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ON HOTELLING’S FORMULA FOR THE VOLUME OF TUBES
AND NAIMAN'’S INEQUALITY"

By JAIN JOHNSTONE AND DAVID SIEGMUND
Stanford University

Two new derivations of the Hotelling—Naiman results on the volume of

tubes about curves in spheres are presented. The first involves simple differ-

_ ential inequalities. The second is probabilistic, using the concept of upcross-

ing borrowed from the theory of Gaussian processes. The upcrossings method

is extended to an harmonic regression problem not covered by the
Hotelling-Naiman formulation.

1. Introduction. Motivated by the question of testing for a nonlinear pa-
rameter in a regression model with independent, homoscedastic normal residuals,
Hotelling (1939) was led to consider the geometric problem of computing the
volume of a tube of given radius around a curve in S”~ !, the unit sphere in R”.
The answer involves only the arc length of the curve and not its curvature,
providing the radius of the tube is sufficiently small that there is no self-overlap
in the tube. Starting from a somewhat different statistical setting Naiman (1986)
arrived at the same geometric problem and showed that Hotelling’s result
(properly interpreted) is an upper bound for the volume of a tube of arbitrary
radius.

As a technical ingredient of a longer calculation Estermann (1926), page 94,
derived the analog of Naiman’s inequality for tubes about curves in Euclidean
space. His method is easily adapted to prove Naiman'’s inequality. Hotelling’s
argument does not yield the Estermann—Naiman inequalities, nor do the meth-
ods of Estermann and Naiman allow one to obtain the exact volume of tubes of
small radii.

The purpose of this article is to give two new, unified derivations of the
Hotelling—Naiman results. The first involves differential inequalities. The second
is probabilistic, using the concept of upcrossing borrowed from the theory of
Gaussian processes. In the context of Gaussian processes Knowles (1987) has
observed that approximations obtained from Hotelling’s result and bounds
derived via upcrossings are related.

Hotelling’s statistical motivation and geometric problem are reviewed briefly
in Section 2, which also establishes our basic notation. Sections 3 and 4 contain
our derivations.

For a more extensive discussion of applications and several numerical exam-
ples, see Johansen and Johnstone (1988) and Knowles and Siegmund (1988).
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2. The problem. Assume y; = Bf,(0) + ¢, i =1,2,..., n, where the f; are
known functions depending on an unknown parameter § and the ¢; are indepen-
dent N(0, 62) errors. In principle, one can also consider the more general model
¥i= (B, x;) + B,.1fi(0) + ¢, where B and the x; are p-dimensional vectors, but
for our purposes the simpler one suffices.

The primary example given by Hotelling is f;(8) = cos(nt; + w), where the ¢,
are known constants and 6 = (pu, ). A second example is the broken line
regression f,(8) = (¢, — 8)*. See Davies (1987) for an interesting discussion of
both these examples.

The likelihood ratio statistic for testing H,: 8 = 0 against H;: B # 0 is easily
seen to be equivalent to

m;ix{[Zfi(é?)yi]z/[Zfiz(a)Zyi2]}-
Letting f(8) = (f(0),..., f(8)) and y = (¥y,..., ¥,), we can write this as
max (¢ £(8), »*/ [ ()17 171°]}

Putting y(8) = f(8)/]f(8)|| and U = y/|| y||, we see that the rejection region of
the likelihood ratio test,

max (v(0),U) > w?,

is the union of the two tubes, one about y(#), the other about —y(8), of geodesic
radius cos ™ 'w. Here the tube about y(6) of geodesic radius ¢ is the set of all
points U € S™~1, the unit sphere in R”, within geodesic distance ¢ of the curve
¥(8). Under H,, U is distributed uniformly on S§"~', and hence the significance
level of the likelihood ratio test is the normalized surface area on S” ' of the
union of the two tubes.

If y, U € 8"\, then (y,U) =1 — 27'||y — U||>. Hence the tube about y(6)
of geodesic radius ¢ = cos™'w can also be defined as the set of all points in S*~*
within Euclidean distance [2(1 — w)]*? of the curve. See Figure 1.

A simpler geometric problem is to compute the volume of a tube about a curve
in Euclidean space. In this context Hotelling’s result is very easy to state. If
the curve is smooth, closed, and there is no self-overlap in the tube (precise

d(v,U) = (2(1 - w))}
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definitions are given below), the volume of the tube is the product of the arc
length of the curve and the cross-sectional area of the tube. If the curve is not
closed, the volume of two hemispherical caps must be added to account for parts
of the tube associated with endpoints of the curve.

