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This algorithm is a fast and parsimonious way for representing interaction.
For example, if, in their spline bases, f and g have p degrees of freedom, then
the minimizing product fg has about p degrees of freedom in it. One adds more
multiplicative terms until there is no significant decrease in RSS. Furthermore,
the multiplicative terms are easy to interpret.

Unfortunately, numerical results indicate that in the nonindependence case,
there are a number of local minima in addition to the global minimum. The
algorithm always converges, but it may not converge to the global minimum.
This makes the selection of a good starting point important. Our experimental
results have been that if we use the starting point given by assuming indepen-
dence, then the iterates have always converged toward the global minimum.

I am currently working on straightening up the details of this representation
of bivariate interaction and hope to go public soon.”
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We must begin by thanking the authors for a thought-provoking work. As is
well known [Kimeldorf and Wahba (1971) and Wahba (1978)], quadratic penal-
ized likelihood estimates (with nonnegative definite penalty functionals) are
Bayes estimates. Let y = g + € with g ~ N(0, 2) and & ~ N(0, 62I), then

g=3(2+0%) 'y =4y, say,
which also minimizes (1/0%)(y — 8)'(y — 8) + g=*g, the resulting smoother

matrices are all symmetric nonnegative definite with their eigenvalues in [0, 1).
This generalizes to the case where X is improper, which gives eigenvalues +1.
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516 DISCUSSION

One could make the case that a good linear smoother should be Bayes (including
improper Bayes) for some Gaussian prior, equlvalently, satisfy some appropriate
quadratic variational problem.

We hope you will forgive one of us (G.W.) for claiming the “popular defini-
tion” of degrees of freedom for signal in the spline literature [Wahba (1983)].
This can stand as a challenge to Steve Stigler to show that this definition is
really due to Laplace!

We have been looking at a (large) class of abstract multivariate smoothing
models using reproducing kernel spaces, which include the additive as well as the
interaction spline models as special cases, and trying to determine the feasibility
of estimating multiple smoothing parameters by GCV. Our comments cover two
areas: First, we remark that the backfitting algorithm can be used to fit this
class of abstract models, if one specifies the smoothing parameters a priori.
Second, we note a new algorithmic development based on matrix decompositions,
which allows the estimation of multiple smoothing parameters with large n (our
examples involve n from 300-800). The complexity of the algorithm depends on
the number of data points, but not the dimensionality of the independent
variable. We describe this abstract development and how it relates to the present
work, and possibly answer some questions raised by the authors.

Let x = (x,,...,x,4) € @ € E% H a reproducing kernel (rk) Hilbert space of
real-valued functions of x, with an orthogonal decomposition

q
H=H,+ Y H*,
k=1
where H, is spanned by ¢, ..., ¢,;, and H* has the rk @*(x; x'). Thus, letting
H, be ¥}_, ® H*, H, has the rk Q(x; X)) = L] _,Q%(x; x"). We seek f =17 _,f,
with f, € H,, f, € H*, to minimize

(1) % gn‘. (J’i - ki fk(x(i))) + }‘ki 0 fk||§1,¢,

and it is required that the x(i), i = , n, be such that least-squares regres-
sion on H, be unique. Using the theory of reproducmg kernels [see Kimeldorf
and Wahba (1971)], we have that there exists a unique minimizer and the fk
must be of the form

