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UNIFORMLY POWERFUL GOODNESS OF FIT TESTS!

By ANDREW R. BARRON

University of Illinois at Urbana-Champaign

The simple hypothesis is tested that the distribution of independent
random variables X;, X,,..., X, is a given probability measure F,. Let 7, be
any sequence of partitions. The alternative hypothesis is the set of probabil-
ity measures P with ¥, ., |P(A) — Fy(A)| > 8, where & > 0. Note the
dependence of this set of alternatives on the sample size. It is shown that if
the effective cardinality of the partitions is of the same order as the sample
size, then sequences of tests exist with uniformly exponentially small proba-
bilities of error. Conversely, if the effective cardinality is of larger order than
the sample size, then no such sequence of tests exists. The effective cardinal-
ity is the number of sets in the partition which exhaust all but a negligible
portion of the probability under the null hypothesis.

1. Introduction. Let X, X,, ... be independent and identically distributed
random variables taking values in a measurable space (X,B) and let M be the
set of all probability measures on the space. An arbitrary probability measure P,
is entertained as the simple null hypothesis for a sequence of tests based on the
data X, X,,..., X,. Tests are desired which have small probabilities of error for
as large as possible a set of alternative probability measures. A test is uniformly
consistent if the probabilities of error uniformly converge to 0 as n — oo; it is
said to be uniformly exponentially consistent (UEC) if the probabilities of error
are uniformly less than e " for all large n for some r > 0. Exponential bounds
on the probability of error are known in the simple versus simple case [ Chernoff
(1952, 1956) and Csiszar and Longo (1971)], in the discrete case [Hoeffding
(1965)], in the case of smooth parametric families [Hoeffding and Wolfowitz
(1958), Bahadur (1966) and Brown (1971)] and in the case of convex sets of
alternatives defined by “capacities” [Huber and Strassen (1973)].

We consider composite alternative hypotheses of the form

(Pe M:d(P, P) > 8)

for various distance functions d(P, P,) and § > 0. These sets are generally not
convex and nonparametric. Nevertheless, the problem is to determine whether
UEC tests exist against {P: d(P, F,) > 8}. Of course this problem is motivated
by the need to understand the nonlocal behavior of goodness of fit tests. Another
motivation comes from the problem of consistency of Bayes procedures. If the
prior satisfies a certain natural assumption, then for any distance d for which
a UEC test exists, the sequence of posterior distributions asymptotically
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108 A. R. BARRON

concentrates on {P: d(P, P)) < 8} with Pjprobability 1 [see Schwartz (1965)
and Barron (1986,1987)]. In the author’s dissertation [Barron (1985)], the con-
vergence of minimum complexity estimates of probability measures is established
for any distance d for which such tests exist.

For some weak distances, UEC tests are known to exist. Hoeffding and
Wolfowitz (1958) observed that if an inequality of the form

P{d(B,,P)>8/2} <e™ ™

holds uniformly in P, for some r > 0, where ﬁn is the empirical distribution and
d satisfies the triangle inequality, then the critical set {d(P,, P,) > A/2} pro-
vides a UEC test against {P: d(P, Py) > 8}. Examples of distances which satisfy
the Hoeffding—Wolfowitz condition are the Kolmogorov-Smirnov distance, the
distances of Vapnik and Chervonenkis (1971) and the variation distances
d(P,Q)=X,.,|P(A) — Q(A)| for finite partitions 7.

Ideally, we would like the distance function d(P, P,) to be as sensitive as
possible, corresponding to the strongest possible mode of convergence. Unfortu-
nately, for any distance function which dominates the total variation distance
(d(P, Py) = sup,d (P, F)), if the probability measure P, is not discrete, then
no uniformly consistent test exists against { P: d(P, F,) > 8} for small § > 0 (see
Section 5). This negative result has implications for many popular measures of
distance or divergence between probability measures including the chi-square,
Kullback-Leibler, Hellinger and total variation distance. Csiszar (1967) exam-
ined a broad class of measures of divergence (which are characterized by certain
natural axioms [Csiszar (1974)]). He discovered that these divergences all domi-
nate the total variation distance. It follows that no uniformly consistent test
exists when the hypotheses are defined in terms of any of these distances.

In the narrow gap between the total variation distance d(P, P)) =
sup,d (P, Py) and the variation d (P, F)) = L4, |P(A) — Py(A)| for fixed but
arbitrarily fine partitions 7, we want distances for which UEC tests do exist. One
approach is to consider sequences of distances d, corresponding to a sequence of
partitions m,. We let the set of alternatives be {P: d,(P, F;) > 8}, where n is
the sample size. If a refining sequence of partitions is chosen which generates the
measurable space, then the distances d,,(P, F;) increase to d( P, F,). By allowing
increasing sets of alternatives, we hope to reflect the increasing distinguishability
of distributions as sample size increases.

The following question is posed and answered in this paper. For what
sequences of partitions =, do there exist uniformly exponentially consistent tests
for F, versus {P: d,(P, F) > 8} for all § > 0?7 The answer is that the (1 — §)
effective cardinality of 7, must be of the same order as n or smaller for all § > 0.
The 1 — 8§ effective cardinality is the smallest number of sets in a partition
which exhaust at least 1 — § of the probability under the null hypothesis.