We shall use the following notation. Given a closed interval I of real numbers,
a: I - R™ is a piecewise regular (continuous and piecewise continuously differ-
entiable with nonvanishing derivative) curve of arc length |a|. The Euclidean
distance between two points is d(x, y) = ||x — y||, between a point and a set is
d(x, B) = inf{|]x — y|: ¥y € B}, and between two sets is d(A, B) =
sup{d(x, B): x € A}). The tube (in R") of radius R about a is af =
{x: d(x, a(I)) < R}. For any (measurable) A € S""'or A c R", V(A) = volume
of A. Also let @, denote the volume of the n-dimensional unit ball in R”
and w,_, the volume (surface area) of S”!, the unit sphere in R™*(Q, =
72 /T(n/2 + 1), w,_, = 27"/2/T(n/2)). Finally, let a(¢) = da(?)/dt.

Hotelling’s result in R” says that if « is twice continuously differentiable and
there is no self-overlap in the tube, then

(2.1) V(a®) = |a|Q,_,R* '+ Q,R"
if the curve is not closed and
(2.2) V(a®) = |a|Q,_,R*"!

if the curve is closed.

If a does not actually intersect itself, the condition of no self-overlap is
essentially the condition that R be sufficiently small. Estermann (1926), page 94,
and Naiman (1986) have proved the elegant result that if & is only assumed
piecewise regular,

(2.3 V(a®) < |a|Q, R '+ Q R"
n—1 n

for all R > 0.
Precise analogs of (2.1) and (2.3) for tubes about curves in S"~! are given in
Section 3.

REMARK. It is illuminating to consider the case where «a is the unit circle in
R2. One easily verifies (2.2) for R <1 and (2.3) for all R > 0. Also (2.3) is
asymptotically sharp as R — . We do not have a simple geometric explanation
why the second term on the right-hand side of (2.3), which is obviously necessary
when «a is not closed, works efficiently and in complete generality.

Anticipating applications to the examples presented above, we note that the
broken line regression requires Naiman’s formulation because the curve y(6) is
only piecewise smooth. Hotelling’s problem of testing for a periodic component
in a regression model poses other difficulties because the parameter § = (., w) is
two dimensional and hence the “curve” y(#) is a surface in S”~1. Weyl (1939) in
a companion paper to Hotelling’s calculates the volume of a tube of small radius
about an arbitrary closed differentiable manifold imbedded in R” or in S™~ .
However, his results must be modified for manifolds with boundary before they
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can be applied to the problem at hand. See Knowles and Siegmund (1988) for an
appropriate modification and numerical examples. In Section 4 we show that the
special structure of Hotelling’s problem allows one to use an upcrossing argu-
ment to give an upper bound for the significance level of the likelihood ratio test.

3. The Hotelling-Naiman theorem. We begin with a technical lemma
which summarizes several well-known facts about the uniform distribution on

s,

LEmMMA 3.1. Suppose U = (U,,...,U,) is uniformly distributed on S™ .

(i) The distribution of U? is Beta(1/2,(n — 1)/2); the probability density
function of U is

I'(n n—3,/2
o) = ST (=)™ <,
(ii)

E(Uy) = T(n/2)/{27°T[(n + 1) /2] }.

(iii) For k < n, given U,,..., U,, the conditional distribution of (U, ,,...,U,)
is uniform on a sphere of dimension n — k — 1 and radius (1 — XX U?2)/2,

(iv) The random variable U2 + U} has a Beta(1,(n — 2)/2) distribution and
is independent of U?2/Up.

Proor. All these results can be proved by means of the representation
U =2/(Z2+ --- +Z%)'/?, where Z,,..., Z, are independent, standard normal
random variables, and Basu’s theorem [cf. Lehmann (1986), page 191]. O

A simple picture underlies the differential inequalities approach to Naiman’s
inequality. A sphere centered at one end of the curve is sliced along the plane
perpendicular to the curve at that endpoint. The hemisphere intersecting the
curve is moved along the curve at unit speed. The volume swept out is greatest
when the curve is a geodesic, which leads to the Hotelling—Naiman result.

It is easiest to begin with Estermann’s bound: the version of Naiman’s bound
for tubes in Euclidean space.

THEOREM 3.1. Let a: I = R"” be a piecewise regular curve of length |a|, and
for R > 0 let a® = {x € R™ d(x, a(I)) < R)}. Then V(aF) satisfies (2.3) for all
R=>0.

