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BEST ATTAINABLE RATES OF CONVERGENCE FOR
ESTIMATES OF PARAMETERS OF REGULAR VARIATION

By PETER HALL AND A. H. WELSH

Australian National University

We derive lower bounds to rates of convergence for estimators of shape
and scale parameters in distributions with regularly varying tails. We exhibit
simple estimators which attain these rates.

1. Introduction. The problem of estimating parameters of a distribution
F with regularly varying tails but otherwise arbitrary, has received considerable
attention in recent years; see for example de Haan and Resnick (1980), Teugels
(1981), Hall (1982) and Welsh (1983). In this paper we shall determine optimum
asymptotic rates of convergence for sequences of estimators. Specifically, let «,
be an estimator of the exponent «, constructed out of a random n-sample
Xi, -+, X,. We seek the fastest rate at which a real sequence {a,} can tend to
zero and yet satisfy

lim inf,,_,minfyP(l an, — al = an) = 1’

for some class of distributions <. We shall prove that this fastest rate is attained _

by a simple class of estimators.

We now describe the class & of distributions. Given positive constants «y,
Co, &, p and A, let D = D(ay, Co, ¢, p, A) denote the set of densities f on the
positive half-line which satisfy

f(x) = Cax* 1 + r(x)} and |r(x)| < Ax%,

for all x > 0, where |a — ag| < ¢, |C — Cy| < ¢ and 8 = pa. The distribution
function F associated with f satisfies

F(x) = Cx*{1 + R(x)},

where | R(x) | < Ax?for x > 0. Note that the union over A of all sets 2, consists
of densities f which satisfy

f(x) = Cax* 1 + O(xP)}

as x — 0. The latter condition often provides a satisfactory description of limited
knowledge about the behaviour of f near the origin. We shall only consider
explicitly those distributions which are regularly varying at the origin, although
our results obviously extend to distributions which are regularly varying at
infinity.

It turns out that the optimum rate of convergence depends on « and 8 through
their ratio. This is the reason for keeping p = 8/« fixed in the definition of 2
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Hill (1975) and Hall (1982) proposed particular estimates &, and C, based on
order statistics. We shall demonstrate in Section 3 that these estimators achieve
optimum rates of convergence. The estimators proposed by de Haan and Resnick
(1980), Teugels (1981) and Welsh (1983) do not achieve these optimum rates
unless certain restrictive conditions are imposed.

2. Optimum rates of convergence. The theorems below describe opti-
mum rates for estimates a, and C, of a and C, respectively. Let 8, = pa.
THEOREM 1. Suppose that for some ag, Cy, ¢ and p, we have
lim inf, ,.infe o Pi(| an — a| < a,) =1
for all A > 0. Then

lim inf,_,,nf/@fteadg = oo,

THEOREM 2. Suppose that for some ay, Co, € and p, we have
lim inf, . oinfee P (|C, — C| = a,) =1
forall A > 0. Then
lim inf,_,.nf/ %) (log n) la, = .
PrROOF OF THEOREM 1. We construct two densities f, and f;, the first
governed by fixed parameters ay, C, and the second by varying parameters o,

Cl, CQ, where a; = o + Y, ¥ = )\n—‘?‘/(w”"“), A> O, ,31 = pay and both Cl, C2 —_ C()
as n — o, Specifically, we define

fo(x)= Coapx®™!, 0 =< x < Cy",
and

filx) = Ciopx*™ 1+ A(x), 0<x=<26
! Coopx ), 0 < x =< Coo,

where 6 = n~V%1+w) b=, + 8, — 1 and

x*, 0<zx=<d/4
(6/2 — x)*,  8/4<x=<6/2
—(x — §/2)%, §/2 <x < 30/4
-6 —x)%, 38/4a<x <o

Ax) =

Note that A is continuous on [0, ], that A(0) = A(§) = 0 and

o
f A(x) dx = 0.
0

The constants C,, C, are chosen so that for large n, f, is a proper, continuous
density on [0, C5'/*]; that is,

(21) Cia 6 = Co0p6*
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and
(2.2) C16 + Co(Cq* — 6%) = 1.

Our proof consists initially of showing that

C5Ve
(2.3) J(: {fox) — fi(x)}*{fo(x)} ™ dx = O(n™)

as n — oo, and for all large n,
(2'4) ’ fl € 9(a0$ CO’ & P, A)

for each ¢ > 0 and some A > 0. (It is obvious that fo € Z) The symbol K denotes
a positive generic constant.
By (2.1) and (2.2),

1/Cy = 6(1 — as/ag) + (/o)™ %C5?
(2.5) = C5'6"(1 + /) + O(y5%)
=Co' {1+ vylogd+ O(y)}.
Therefore
(2.6) Ci = Cof{l — vy log é + O(v)}.
Also, by (2.2) and (2.5),
(Cz — Co)(CG' — 6%) = 6°(az/tg — 1)(1 — Cod*)
X {81 — ar/ag) + (a1/a0)C5'} ~ Coar %

as n — . Therefore
(2.7 | C2 — Co| = O(y6™).