For the case that the effective cardinality is of smaller order than n, a familiar
likelihood ratio test is shown to be uniformly exponentially consistent (see
Section 3). As a byproduct of our analysis, the optimal exponent properties of
the likelihood ratio test established by Tusnady (1977) for partitions of cardinal-
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ity o(n/log n) are seen to also be valid for partitions of cardinality o(n). Some
properties of the likelihood ratio and chi-square test are known even for parti-
tions of cardinality O(n) [Quine and Robinson (1985) and Holst (1972) determine
the Pitman and Bahadur relative efficiencies]; however, it is not known whether
either of these popular tests are uniformly exponentially consistent in the O(n)
case.

It is surprising that UEC tests do exist when the effective cardinality is O(n).
In this case many of the cells will be empty. Without accumulation of observa-
tions, the empirical probabilities are inaccurate estimates of the cell probabili-
ties, so the usual test statistics are not expected to have small probabilities of
error. In Section 4 we find a test statistic which has the desired property in this
case. It is a weighted count of the number of empty cells.

In Section 5 it is shown that UEC tests are not possible if the partition has
effective cardinality which is of larger order than the sample size. The proof uses
a Bayesian technique involving a prior on the set of alternatives.

It may be desirable to restrict the hypotheses to probability measures which
have a density function (with respect to a fixed dominating measure A).
Recall that the total variation distance between such probabilities may be ex-
pressed as the L' distance between the density functions, ie., d(P, P) =
[ p(x) — po(x)|A(dx). It is seen that uniformly consistent tests do not exist
against all densities for which the L' distance from P, is at least 8. In Section 6
we restrict attention to smooth alternatives (e.g., uniformly equicontinuous
density functions) and conditions are found such that UEC tests exist. Not
surprisingly, less smoothness is required as the sample size increases.

There are several useful methods for evaluating tests of a simple hypothesis
which assess the performance separately for each alternative probability or for
certain sequences of alternative probabilities (such as Pitman efficiency, Bahadur
efficiency, Chernoff efficiency and Tusnady’s exponential rate optimality). In
contrast a method which is suggested by our formulation is to determine the
ratio of the uniform error exponent of a test to the exponent for a minimax test
for a large composite alternative hypothesis. However, it is an open problem to
determine the exponent of a minimax test for most of the classes of alternatives
that we consider. In this paper we only determine whether this exponent is
positive.

2. Preliminaries. In this section we give some notation and recall a basic
inequality.

Let (X, B") denote the product space of n coples of (X, B) and let P™ denote
the product measure corresponding to any P in M. A nonrandomized test of a
sequence of hypotheses H, ,, H, , € M is specified by a sequence of B" measur-
able sets A, ,. We call AO N the acceptance set (for H, ,) and A, , = Aj, the
critical set. If the random sample X" = (X, X,,..., X,) is in Ao’n we accept
H, , and reject otherwise.

A test is uniformly consistent if sup{P"(A] ,): P€ H; ,} - 0 as n > oo for
J =0,1. It is uniformly exponentially consistent (UEC) if there exist r, > 0,
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r; > 0 and n, such that for all n > n,

(2.1) sup P"(A§ ,) <e ™0

PeH, ,
and
(2.2) sup P"(Af,) <e ™.

peH, ,
For a given test and sequence of hypotheses, the type I and type II asymptotic
error exponents are defined by r, = —limsupn~' ln(supHJ P(A5 ) for j = 0,1,
respectively. '

More generally, for randomized tests, uniformly (exponentially) consistent
tests are defined in the same way with expected values of critical functions
replacing probabilities of critical sets. To determine whether consistent tests of
hypotheses exist it suffices to restrict attention to nonrandomized test. Indeed, if
0<¢,(X") <1 is any critical function, then applying Markov’s inequality,
A, , = {X™ ¢,(X") > 3} is seen to be a critical set for which the probabilities of
error Pl'(A; ,) and PJ(A{,) are no more than twice [¢, dP' and
@ — ¢,) dP}, respectively.

Schwartz [(1965), Lemma 6.1] and Le Cam [(1973, Lemma 4] have shown that
in the presently assumed case of independent random variables, if the two
hypotheses H, and H, are fixed (not allowed to change with n) then the
existence of a uniformly consistent test is equivalent to the existence of a
uniformly exponentially consistent test. However this equivalence does not
persist if the sets H; , are allowed to grow with n. It is the stronger notion of
uniform exponential consistency that we require in this case.

The fundamental work of Le Cam and Schwartz (1960) is acknowledged. They
give necessary and sufficient conditions for the existence of uniformly consistent
tests for fixed hypotheses in terms of topological properties of a technical sort
[see also Le Cam (1973), Lemma 2]. We do not explicitly utilize these topological
results here.

Next we mention an inequality from Csiszar (1984). Let f’n(-) =P(-; X"
denote the empirical probability measure defined by P(A; X") =
(1/n)Xi_11;x ca) for A € Band X" € X". Let C be any completely convex set
of probability measures. Then for all probability measures P and all n,

(2.3) pn{pn € C) < e nCIP),

where D(C||P) = inf{ D(Q)||P): @ € C} denotes the Kullback-Leibler divergence
from C to P. Here D(Q||P) = EqIn(q(X)/p(X)), where p(x) and g(x) are the
density functions of P and @, respectively, with respect to some dominating
measure, say A = P + @. Simple lower bounds on probabilities [e.g., as in
Bahadur, Gupta and Zabell (1980), (2.12) or Blahut (1987), page 114] show that
in many but not all cases the bound in (2.3) is tight (but we will not need these
lower bounds here). When C = (@ € M: E,f(X) > ¢} for some real valued
function f, inequality (2.3) reduces to a well known inequality from Chernoff
(1952). In the discrete case with C = {@} a singleton set, (2.3) reduces to a basic
inequality from Hoeffding [(1965), equation 2.4)].
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A technique for finding uniformly consistent tests is sugested by application of
inequality (2.3). Choose the completely convex set C to be a neighborhood of F,
for which lim,, P{P, € C} = 1. Then the sequence of acceptance sets (P, e C}
defines a umformly consistent test for H, = { P} versus H, = {P: D(C||P) > r}}
for any r; > 0. Observe that the test will automatically satisfy the uniform
exponential bound as in (2.2).