Proor. Without loss of generality we can assume « is parameterized by arc
length, so I = [0, |a|]. Let the image of « on a subinterval [a, b] of I be denoted
by ag, - Let v(s) = V(aff)ys]). Clearly, v(0) = Q,R", and to complete the proof,
it suffices to show that v is absolutely continuous and o(s) < @,_,R""! for
a.e. s.
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We say a point x is R-close to ap, 4) if x € af, ;). Let § > 0. If a point is
R-close to ay, . 5; but not R-close to ap ,;, it must be R-close to a5 s+5) DUt not
R-close to «, ;. Hence

o(s+8) —o(s) = V(af(?),HB]) - V(af&s])

= V("‘fi,sw]) - V(“[Ii,s])-

Recall that for two sets A and B, d(A, B) = sup,. 4inf,_p |la — b|, and
observe that d(A, B) < 7 implies AR ¢ BR*". Since a is right differentiable by
assumption, the linear approximation to a(s + t) for ¢ > 0, namely B(t) =
a(s) + ta(s + ) satisfies

(3-2) d(a[s,s+s]»,3[o,s]) = "1(8) = 0(8)

uniformly in s provided we exclude left neighborhoods of length & of discontinu-
ity points of &. An explicit evaluation starting from (3.1) yields

0<ov(s+8)—ov(s) < V(B[If)fﬂ) - V(“ﬁ,s])
(3.3) =82, (R+7)" '+Q,(R+7)"-Q,R"
=89, ,R" ' + 0(n(3)).

It follows that v is increasing and absolutely continuous, hence that ©(s) exists
a.e. and satisfies the required bound. O

(3.1)

REMARKS. (i) One can avoid the appeal to Lebesgue theory by showing
directly that wo(s) is Lipschitz continuous with Lipschitz constant M =
Q,_,R" ' Fix ¢ > 0. Formula (3.3) and the analogous inequality for § < 0 imply
that about each s € I there is a neighborhood N,, open relative to I, of points s’
satisfying |o(s’) — v(s)| < (M + ¢)|s’ — s|. The compactness of I provides a
finite subcover {N, } from which it follows by chaining that v(s) is Lipschitz
(M + &) on I. Since ¢ > 0 is arbitrary, we recover (2.3) from the decomposition
o(s) = v(0) + [v(s) — v(0)].

(ii) Lalley and Robbins (1988) have also exploited the idea of volume swept
out by a moving sphere in a differential games setting.

To see that equality holds in (2.3) when «a is continuously differentiable, not
closed and R is sufficiently small, we define the cross section C[a(s)] of the tube
a® at the point a(s) as the set of all x € a® such that (x — a(s), d(s)) <0, = 0
or > 0 according as s =0, s € (0, |a|) or s = |a]. Clearly,

af= U Cla(s)],
s€[0, |af]
and we say that no self-overlap occurs in the tube if this union is disjoint. For a
closed curve, we require only that the union over s € (0, |a|) be disjoint. The

critical radius is R, = inf(R > 0: self-overlap occurs}. If the curve does not
actually intersect itself, R, > 0, but its exact value may be difficult to determine
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analytically. Johansen and Johnstone (1988) give an easily computed bivariate
function whose minimum is R..

THEOREM 3.2. If a: I - R" is regular and closed (resp. not closed), then
the equality (2.2) [resp. (2.1)] holds for all R < R..

PROOF. Assume first that « is not closed. Again assume a is parameterized
by arc length and that R < R_. The key is to show that equality holds in (3.1):
Indeed if a point is R-close to ap, .5 but not to e« ;, then it lies in
U, e (s, 1) CLa()] but not aff ; and hence not in aff ;.

If we combine equality in (3.1) with the inequality V(afi s+81) = V(B [%}3') and
calculate as in (3.3), we obtain in addition to (3.3) the inequality

vo(s+8) —ov(s) 28Q,_,R* '+ O(n(9)).

The two inequalities show that ©(s) = Q,_;R""! for all s € [0, |a|]. Combined
with the initial value v(0) = €,R", this implies (2.1).

