ANOVA, more of the total variance is
allocated to the model, and less to the error. The same structure is now shown to
hold for the method-of-moments estimators of the error variance o2,

THEOREM 5B. Suppose that the empirical distribution F has n points of
support. Let s be the sample variance. Then every polynomial d (0) has first
nonnegative root, forp = 1,..., n, and the roots satisfy

§=6,>26,> -+ 26,=0.

PRrOOF. We note that M »(0) is the moment matrix for the empirical distribu-
tion, and so it has determmant 0 if ¥ has p or fewer points of support, thus
verifying the last equality. Otherwise, it is positive-definite. In this case let
A(6),..., A, (0) be the ordered eigenvalues of M »(0). These eigenvalues are
strictly posmve at o = 0. Since they are continuous functlons of 6,and d (0) =
detM (a) I'TA (o) has no zeros for o between 0 and 6,, we can conclude that

(o) is positive-definite on this range. In particular, all its principal minors
must be positive-definite there also. It follows that for any g < p, d, £{0) =
det M ,(0) must be positive on that range. Therefore this polynomlal must have
its ﬁrst root to the right of 6, as was to be shown. In particular, since we know

that d has root s2, all the polynormals have roots. O

5.2. Estimation of the mixing distribution. The final step is to verify that
the consistent root to the determintal equation, 6, leads to a solution for the
p-point mixing distribution, Q .

THEOREM 5C. Let p <n. If 6, is a root of multiplicity one to d (0) =
then there exists a unique p-point dzstnbutzon Q such that N(Qp, "2) has as zts
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first 2 p moments 1, 1i(6,), ..., 1y ,(6,), the moments of @ as estimated from the
Hermite polynomials using the estimated value ¢, for o.

ProOF. We know that the determinant of Mp(c’r‘p) is 0. Moreover, as in
Theorem 5B, it can be shown that all of the principal minors have positive
determinant, strictly positive by the multiplicity of the root, and the result
follows from Theorem 2A. O

Inference on the number of points »(@) in the mixing distribution when there
is a nuisance parameter o in the model is more difficult than in the cases
considered in Section 2. However, there is clearly inferential information in the
values of 6, as under a p-point model they converge tq the same value, namely
o2, for every p > »(Q). Appropriate use of these statistics cannot be commented
upon here due to the need for considerable more investigation.

6. Discussion. A full discussion of the numerical issues and illustrations of
the effectiveness of the methods discussed here are beyond the scope of this
article. However, some preliminary comments can be made here. These tech-
niques are most easily programmed in computing languages which allow the
direct use of matrix manipulations. It is particularly felicitous if the determinant
is an explicit function of the language, as in GAUSS.

Constructing the estimated moments is expedited if there is a simple recursion
for obtaining v,(X) from its predecessors; it is then an easy matter to program
for arbitrarily sized matrices. For example, in the normal case, we have the
recursion for Hermite polynomials,

Yp(x) = x2v,_1(x) = (P — D)oy, _o(x).

Finding roots of polynomials like S (¢), equation (2.2), is easy for p = 2. For
higher-order polynomials, it is natural to use the nesting property of the roots,
Lemma 2D, to identify a region which contains exactly one root, and then use a
simple algorithm, such as bisection, to find the root in each region. (Bisection
simply divides the interval repeatedly in half, selecting at each stage the
half-interval in which a sign change occurs. Given the known sign-change
behavior, it is simple, effective, easy to program and guaranteed convergent.)

To find the smallest root to d,(¢), it is again safest to proceed sequentially in
p, using now the nesting property of Theorem 5B. A simple bisection algorithm
on the interval [0, 6,_,] has been found to be a fast and effective way to lo-
cate 6.

Finglly, to give a small illustration of the use of the normal method, we
consider applying it to Darwin’s data:

—67, —48,6,8,14, 16,23, 23, 28, 29, 41, 49, 56, 60, 75.

These data were used by Aitkin and Wilson (1980) to illustrate the use of
mixture maximum likelihood. We give the parameter estimates for p = 2 below,
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together with the mode of the likelihood (there are at least two) selected by
Aitkin and Wilson based on the use of several starting values in the EM
algorithm.

By Bo 7’ o
Maximum likelihood 33.0 —-573 0.87 19.63
Method of moments 34.0 —46.7 0.84 21.17

Thus it appears in this case that method of moments would have given good
initial values for maximum likelihood. It is anticipated that if the method of
moments could be extended into higher dimensions without loss of computa-
tional ease, it would become a dramatically important tool.
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