3. Uniformly powerful tests—the o(n) case. In this section we show
that the likelihood ratio test has the desired uniform exponential bounds when
the cardinality of the partitions is o(n).

Let 7, be a sequence of partitions of the measurable space (X,B). Let
X,, X,,..., X,, be independent random variables with probability measure P.
Hoeffding (1965) showed that the likelihood ratio tests for the hypothe-
sis testing problem P = P, versus P # P, based on the cell counts
{nP (A): A € 7,} have acceptance sets

(3.1) Ao .= (D (BJIR) <1} = {B,ecC")
for some 7, > 0. Here C" = G = {Q: D,(Q||F,) < rp}, where
Q(A)

D,(QIF) = ¥ Q(A)n

Aem,

P(A)’

To examine the set A, , we may restrict attention to the simplex of probabili-
tiessM, = {(Q(A), A € m,): Q(A) > 0,X,0(A) = 1}. The set C" is a completely
convex subset of the simplex, so by Csiszar’s inequality (2.3),

(3.2) P™(A, ,) < e "P-{CTIP)

for all P and all n, where D, ,(C"||P) = ming ¢ c» D ,(Q|| P). This exponent will be
strictly positive for any P with D, . (Pl Fy) > 1. Moreover for any given r, > 0,

(3.3) P(A,,) <e ™

for all P with D (C"|P) > r,. Thus the set of alternatives for which the
probability of error is uniformly exponentially small may be as large as
{P: D,(C"||P) = r,}.
Now let
dn,,(Po: P) = Z IPo(A) - P(A)|-

Aem,
Let m, = ||7,|| be the number of cells in the partition .
LEMMA 1. Givenany§ > 0, choose 0 < ry < 82/2 andletr, = (8 — \[21,)2/2.

We test the hypothesis Hy, = {P,}. The likelihood ratio test with acceptance
region

Ao, = {D,(PIPR) <1}

has uniformly small probability of error P"(A, ,) < e ™" for all alternatives in
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the set
H, ,={P:d,(P,P) > 8}

or, more generally, for all alternatives in the set {P: D,(C7||P) = ri}.
If the sequence of partitions satisfies

then the test has type 1 asymptotic error exponent no smaller than r. Hence the
test is uniformly exponentially consistent for H, versus H .

ProoF. The Kullback-Leibler number is related to the variation distance by
an inequality, D > (1/2)d 2 or equivalently d < V2D, due to Csiszar (1967) and

Kullback (1967). Thus for any Q in G we have d(Q, P) < \2D,(QIIP) < 21
Now for any P in H, ,, we use the triangle inequality for d to obtain

D,(QIP) > 3(d.(Q. P))’
= %(dﬂn(P’ PO) - dn(Q, I)O))2
> %(8 - \/570)2 =r

for all @ in C?, whence D, (C[||P) = . For any such P we have P"(A, ,) < e "™
by (3.2) or (3.3). So the type II error probability is uniformly exponentially small.

Now we examine the type I error probability. Let P/~ = (P,(A): A € m,)
denote the empirical probability measure restricted to the partition. The number
of such probability measures @ for which each nQ(A) is an integer (A e€m,)is
equal to (” ;f; 1), where m = m,. The probability that any measure @ occurs
is bounded by

Py Bre = Q) < e QP

which is less than e”""* whenever D, (Q||F) > ;. Consequently, the probability
of type I error satisfies
m-—1

(3.4) PH{D,(BIPR) > 1} < (” tm-— 1)e—nro.

This inequality is due to Hoeffding [(1965), (2.8)].
To bound the combinatorial coefficient we use the inequality

(IZ) < eNH(E/N)

which holds for positive integers N > k. [This inequality follows from
the fact that the probability that a binomial (N, k/N) random variable
equals & does not exceed 1.] Here H is the entropy function H(p) =
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—plnp -1 -p)lnl —p)for0 <p < 1. Wenote that H(p) > 0as p » 0. It
follows that

(3.5) (n -I';lm) < e(rtmH(m/(n+m) — e,

where ¢, = (1 + m/n)H(m/(n + m)) — 0, provided m/n — 0.

Consequently, the probability of type I error is bounded by e ™" ~&) and
hence the type I asymptotic error exponent is at least r,. This completes the
proof of Lemma 1. O

REMARK 1. There are other natural tests which are uniformly exponentially
consistent against all P with d,,n( P, P)) > 4. For instance, the test with accep-

tance region {d,,n(lsn, P,)) < 2r,} has the same uniform bounds e ""o~*) and

e " for the type I and II errors, respectively, where r; = (8 — \/570 )2 /2.
However, the likelihood ratio (Kullback—Leibler) test has the advantage that the
uniform bounds hold for the larger class of alternatives { P: D,(C"||P) > ry}.