Finally, suppose that « is closed. The idea is to split a into two nonclosed
curves and apply what we have just proved. Choose a pair (s, t,) maximizing
the distance function (s, t) — |Ja(s) — a(t)||®. By reparameterization, we may
assume that s, = 0. Since a(0) — a(¢,) is orthogonal to both &(0) and da(¢,) it
follows that ||a(0) — a(Z,)|| = 2R. In turn, this implies that neither of the tubes
aff)’ +,) @nd a[’im oy Suffers any self-overlap. Equality (2.1) applies to each of these
nonclosed curves. Since the two tubes intersect in precisely two disjoint balls,
equality (2.2) is established by subtracting the double-counted portions. O

REMARK. It is interesting to note that the curvature of a plays no role in
the preceding argument. This contrasts with Hotelling’s argument where the
curvature appears and then is found after an integration to have a coefficient of
zero.

To discuss tubes in spheres, let S” ! be the unit sphere in R” and let
v: I —» 8" ! be a piecewise regular curve parameterized by arc length.

Although it is appropriate to use geodesic distance to define tube radii, in
order to adapt as directly as possible the preceding arguments we shall think of
S$7~! imbedded in R and use Euclidean distance. The relation between geodesic
distance ¢, w = cos ¢, and Euclidean distance R = [2(1 — w)]"/? is illustrated in
Figure 1. The tube of radius R about y in S~ ! is

yR= {y e St L me(y, v(s)) > cosq;} ={ye S d(y,v(I)) <R}.

Now the “linear continuation” of y(s) is continuation along a geodesic, defined
by B(t) = y(s)cos t + (s + )sin ¢. Since Euclidean distances on S"~! are inher-
ited from R™, (3.1) and (3.2) remain valid with this new definition of 8.

To complete the calculation analogous to (3.3), we must evaluate v(0) and
V(B[’f)}']’). Let U = (U,,...,U,) be uniformly distributed on S"~! and assume
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without loss of generality that y(0) = (1,0,...,0). Then
v(0) = V{(uy,...,u,) € S* Liu > w)
= w,_P{U, > w}

= opa [ (1= 22" d
w

by Lemma 3.1. To compute V(B{f,ff;’])) observe that since (y(s), ¥(s +)) = 0 we
can without loss of generality assume that y(s) = (1,0,...,0) and (s + ) =
(0,1,0,...,0). Then B, 4; is a portion of the equator subtending an angle 8§ at
the origin. The portion of the tube which does not involve the two caps,
B={ueS" "%, 3ul<1-w%0<u,/u <tan,u, > 0}, has volume

V(B) = 47 %, P{U? + U? > w? U2/U? < tan®8},
which can be evaluated by Lemma 3.1. Hence

w - (n—2)/2 1 (n—3)/2
V(BES) = @7) 18w, 11— wt)™ P 4 o,y (1= 2" e,
w

If R=R+mn, the corresponding =1 — R2/2 = w — Ry + n%/2 =
w + O(7n). A calculation like (3.3) yields

0<ov(s+8)—o(s) < (2n) '8w,_,1 — w?)" 2+ 0(n(8)),

from which follows 0(s) < (27) 'w,_(1 — w?)"~?/2 ae. s since 7(8) = o(8).
From this inequality we obtain Naiman’s bound for a tube in S™~,

An argument analogous to that of Theorem 3.2 shows that there is equality in
the Hotelling—Naiman bound for tubes in S"~! whenever the curve is smooth
and the tube radius is less than R, the radius of first overlap. Details of the
definition of R, together with a computational method for evaluating R . and
some statistical examples are given in Johansen and Johnstone (1988).

The Naiman-Hotelling result we have just derived is summarized in Theorem
3.3, which is then proved by a different method.

THEOREM 3.3. Let v: [0, ¢,] - S"! be a regular curve. Let U be uniformly
distributed on 8™~ and put Z(t) = (y(¢t), U). Then for any 0 < w < 1,

} 3 T(n/2)
~ 7/ T[(n-1)/2]

P{ max Z(t) > w

0<t<t,

o [o-"""a

+@2m) Ty - w?) "

If v(0) # Y(t,) and no self-overlap occurs in the tube Y{ ,, where R =
[2(0 — w)]'/?, there is equality in (3.4). If y(0) = y(t,) and no self-overlap
occurs, the probability on the left-hand side of (3.4) equals the second term on
the right-hand side. The inequality (3.4) continues to hold if v is only assumed to
be continuous and piecewise regular.
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ProoF. The argument uses the notion of an upcrossing of the level w, which
plays an important role in the theory of Gaussian processes. See Leadbetter,
Lindgren and Rootzén (1983), Chapter 7, for the definition and basic properties.
Let N,(t,) denote the number of upcrossings of the level w by Z(¢), 0 < ¢ < ¢,
Then

p{ max Z(t) > w} = P{Z(0) > w} + P{Z(0) < w, N(t,) > 1)
(3'5) 0<t<t,

< P(Z(0) > w) + E{N,(t,)}.