. M
fo(%) = gl d,9,(x),

fk(x) = 'él cix@*(x; x(7)),

where the d = (d,,...,d,) and ¢, = (¢y, ..., C,;) are found as the minimizers

- of
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q
+A E ak—]cl’ercIu
k=1
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(2) —lly —Td - ) Q%
n k=1
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where T' is the n X M matrix with irth entry ¢,(x(i)) and Q* is the n X n
matrix with th entry Q"(x(z), x( J)). T is by assumption of rank M. If Q* is
not of full rank, then the minimizing €, of (2) may not be uniquely determined,
but fk(x), and in partlcular f,, the vector of values of the smoothed component
in H*, given by fk Q"c,, is uniquely determined. To see this, one supposes that
u= (ul, ., u,) satisfies @*u = 0, then the nonnegative definiteness of Q*(-; -)
ensures that 7 u,Q*(x; x(i)) = O all x. One of us (Z.C.) has observed that the
backfitting algorithm can be used here. Let S, = T(T'T) " 'T", S, = Qk(Q”
NG )‘1 One observes in the usual way, by first fixing all of the c,’s and
mmumzmg (2) with respect to d, and then ﬁxmg all but ¢, in turn for each &,
that the minimizers d = (dl, dM) and &,, k= 1,..., g, satisfy

A

r s - & 0 Soy

S, I .- S, Lo | Sy

Sq Sq T I fq qu
where f = Td, f,z Q%,, k .y q.

We recall that the Bayes model corresponding to (1) is
q
= sz(x(i))+8i’ i=1"°°’n7

where the f,(-) are independent, zero mean Gaussian processes with fy(x) =
L 08,9,(x), with 8 ~ N(0, £I) with ¢ > oo, and Ef,(x)fy(X) = b0,Q*(x; X)),
g~ N(O 62I), n\ = 0?/b.

In recent work on interaction splines [Gu, Bates, Chen and Wahba (1988), Gu
(1988) and Wahba (1988)] we have instead pursued the following approach which
uses matrix decompositions for n + M unknowns (not np!) and allows the
explicit computation of the influence matrix and the estimation of multiple
smoothing parameters by GCV. We first observe that if we change the squared
norm in H, from Xj_||f,l3+ to Ti_.0;"fsll%+ we change the rk from

7 _1Qkx; x’) to Xf_ 0ka(x, x') = Qy(x; X'), say. Letting f € H and P, be the
prOJectlon in H onto H, with this new norm, (1) is equivalent to: Find f € H to
minimize

¥ (3 - 1x(0)* + M f 3,

i=1

S|+~

where
q
Poflife = 2 Onll Fills,
k=1
Using standard calculations [see e.g., Wahba (1985)], the minimizer f, satisfies

Ix) = Z d.,(x) + Z ciQq(x; x(3)),

v=1
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where ¢ = (¢;,...,¢,) and d = (d;,..., d,,) satisfy
(@ +nAI)c+Td =y,
Tc=0,

and @, is the n X n matrix with ith entry Q,(x(2); x(j)).
Letting the QR decomposition of T be

-\ R
7= (rE)(B),
we have that
& = Fy(F{Q,F, + n\I) 'Ky,
Rd = F/(y — F\Qc),
and the components of the solution are
A M "~
fO(x) = E dv¢v(x)’
v=1

fk(x) = Z éioka(X; x(i)),

i=1

which gives
(3) f,=T1d,
(4) f,=0,Q%, k=1,...,q.

We remark that this smoothing procedure reproduces elements in H,, and we
also note that Proposition 3 is a special case of (4) when M =0, F, = I.
The influence matrix A(A, #) (called R by the authors), which satisfies

f+= A(>\’ 0)y’
where f, = ¥{_.f,, is given by
(5) A(X,0) = I - nAFy(F{Q,F; + n\I)'Fy

and has n — M eigenvalues in [0, 1), and M eigenvalues + 1. Letting 3, = F,;Q,F,
and z = Fy'y, the GCV function V(}, 8) = ||(I — A(X, 0))y||%/[tx(I — A(A, 6))]?
can be written