REMARK 2. A more striking advantage of the likelihood ratio test is estab-
lished in Tusnady (1977). Suppose =, is an increasing sequence of partitions
which generates B and suppose the cardinality of the partitions is of order
o(n/log n). Tusnady shows that if the type I error exponent is fixed to be 7,
then for each alternative P the type II asymptotic error exponent is equal to
D(C, || P) [provided 7, is a continuity point of D(C,||P)]. Moreover, Tusnady
observed the startling fact that this type II asymptotic exponent for the
likelihood ratio test (which does not depend on the alternative P) is the same
exponent as is achieved by the best simple versus simple test (i.e., the
Neyman-Pearson test which does use the alternative P).

We note that Tusnady’s assumption on the cardinality of the partitions may
be relaxed to the assumption that m, = o(n). This follows by applying the
bound on (” ;an) from inequality (3.5) in place of the weaker bound (n + 1)™ in
his inequality (2.11).

REMARK 3. Kallenberg (1985) also has obtained relevant inequalities for the
multinomial distribution with m, = o(n).

DEFINITION. The 1 — ¢ effective cardinality of a partition = with respect to
a probability measure P, is the minimum number m = m(w, P,, ¢) of sets
A, A,, ..., A, in 7 that have total probability X7, P(A;) > 1 — &.

Note that it is natural to order the sets A; in 7 such that Py(A,) > P(A,) >
.-+ . Then a minimal collection of sets to achieve probability greater than 1 — ¢
will be the first m sets A,, A,,..., A,, for some m.
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The effective cardinality of a sequence of partitions =, is said to be of smaller
order than a sequence a, [written o(a,)] if
m( T P 0> 8)

lim ——— =0 forall e > 0.

n— o0 a,

The effective cardinality is said to be of order a, [written O(a,)] if

m(m,, Py, &
limsup—(—a——o———)* < oo forall e > 0.

n-— oo n

Note that if for each ¢ > 0, there is a set E with Py(E) < ¢ such that the
number of cells which are not in E is of order o(a,) or O(a,), then the effective
cardinality is of order o(a,) or O(a,), respectively.

The following examples illustrate some of the possibilities.

ExXAMPLE 1. Let #, =7 be any fixed countable partition. Then for any
probability measure the effective cardinality of the partition is O(1).

ExaMPLE 2. Suppose the probability measure P, is discrete [i.e., the proba-
bility is concentrated on countably many atoms of (X, B)]. Then any sequence of
partitions is of order O(1).

EXAMPLE 3. Let X be the real line with the Borel sets and let
m, = {[ih,(i + 1)R):i= ..., —1,0,1,...}

be a uniform partition into intervals of width & = A,. Then for any distribution
with an absolutely continuous component, the effective cardinality of =, is o(n)
if and only if lim nh, = oo; whereas, the effective cardinality is O(n) if and only
if liminf nA, > 0.

EXAMPLE 4. Let Py be a continuous distribution on the real line and let 7,
be a partition into n cells determined by uniform quantiles of P,. Each cell has
probability 1/n and the effective cardinality of =, is O(n).

When the distribution P, has a continuous component, sequences of parti-
tions of any order are readily constructed.

The following is a useful extension of Lemma 1.

LEMMA 2. If the effective cardinality of a sequence of partitions is o(n), then
for any 8 > 0 there exists a UEC test against H, , = {P: d,(F,, P) = 8}.

Proor. Given 8 > 0, choose 0 < ¢ <é8/2. Fix n and let =, =
{A, A,,..., A, E} be a partition with each A; in 7,, P(E)<e and m =
m(m,, Py, €). Let ¢t =8 — 2¢ and choose 0 < r, < t2/2. By Lemma 1, the likeli-
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hood ratio test with critical set
{(DALIR) > 1)
is UEC against K, = {P: d,.(F,, P) > t}. Now the variation distance satisfies
d, (P, P)= ¥ |R(A) - P(A) =2 ¥ (R(4) - P(4))".

Aem, Aem,

Thus for any P in H, , we have

5<d, (P, P)<2¥ (B(A) - P(4))" +2P(E,)

i=1
< d,.(Py, P) + 2

and hence d,«(F,, P) < t. Thus H, , is a subset of K. Therefore, the test is also
UEC against H, , O

4. Uniformly powerful tests—the O(n) case. This section makes use of a
new test statistic to handle the case that the effective cardinality is of order n.
The following lemma analyzes the behavior of this test. Some restrictions are
made to enable us to investigate the essential features of this statistic. Subse-
quently, a combination of the new test and the likelihood ratio test will be used
to prove a more general result.

LEMMA 3. For each n, let G, = {A,,..., A,} be a collection of disjoint
measurable subsets of X. Assume that m < cn and Py(A,) < b/n for some
constants b and c. Define the test statistic

T,= ¥ (e™Lp 40— 1).
AeG,
If 0 <t < t, then the test with critical set {T, > nt} is UEC against the set of
all P with

Z (e PotA)—PA) _ 1) > nt,.
AEeG,

If also 7, = G, is a partition which exhausts all of X, then this set of
alternatives includes {P: d,(P, F;) > 8ct, }.