The proof of (3.4) is completed by the evaluation of the right-hand side of
(3.5) given in Lemmas 3.1 and 3.2, which follows.

If y(0) # v(¢,) and there is no self-overlap in S”~! in the tube of geodesic
radius cos~(w) about vy, then no sample path Z(¢), 0 < ¢ < t,, can downcross
and subsequently upcross the level w. It follows that P{Z(0) > w, N,(¢,) > 1} +
P{N,(t,) = 2} = 0, so equality holds in (3.5), hence also in (3.4). If v(0) = y(¢,)
and no self-overlap occurs, {max,_, ., Z(t) > w} = {N,(¢) = 1} and
P{N,(t) > 1} = 0, so the stated result is an immediate consequence of Lemma

Since a continuous, piecewise regular curve is the uniform limit of a sequence
of regular curves, the arc lengths of which also converge to that of the given
curve, one sees from Fatou’s lemma that (3.4) continues to hold under the weaker
condition of continuity and piecewise regularity. O

LeEMMa 3.2. If y is a regular curve in S™ !, the expected number of
upcrossings N,(t,) of the level w by the process Z(t), 0 < t < t,, is given by

EN,(to) = (2m) (1 - w?) "7

PROOF. Assume without loss of generality that y is parameterized by arc
length s = s(¢), and let s, = s(¢,). Then y(s) = dy/ds € S*~!. A standard
argument [cf. Leadbetter, Lindgren and Rootzén (1983), Chapter 7] shows that if
as h — 0 the joint density of Z(s) and [Z(s + h) — Z(s)]/h satisfies certain
regularity conditions discussed below, then

2™s,
EN,(so) = fo-(w) lim 27" ¥ E[Z"(k/2m)\Z(k/2™) = w],
m= o0 kel
where f,_, is the density function of Z(s) given in Lemma 3.1. Since

(v(s), ¥(s)) = 0, for the purpose of evaluating the conditional distribution of
Z(s) = (v(s),U) given Z(s) = (y(s),U), we can let U = (U,,...,U,) and by a

rotation of the coordinate axes assume that y(s) = (1,0,...,0) and y(s) =
0,1,0,...,0). This means that
(3.6) EN,(so) = sOfn—l(w)E[U2+|Ul = w]'

The conditional expectation in (3.6) is evaluated with the help of Lemma 3.1(ii)
and (iii).
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To justify the preceding calculation, it suffices that as A — 0 the joint density
function of Z(s) and [Z(s + h) — Z(s)]/h, say p, x(x, ¥), converge uniformly in
s and x, at least for x in a neighborhood of w, to the joint density of Z(s) and
Z(s) [cf. Leadbetter, Lindgren and Rootzén (1983), Theorem 7.2.4].

By a rotation of the coordinate axes so that y(s) = (1,0,...,0) and y(s) =
0,1,0,...,0), we see that the joint density function of Z(s) and [Z(s + h) —
Z(s)1/h = Z(s) + {[Z(s + k) — Z(s)]/h — Z(s)} has the form

P(Z(s) € dx,[Z(s + k) — Z(s)] /h € dy)
(3.7) - P{U1 cde, U+ Y el e dy},
i>1
where the ¢; = 0 uniformly in s as A — 0, because vy is regular.

Given U, = x, (U,,...,U)) are uniformly distributed on an (n — 2)-dimensional
sphere of radius (1 — x2)/2? (cf. Lemma 3.1), and consequently the right-hand
side of (3.7) equals

o) eP{ U1+ &) + T el (dy = ) /(1= 597,
1>3

where (UQ, cee, Un) is uniformly distributed on 8"~ 2. This last probability can be

written as an integral with respect to the joint density of U, and ¥;_ 5 ¢,U,, and

by a similar conditioning argument it can be shown to converge uniformly in s

and |x| bounded away from 1 to

P{U, € dy/(1 - x*)"*} = P{(¥(s),U) € dy[(¥(s),U) = x}.
The details are omitted. O

REMARK. It is possible (although not particularly natural) to derive Theo-
rems 3.1 and 3.2 by a (down)crossing argument. Since the tube cannot be defined
by an inner product, the appropriate process is Z(s) = ||[U — a(s)||, where U is
uniformly distributed in a box large enough to contain a®.