Z(Zy+ nAl) %z
(tr(Zg + nAD) ™Y

V(A, 0) =

To minimize V(A, #), first put a constraint on 4 so that there are (at most) g — 1
independent components, then, for each @, tridiagonalize 2, by U'Z,U = A,
where U is orthogonal and A is tridiagonal. A strategy for speeding this step up
by a truncated Householder transform is given in Gu, Bates, Chen and Wahba
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(1988). For each A do a Cholesky decomposition of (24 + nAI) as L'L, where

a, b
a, b,

Cppyr-1 byt
an—M

is upper bidiagonal. The calculation of the denominator of the GCV function is
based on a trick derived by Eldén (1984); see Gu, Bates, Chen and Wahba (1988).
Letting the jth row of L~! be 1/, we have that tr(L™'L™") = £7_}|1||?, and
the following recursion relation can be shown to hold:

M nell® = @22 n5

A% = (1 +82M,.001%)a; 2, j=n-M-1,..,1,

which can be calculated in O(rn — M) flops.
The reproducing kernels @*(x;x’) for additive and interaction splines are
found as follows: Let W™ be the Sobolev space

W= {f:f, e, 7D abs. cont., f™ € L,[0,1]}

with the squared norm
m—1
1 2
1l = X (Rf)+ [(1()) a,
=0
where

Rj= [1O)dm  r=01,m-1.

Let k,(x) = By(x)/!l!, where B, is the /th Bernoulli polynomial, we have R,B, =
8,_,, where §; =1, i = 0 and 0 otherwise. With this norm, W;" can be decom-
posed as the direct sum of m orthogonal one-dimensional subspaces {k;},
1=0,1,..., m — 1, where {k,;} is the one-dimensional subspace spanned by %,
and H, which is the subspace (orthogonal to = ® {k,}) satisfying R, f =0,
v=20,1,...,m — 1, that is,
Wy = {ko} o {kl} © - e{km—l} ® H,.

This construction can be found in, for example, Craven and Wahba (1979).
Letting ® “W," be the tensor product of W™ with itself d times, we have

d d

® Wy = ® [{ko} @ @&{ky 1} ® H,]|
and ® “W;" may be decomposed into the direct sum of (m + 1)? fundamental
subspaces, each of the form

(6) [1e[]®---@[ ] (dboxes)
with either {k;} or H, in each box. The rk for {k;} for the jth variable is
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ky(x;)k,(x}) and the rk for H, is Q.(x;, x}) given by

Qu(x), %)) = k(2 kp(2)) + (= 1) Ryp([x; — 27]),

where [u] is the fractional part of u [see Craven and Wahba (1979)]. For
additive splines H is the direct sum of all of the fundamental subspaces with at
most one entry in the boxes of (6) which is not {&,}, H, is the direct sum of the
fundamental subspaces with no H, entry and each H* is a fundamental
subspace with all entries {k,} except H, in the kth position. The rk’s for direct
products and sums of orthogonal rk spaces are the corresponding products and
sums of the component spaces; see Aronszajn (1950). Recalling that ky(-) = 1,
we have the rk Q,(x; xX') for additive splines is

q
Qy(x; X) = )y on*(xj’ x,')
j=1 .
and an element in H, is of the form fy(x) = d, + Z%_,X ' d; ,¢,(x;). This
construction results in the same penalty function for the additive splines as given
in the paper (with Ad;' = A;) and hence this approach can be used to fit the
additive spline model and simultaneously estimate multiple smoothing parame-
ters. The two-factor interaction subspaces are direct sums of fundamental
subspaces with two boxes filled with other than {&,} and so forth; see Gu, Bates,
Chen and Wahba (1988) for examples and rk’s.

Now as far as comparing the direct approach using matrix decompositions
versus the backfitting algorithm (assuming that smoothing parameters are not
estimated), the backfitting algorithm could be expected to be faster when the
relevant matrices are sparse (as can be arranged for the main effects smoothing
spline case). It is possible that Girard’s method [Girard (1987)] for evaluating the
denominator of the GCV function may prove useful in this case, if n is
sufficiently large. This method estimates tr A by evaluating 8’A8, where § is a
pseudorandom N(0, I) vector. When no special structure is available, then the
matrix decomposition approach is probably more appropriate, to the extent that
it is feasible. We have done examples with three ’s and with n as large as
n = 800 on the Cray and n = 300 on a Sun workstation. Transportable code is
available [Gu (1988)] by writing gu@stat.wisc.edu. [Added in proof: Further
algorithmic and numerical results appear in Gu and Wahba (1988).]