PrOOF. We use a Poissonization argument. Fix n and let A,=X —
(A, U --- UA). The (multinomial) distribution of the cell counts

nP(A),...,nP(A,) is the same as the conditional distribution of Yy,..., Y,
given that ¥7' Y, = n, where Y,,...,Y,, are independent Poisson random vari-
ables with parameters A, ..., A,,. If the hypothesis P obtains, then the parame-
ter values are A, = nP(A,), k= 0,..., m and we denote the joint distribution

for Y,,..., Y,, by P". Define the random variable

m
T, = kzl(e"PO(A")l(YFO) -1).
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Then the probability of type I error satisfies

PMT, > nt} = f’o"{ T, > nt

m
5y, - n} < @mn) BT, > nt),
k=0

where we have used the fact that the Poisson event {¥}'_,Y, = n} has probabil-
ity greater than (27n) /2. Similarly the probabilities of type II error satisfy
PYT, < nt} < (27n)"*P"{T, < nt}.

Consequently, it suffices to provide exponential bounds for the probabilities
PXT, > nt}) and PYT, < nt}.
The expected value of T, under the null hypothesis ( B,) is

E(T,) = Ez(enf’omk)l(yk:o} - ) = Y (ePotAne=nPo4r) — 1) = 0,
k k

Applying Hoeffding’s inequality for sums of bounded independent random vari-
ables [Hoeffding (1963), Theorem 2] yields

o —2(nt)? 2nt?
PO{TnZnt} < exp Ek—em < exp _—(_6‘;;)_ .

Hence the probability of type I error P{T, > nt} is exponentially small.
Now suppose that P is an alternative probability measure. Then the expected
value of T, is given by

E(T,)= ¥ (er®® P —1) > ny,
AeqG,

Applying Hoeffding’s inequality yields
P"T, < nt} < P"{-T,+ E(T,) > n(t, — t)}
< exp{ —2n(t, — t) /(ceQb)}

uniformly over all P for which E (Tn) > nt,. Thus the type II error probability is
uniformly exponentially small.

Next we derive a lower bound on E(T,) which will be needed later. Use the
inequality e* — 1 > x + (3)(x*)?, where x"= max{0, x}, followed by the
Cauchy-Schwarz inequality to obtain, with U, denoting the union of the sets in
G,, that

B(T)zn T (R(4) - P(4) + % L ((n(a) - p(a)")

(1) =n T (R4 -PA)+ 5o T (B(4) - P(4))]

AegG, A€,

= n(P(U,) — P(U,)) + ——( Y (P(4) - P(A)" )2

Aegq,
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Now if 7, = G, is a partition which exhausts all of X, then P(U,) — P(U,) =0
and L4, (P(A) — P(A)"= (1/2)d, (P, P). In this case, (4.1) reduces to

n
8_(}.(d”"(PO’ P))z’

which is not less than nt, for all P with d,(F,, P) > y8ct, . This completes the
proof of Lemma 3. O

We are now ready to establish our main result concerning the existence of
uniformly powerful tests. The converse to this result will be given in Section 5.

THEOREM 1. Let m, be any sequence of partitions with effective cardinality
of order n. Then for any 8 > 0, there exists a uniformly exponentially consistent
test of Hy = {P,} versus H, ,, = {P: d,(F,, P) > §}.

Proor. First we choose some strictly positive constants. Given 8 choose
e <98/2, let m, =m(m, P, ¢), and ¢ = supm,/n. Choose t, < § — 2¢ with ¢,
small enough that ¢ = (1/8¢)(8 — 2¢ — ¢t,)® — t,/2 is greater than 0. Also
choose r, < t2/2 and t < t,. Finally choose b so large that

(1+1/6)H(1/(b+ 1)) <1,

where H(-) is the binary entropy function, which was defined in Section 3.

Fix n and let A, A,,..., be the sets in #, ordered so that Py(A,) >
Py(A,) = - .Let k < n/b be the number of these sets which have probability
greater than b/n. Let G,= (A, .., A,}, U, =A, U ---UA,, E,=
A, UA,  ,U- - and 7’ = (A, A,,..., A, U, E,}, where m = m,,.

The critical set for the test is

Cn = {Dﬂf(ﬁn”PO) = rO} u {Tn = nt} = Cl,n U CQ

,n?
where

T, = AZG (enp°(A)l(f’n<A>=0) - 1).
€ n

The probability of type I error is Pj(C,) < F'(C, ,) + F3(C, ,). As in the
proof of Lemma 1,

n n 2 N - + n/b

Py(C,,,) = F {Dfr};(Pn”Po) = ro} <e 0( n/b )

<exp{—-n(r,— (1+1/b)H(1/(b+1)))},

which is exponentially small. Next note that by Lemma 3, PAJ(C,,) =
P{T, > nt) is also exponentially small. ’

The probabilities of type II error are P*(C;) < min{P"(CY ,), P*(Cs ,)}. If P
is such that d,:(F,, P) > t,, then we use

Pn(Crf) =< Pn(Clc,n) = Pn{D'rr,’f(ﬁn"PO) < rO}
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which Lemma 1 shows is less than or equal to e™"", where r, = (¢, — \/ﬂ )2/2.

Finally, consider P for which d,(F, P) > 6 and d,o(Fy, P) < t,. We use
P™(C;) < PYC;5 ) = P™{T, < nt} which by Lemma 3 is uniformly exponentially
small provided that

E (en(Po(A)‘P(A)) — 1) > nt,.
AE€q,

As in the proof of Lemma 3, it is enough to show that
, . e
(4.2) | L (P(A) - P(4))" | +PR(U,) - P(U,) > t,.
2¢c A€,

To verify this inequality, observe that

35 30 PP) = T (B(4) - P(a)’
< X (P(A) - P(A))++ 2 (Py(A) - P(A))++ P(E,)
A€G, Aenb
< T (B(A) - P(A) + % e

A€q,

Consequently Y,.q (PyA) — P(A)*> (1/2)(8 — 2¢ — t,). Furthermore
Fy(U,) — P(U,) = t,/2. Therefore the left side of (4.2) is greater than or equal to
1 ty
3;(8—23—%)2— 74

as required. This completes the proof of the theorem. O

5. Converse: Nonexistence of uniformly powerful tests. The converse
to Theorem 1 is the following result.

THEOREM 2. If a sequence of partitions m, does not have effective cardinal-
ity of order n, then there does not exist a uniformly exponentially consistent test
of Hy = {(F,} versus H, , = {P: d,(P,, P) > 8} for some & > 0.