4. Testing for an harmonic. As indicated in Section 2, Hotelling’s problern
of testing for an harmonic of undetermined frequency and phase does not fall
within the scope of the results of Section 3 because it involves two nonlinear
parameters. However, by writing

Bcos(pt; + w) = B, cos put; + By sin ut;,

where B8, = Bcosw, B, = —Bsinw, and observing that 8= 0 if and only if
B; = B, = 0, we reduce the number of nonlinear parameters to one. The upshot
is a likelihood ratio test with a rejection region of the form

sup [(1(0), U)? + (12(6), U] > w,

where v,(8) € S™ %, (v,(8), v»(8)) = 0 for all 6, and under Hy: B, = B, = 0, U is
uniformly distributed on S”~!. Although in this form the rejection region does
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not have a simple geometric interpretation, its one-dimensional structure permits
one to obtain an inequality based on an upcrossings argument. The following
theorem is similar to a result of Davies (1987), who assumes that o2 is known
and therefore can modify known results about upcrossings of x? processes.

THEOREM 4.1. Fori=1,2 let v;: [0, t,] > S™ ! be regular curves. Assume
{(v1(t), Yo(t)) = O for all t. Let U be uniformly distributed on S™~' and put
Z(t) = {({n(£), UY: + (vo(8), UY}2 Then for 0 < w < 1

P{ max Z(t) > w} <(1- w2)(n_2)/2

0<t<t,

T(n/2w( — w?)" >
27%2T[(n - 1) /2]

(4.1)

to (2mp L. ) 12
XLOL [llchosw + Yy sin w||% — (V1 72>2] do dt.

REMARKS. (i) Theorem 4.1 has been formulated with a view toward applica-
tion to Hotelling’s problem of testing for an harmonic of undetermined frequency
and phase. There has been no attempt at generality.

(ii) A special case of Knowles and Siegmund’s (1988) formula for the volume of
a tube about a surface imbedded in S™~! shows that equality holds in (4.1) for
all w sufficiently close to 1. However, their method does not yield the inequality
(4.1) for all w.

(iii) See Knowles and Siegmund (1988) for a numerical example related to
Theorem 4.1.

Proor oF THEOREM 4.1. The inequality (3.5) is again applicable. The
probability density function of Z(¢) is (cf. Lemma 3.1)

(4.2) F2:(x) = (n = 2)x(1 - 22",
and hence P{Z(¢) > w} = (1 — w?)"~?/2, The standard recipe for calculating
EN,(t,) yields
(4.3) EN,(t,) = 12(w) [*E[Z*()2(t) = w] at.
0

Since
P (b U3, U) + (7, U) {1, U)

[(r, UY + (v, U]

after rotation of axes so that vy, = (1,0,...,0) and v, = (0,1,0,...,0), the condi-
tional expectation in (4.3) equals

(44)  w E(E{[Uh, U) + Ucto, U] UL G )| UE + U = w?).
Defining a; and a, by ¥, = (¥;, ¥)¥2 + &, and ¥, = (Y5, 7,)v; + a,, we see that

)
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o, and a, are orthogonal to both v, and y,, and satisfy

leall® = 1all* = (), llell® = 14l = (v, o)

(ay, ) = {1, 1) -
Since (¥, ¥,) = —{¥1, ¥»), we easily obtain U1, UY + Uy, U) =
Ua;,U) + Uyay, U), and hence the inner conditional expectation in 44)
equals

(4.5)

+
E{[U1<0‘1r U) + Uxay, U>] |U,, Uz} .
By decomposing a, into a component along a; and a component orthogonal to «;

and then rotating the coordinate axes while leaving the first two coordinate
directions fixed, we see that this conditional expectation equals

(4-6) lleyUy + aUs|| E(U3+ Ui, U2)-
Using (4.5) and Lemma 3.1 in (4.6) and substituting the result into (4.4), one can
easily complete the proof of the theorem. O

Note added in proof. Berman [Comm. Statist. Stochastic Models 4 1-43
(1988)] has studied a general class of processes, Z(¢), which contains the process
of Theorem 3.3 as a special case, and has used an upcrossing argument to give an
upper bound for P{max Z(¢) > w}. He has not observed that for a subclass of his
processes, for all sufficiently large w the inequality is in fact an equality. The
authors thank S. Cambanis for pointing out this reference.
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