Note that the confidence intervals in Nychka (1988) (which would apply here)
use A = R and not R% As the authors note, convergence results are available
under various assumptions on f for univariate (as well as other) splines. Best
possible convergence rates can be identified with the rate of decay of the
eigenvalues of the reproducing kernel(s) [see, for instance, Micchelli and Wahba
(1981)], and rates for nicely distributed x() are also known to be related to the
eigenvalues of the rk.

Now that we have this rather huge family of smoothers to choose from, by
selecting H,, possessing unique regression and g rk’s Q*, which only have to be
honnegative definite, what is so special about splines? Stein, in a series of papers
[Stein (1987, 1988)] has explored the effects of misspecifying covariance kernels
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(i.e., rk’s), the end result being that asymptotically, one only needs to ensure that
one is in the correct equivalence class of covariance kernels, conversely, as far as
estimating covariances from data, one can only asymptotically get in the right
equivalence class anyway. [See also Section 2 of Wahba (1981).] These results
apply to f a stochastic process, if f is considered to be a fixed function in a
certain rk space, estimation in certain bigger spaces can still give optimum rates
but topologically equivalent norms are going to give the same rates. The theory
of equivalence and perpendicularity for zero mean Gaussian processes (i.e., rk’s)
is fairly complete; see, for example, Rosenblatt (1963) and Hajek (1962). Anyway,
the wonderful thing about spline spaces is that their rk’s are the most “parsi-
monious” members of a big group of equivalence classes.

Now, back to the practical problems of applying these interesting methods.
Looking at the scatterplots in Figure 6, one certainly could doubt that the noise
is white. Changing variances probably do not hurt methods like cross-validation
too much, but correlated errors can be a problem. We do not at the moment
know how many smoothing parameters is too many (except we want different
parameter values to correspond to different equivalence classes) but we are doing
some experimenting.

It is not surprising that there is a relationship between inversion base height
and inversion base temperature. If the relationship were exactly linear, there
would be exact concurvity in the additive spline model, as formally evidenced by
the fact that you could not fit a unique least-squares plane through data on the
plane which is restricted to a line. We liked the authors’ plots which displayed
the effects of this problem. To make the most of additive and other semipara-
metric models in many variables, we are going to need better tools for diagnosing
and dealing with practical (near) concurvity problems, which are undoubtedly
going to be encountered frequently. The first step is obviously to check the
condition of the T matrix, but, for subtle kinds of concurvity we might need
more subtle methods. We trust will see more from the authors on this point in
the future.
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Fitting the additive model using the backfitting algorithm with symmet-
ric smoothers having eigenvalues in [0, 1] amounts to a Bayesian procedure.
This statistical interpretation is interesting in its own right, but also suggests
other algorithms and provides a framework for solving some of the inferential
problems left open by Buja, Hastie and Tibshirani.

The paper by Buja, Hastie and Tibshirani (referred to hereafter as BHT)
makes several important contributions. On a trivial note, the discussion of
“degrees of freedom” hopefully clarifies the ambiguity of the term when applied
to smoothers which are not orthogonal projections. The tantalizing remarks on
concurvity may well be the first salvo in a whole barrage of results on such
notions. However, the main contribution is the development of the backfitting
algorithm. There is an aesthetic elegance in computing estimates for the complex
additive model by concatenation of estimates for simpler unidimensional models.
From the practical perspective, it provides a method whereby users can “wire
together” existing pieces of software to solve a seemingly difficult problem. There
are clearly opportunities for many spinoffs, such as implementations on dis-
tributed processing systems. Most of the theorems for general p (the dimension
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