Proor. If the sequence of partitioris does not have effective cardinality of
order n, then for some 0 < 8 < 1,

. m (Wn’ F 0> IB )
limsup —— =«
n— oo n
Here m, = m(m,, P, B) is the minimum number of sets in 7, which exhaust at
least 1 — B of the probability under P,. We show that no uniformly exponen-

tially consistent test exists against {P: d,(F,, P) > 8} for any 0 < § < B.
Before giving all the particulars, we outline some of the ideas. We find a
sequence of finite sets K, of probability measures such that each P in K, has
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d,(F,, P) near B, yet there does not exist a UEC test against K. Indeed, it is
shown that for any sequence of tests which has type I error tendmg to 0, the
average of the type II error probability (with respect to a uniform prior on K )
is not exponentially small.

The set of alternatives K, is obtained from a partition 7, = {B,, B, ..., By }
which has the properties that #, is coarser than =,, the cardinality m, is of
larger order than n, the probability Py(B,)isnear 1 — B, and Py(B,),..., P(B; )
are all near B/m,. For each of the ways of selecting one-half of the sets
B, B,,..., B; , we construct a P in K, which has dP/dF, near 2 on the
selected sets equal to 0 on the unselected sets and equal to 1 on B,

Now for the particulars. Since lim sup m,/n = oo, there exists a sequence 7,
such that m,/m, — 0, limsup m,/n = o, and for convenience 1, is an even
integer. Set ¢, = fit,/(m,B) and note that lim ¢, = 0.

We restrict attention to the subsequence with n <m, /2. Fix n in this
subsequence and for notational convenience write m for m, and 7 for 7. Order
the sets in the partition =, = {A,, A,,...} so that Py(A,) > P(A,) > --- . Set
ky=m — 1 and define increasing integers &, k,,..., recursively as follows:
Given k;_,, let k; be the last k such that Fy(A,  ,, U ---UA,) < B/m. Set

Bj=AkJ_,+1U UAkj for j=1,2,...,m

and
B,=X - (B, U -+ UB).

Now since the Py(A,) are decreasing and sum to 1 we have that P(A,) <1/k
for £k =1,2,.... In particular P(A,) <1 /m for all & > m. It follows that
(B ) is between B/m —1/m and B/m for j=1,2,...,m. Also 1 — Py(B,) =
, Py(B)) is between B — ri/m = B(1 — ¢,) and B.
Let U be a union of /2 of the sets B, B,,..., B;. Each U has probability
P(U) < B/2. To each U there corresponds a probablhty measure P with

1, for x € B,,
F(x) =( (1 - PyB,))/P(U), forxeU,
0 otherwise.

We let K, be the set of all such probability measures. For each P in K, the
distance from P, satisfies

d,(Py, P) 2d,(F, P)= ) |P(B)—P(B)

Be,
= 2(1 - Po(Bo) - PO(U))
> B(1 — 2¢,).

This bound holds uniformly for all P in K,. For any 0 < § < B, it follows that
K, is a subset of {P: d,(F,, P) > 8} for all large n.
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Let P" denote the n-fold product of a measure P in K,. The density of P"
with respect to Py is

apr n dP 1 — Py(B,) \" M
,.(x)= l—[_'(xi) il YT lscuy
dP; i=1 dP, P(U)
for x = (x,,...,x,) in X" Here N(B) = ¥ 14(x;) is the observation count for

B € 7,,and S is the union of those sets B;, j = 1,2,..., i, for which N(B;) > 0.
The number of such occupied B; is denoted by k. Of course N(B), S and k
depend on x. Using the available bounds on Py(B,) and Py(U) we have
dpP™
dPy

(%) = (2(1 - sn))n_N(BO)1(3cU)~

Define the measure @, on (X", B") to be the uniform mixture of the product
measures. Thus

P*(A) for A € B".
”Kn” PEZK,l ( )

Q. (A4) =

This measure has density with respect to P;* given by

dQ, 1 dpn

1 n—N(By)
= > 2(1 —¢, 0 Lige
dPy Kl PZ‘K" apy = i, B¢ ) PEZK,, et

Now the sum Y1y, is the number of choices for U which cover S. This

number is seen to equal m’%_‘k k). Also the cardinality of K, is (,ﬁf;z)’ Conse-

quently, the lower bound on the density is

i > 00 )

The ratio of binomial coefficients simplifies to a product of % fractions each of
which exceeds (/2 — k)/m > (1/2) — (n/m). Using k < n — N(B,) we have

dQ,
dPr

1) . ((1 ) gn)(l . %))n—m&,)

(o 2]

This lower bound holds uniformly for all x in X". Now set r, = —In(1 — ¢,) —
In(1 — 2n/m,) for n < m/2 and r, = « for n > m/2. Note that as n > o we

1 n )n~N(BO)

> (2(1 - sn))n_IY(BO)('Q— "
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have liminf r, = 0. Thus we have

ae, B
> nr,
dP; — € ’

which is not exponentially small.
Finally, if A, € B" is any acceptance set for P, with PJ(A%) < a < 1, then
the maximum probability of type II error satisfies

PYA,) > P A
sup P(4n) = ey b P4
dq,
(5.2) =Q"(An)=fA(EP.7)dPo"

> e ""F(A,)
>e " (1 - a),

which is not exponentially small. Since K, ¢ {P: d,(P,, P) > 8} for all large n,
this completes the proof of Theorem 2. O

A consequence of the calculations in Theorem 2 is the following result which is
proved by other means in Le Cam [(1973), Proposition 2].

THEOREM 3. Let P, be any nondiscrete probability measure on a measurable
space. Then for all sufficiently small § > 0, there does not exist a uniformly
consistent test for P, versus {P:d(P, Py) > 8}, where d(P, P,) is the total
variation distance.

Proor. Since F, is not discrete, there exists an event A which can be carved
into disjoint measurable sets of arbitrarily small positive probability [let y =
Py(A)]. Then for every 0 < B8 < v, there exists partitions with arbitrarily large
(1 — B) effective cardinality. Given any 0 < 8 < y, choose § < B < y and let =,
be a sequence of partitions with (1 — B) effective cardinality equal to m, = n®.

If in the proof of Theorem 2, we set i, = n? then ¢, = 1/(nB) and (5.1)

gives a lower bound of
. L 1 . 2\\"
€= nB ( B n) ’

which does not tend to 0. Let H, = {P = d(P, P,) > 8} denote the set of
alternatives. Now since d(P, R)) > d,(P, B)) we have that H, contains
the set {P: d,(P, Fy) > §}. Using (5.2), if A, is any sequence of acceptance
sets with P(AY) < a < 1, then

liminf sup P*(A,) > liminfe ""(1 — a) > 0.

n—® pPeH,

Therefore, no uniformly consistent test exists for P, versus {P: d(P, B)) > §}. O
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REMARK. It is interesting to note that for any given n, we may chose a
partition with effective cardinality sufficiently large that the bound in (5.1) is
arbitrarily close to 1. Consequently, for every n, sup, P"(A,) > (1 — a), when-
ever PJ'(AS) < a. It follows that a minimax test for these hypotheses is to ignore
the data and flip a Bernoulli («) coin.

Of course, the same result on the nonexistence of uniformly consistent tests
holds if the total variation distance is replaced by any measure of distance or
divergence which dominates the total variation.

6. Smooth alternatives. Uniformly consistent tests are shown to exist
against all sufficiently smooth alternatives which are outside a total variation
distance neighborhood of the null hypothesis. We restrict attention to the case
that the measurable space is the real line with the Borel sets. The hypothesized
probability measures are required to have density functions with respect to
Lebesgue measure. In which case the total variation distance between the
probability measures reduces to the L' distance between the density functions,
d(p, py) = [Ip(x) — po(x)| dx. Let 8(e, p), € > 0, denote the inverse of the
modulus of continuity of a function p [i.e., the supremum of § for which
|x — y| < & implies |p(x) — p(y)| < €]. For a set K of functions, let 8(¢, K) =
inf, 8(¢, p). Recall that a set K of functions is uniformly equicontinuous if
d(¢, K) is positive for all ¢ > 0.

THEOREM 4. Let K be any set of uniformly equicontinuous density functions.
Then for any probability density function p, and any & > 0, there exists a
uniformly exponentially consistent test for p, versus { p: d(p, p,) = ¢} N K.

Moreover, if K, is a sequence of sets of density functions with
liminf, ,  nd(e, K,) > 0 for all ¢ > 0, then there exists a uniformly exponen-

tially consistent test for p, versus {p: d(p, py) = ¢} N K,,.
Thus the degree of smoothness §(¢, K,) may be as small as order 1/n.

PROOF. Let 7 = 7" be a uniform partition of the line into intervals of width
h. For any probability density function p, let p” denote the histogram with
p"(x) = [4 p(y)dy/hforx € A and A € 7. Itis known that lim, , ,d(p, p") =
0 for any measurable density function p [Abou-Jaoude (1976)], so given ¢ > 0 we
may choose Ak, > 0 such that d(p,, pJ) < e/4 for all 0 < h < h,,.

Now choose ¢ sufficiently large that Py[{|X| > ¢} < ¢/8. Let h = A, be the
minimum of §,(¢/16¢, K,) and h, and let # = 7" If p(x) is continuous then by
the mean value theorem, for every x there is a y with |x — y| < A such that
p"(x) = p(y). It follows that for all p in K, and all x, |[p"(x) — p(x)| < &/16¢.

Write the L' distance between the probability densities in terms of the
positive part d(p,, p) = 2/ (py(x) — p(x))* dx. Noting that the integrand is
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dominated by py(x) we bound the contribution in the tails,
c + €
d(po, p) <2 (po(x) = p(x))" dx + .
—C
Using the triangle inequality we obtain for all p in K, that
c c c €
d(py,p) <2 (po-p5) +2f (p5-p") +2[ (p"-P)"+ 7
—c —cC —C

4

3e
<d, (P, P) + T

Thus for any such p with d(p,, p) > ¢ we have d (P, P) > ¢/4, so the set of
alternatives is a subset of {P:d, (P, P) > ¢/4}. Now liminf nh, > 0 so the
sequence of partitions has effective cardinality of order n. Therefore, a UEC test
exists against { p: d(py, p) = e} N K,. O

7. An extension. For clarity this paper has restricted attention to a
simple null hypothesis H, = {P,} which does not depend on the sample size.
Nevertheless, it is seen that the proofs allow simple null hypotheses H, , =
(P, ,} which may depend on n. The necessary and sufficient condition
on the sequence of pairs {F, ,,7,} for the existence of UEC tests against
{P:d,(F, ,, P) > 8} for all § > 0 is that the 1 — § effective cardinality satisfy
limsup (m(7,, B, ,,8)/n) < co for all § > 0. Note in particular that instead of
fixing P, and regarding the condition as a restriction imposed on 7, we could fix
a countable partition 7 (which amounts to restricting attention to a discrete
space) and then regard m(w, B, ,,8) = O(n) as a restriction imposed on the
sequence of simple null hypotheses. This different setting for the problem was
suggested by a referee.

Acknowledgments. Portions of the work described in this paper appeared
in the author’s dissertation [Barron (1985)]. The author acknowledges his grati-
tude for the guidance of Professor Thomas M. Cover.

REFERENCES

ABOU-JAOUDE, S. (1976). Conditions nécessaires et suffisantes de convergence L' en probabilité de
I’histogramme pour une densité. Ann. Inst. H. Poincaré Sect. B (N.S.) 12 213-231.

BAHADUR, R. R. (1966). An optimal property of the likelihood ratio statistic. Proc. Fifth Berkeley
Symp. Math. Statist. Probab.1 13-26. Univ. California Press.

BAHADUR, R. R., GUPT4, J. C. and ZABELL, S. L. (1980). Large deviations, tests and estimates. In
Asymptotic Theory of Statistical Tests and Estimation (I. M. Chakravarti, ed.) 33-64.
Academic, New York.

BARRON, A. R. (1985). Logically smooth density estimation. Ph.D. dissertation, Stanford Univ.

BARRON, A. R. (1986). Comment on “On the consistency of Bayes estimates”, by P. Diaconis and D.
Freedman. Ann. Statist. 14 26-30.

BARRON, A. R. (1987). The exponential convergence of posterior probabilities with implications for
Bayes estimators of density functions. Technical Report 7, Dept. Statistics, Univ. Illinois.

BLaHUT, R. E. (1987). Information Theory. Addison-Wesley, Reading, Mass.



124 A.R. BARRON

BrowN, L. D. (1971). Non-local asymptotic optimality of appropriate likelihood ratio tests. Ann.
Math. Statist. 42 1206-1240.

CHERNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on a sum of
observations. Ann. Math. Statist. 23 493-507.

CHERNOFF, H. (1956). Large sample theory: Parametric case. Ann. Math. Statist. 27 1-22.

CSISZAR, 1. (1967). Information-type measures of difference of probability distributions and indirect
observations. Studia Sci. Math. Hungar. 2 299-318.

CSISZAR, 1. (1974). Information measures: A critical survey. In Trans. Seventh Prague Conference
on Information Theory, Statistical Decision Functions, Random Processes 73-86.
Academia, Prague.

CsISZAR, 1. (1984). Sanov property, generalized I-projection and a conditional limit theorem. Ann.
Probab. 12 768-793.

CsiszAR, I. and LoNco, G. (1971). On the error exponent for source coding for testing simple
statistical hypotheses. Studia Sci. Math. Hungar. 6 181-191.

HoEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. JJ. Amer.
Statist. Assoc. 58 13-30.

HoOEFFDING, W. (1965). Asymptotically optimal tests for multinnomial distributions. Ann. Math.
Statist. 36 369—-401.

HOEFFDING, W. and WOLFOWITZ, J. (1958). Distinguishability of sets of distributions. Ann. Math.
Statist. 29 700-718.

HoLsT, L. (1972). Asymptotic normality and efficiency for certain goodness-of-fit tests. Biometrika
59 137-145.

HUBER, P. J. and STRASSEN, V. (1973). Minimax tests and the Neyman-Pearson lemma for
capacities. Ann. Statist. 1 251-263.

KALLENBERG, W. C. M. (1985). On moderate and large deviations in multinomial distributions.
Ann. Statist. 13 1554-1580.

KULLBACK, S. (1967). A lower bound for discrimination information in terms of variation. IEEE
Trans. Inform. Theory IT-13 126-127.

LE CaM, L. (1973). Convergence of estimates under dimensionality restrictions. Ann. Statist. 1
38-53.

LE CaMm, L. and ScHWARTZ, L. (1960). A necessary and sufficient condition for the existence of
consistent estimates. Ann. Math. Statist. 31 140-150.

QUINE, M. P. and ROBINSON, J. (1985). Efficiencies of chi-square and likelihood ratio goodness-of-fit
tests. Ann. Statist. 13 727-742.

SCHWARTZ, L. (1965). On Bayes’ procedures. Z. Wahrsch. verw. Gebiete 4 10-26.

TuUsNADY, G. (1977). On asymptotically optimal tests. Ann. Statist. 5 385-393.

VAPNIK, V. N. and CHERVONENKIS, A. Y. (1971). On the uniform convergence of relative frequencies
of events to their probabilities. Theory Probab. Appl. 16 264-280.

DEPARTMENT OF STATISTICS AND
DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
101 ILLINT HALL
« UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
725 SOUTH WRIGHT STREET
CHAMPAIGN, ILLINOIS 61820