Next observe that

Co Vo
J(: {folx) — ()} fo(x)} ™ dx

]
<2 f (Coopx™™! — Cyoyx®1™ 1) 2(Coaox 1) 7! dx
(2.8) 0
Cg e

5 ‘ .
+ 2 f Az(x)(Coaox"‘rl)—l dx + (C() - 02)2 f Coaox"‘°_l dx;
0 &

1
(20(1 - ao) f (Coaox“‘)_l - Clalx“1—1)2x1_"‘° dx
0
= 6°{(ag + 2007)(Co — C167)% + Ciy%™}
= 0{6"(Co — C16)* + 26}
Co— C16” = Co — Cofl — v log § + O(¥)}{1 + v log 6 + O(y)} = O(v),
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using (2.6); (Co — C3)% = O(y26™), by (2.7); and

s 6
f A¥(x)x'" dx = K f x*1me0 gy = O(§2rte),
0 0

Combining the estimates from (2.8) down, we see that the left-hand side of (2.3)
equals

0(7260:1 + 6261+al) = O(n—l)’

which proves (2.3).
The result (2.4) will follow if we prove that

(2.9) | Coopx ™! — Cyayx™!| <= Kxathl
uniformly in é < x < C5"/* and large n. By (2.7),
| Coctox™? — Coagxo}| < Kn~Bre/@hve)gar=l < p=ou/@r+ayarthi=1
and so (2.9) will follow if we show that for 6 < x < Cg/*,
(2.10) | Coox ™™ — Crayx™™| < Kxthi1,
But by (2.5),
| Coopx ™™ — Crayx?|
< Kix*™| Codix (o — ;) + oy (67277 — 1) |
< K67y + Kox™' 1 — (6/x)7]
< K307l + Kaxaly log(x/8).

Now, x™"vy log(x/8) = (8/x)"log(x/8), and is maximised by taking x/6 = e/,
Therefore by (2.11),

ICanx“O_l - Clalx"l_ll = Kgéalxal+ﬁ‘_l + K,;x"“*ﬁl—l = K5x""+ﬁ‘_l

(2.11)

uniformly in é < x = C5V/«. This proves (2.10), and completes the proof of (2.4).
From this point, our proof is inspired by Farrell (1972). Observe that

Pi{lan(Xy, -+, Xp) — au| < an}
= Eyll{l an(Xy, - -+, Xa) — el = aa) [I7 {A (XD /fo(X)}]
= [Pollan(Xi, -+, Xo) = en| < a,}]
- (B [T {AXD) /o (XD V2,

2 R\ [ {m}
<E’°lnl {f()(Xi)} D ‘fo fox) |
Cg Vo
=1+ f {fi(x) = fo()}*{fo(x)} ™ dx
0

=1+ 0(n™),

(2.12)

and
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using (2.3). Hence

Pfl“an(le MY Xn) - al' = an}
(2.13)
= K[Pfo{lan(Xl’ R} Xn) - all = an}]l/2'
By hypothesis and by the result (2.4), the left-hand side of (2.13) tends to 1 as
n — . Therefore Py {| an(Xi, -, Xn) — a1| < a,} is bounded away from zero
as n — . Also by hypothesis, Py {| an(X1, .-+, X,) — ao| < a,} tends to 1 as
n — o, and so
Pfoulan(le Tty Xn) - all = an} N “an(le ctt Xn) - aOI = an}]

is bounded away from zero. Consequently, for large n,
Ja; — a] < 2a,;
that is, A\n~?/@A1*a) < 94 and so
lim inf,_,,nfvHotalg > \/2,

Since this is true for each A > 0, Theorem 1 is proved.

PrOOF OF THEOREM 2. The proof of Theorem 2 is very similar to that of
Theorem 1, and uses the same density functions f, f,. Replace the left-hand side
of (2.12) by

Pf]‘ I Cn(Xl’ R Xn) - Cl' = an}’
with similar changes at other places. Following the argument of the previous
paragraph we see that for large n,

|Cy — G| = 2a,.
But by (2.6),
C, — Co ~ —Coy log 6 = Co(26; + ay) AnPo/@hotedlog p,
and so
lim inf,_,n?v%o*e)(log n)a, = Co(280 + ao) ~N\/2,

for all A > 0.

3. Achieving optimum rates. Let X,; < ... < X, denote the ordered
n-sample, and define r to be the integer part of n2//(%oteo)

&n = (lOg Xn,r+1 - r—l :"=l lOg )‘(ni)—_1 and én = (r/n)(Xn,r+1)_&"-

These estimators are in fact conditional maximum likelihood estimators under a
restricted model. They approximate Bayes estimators; see Hill (1975). The set
2 has the same meaning as before, except that we assume ¢ < min(ay, Cy), to
preclude the possibility that the parameters « and C governing densities in &
can take the value zero.

THEOREM 3. For each sequence {a,} satisfying
nﬁo/@ﬁo"'ao)an —5> 00
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as n — », we have
lim inf,,_,minffeng( I oy — al = a,,) =1

whenever ¢ < min(ay, Co) and A > 0.

THEOREM 4. For each sequence {a,} satisfying
nfo/@hted(log n)~la, — oo
as n — «, we have
' lim inf,_infre oP/(] Co — C| < a,) = 1

whenever ¢ < min(ay, Co) and A > 0.

Theorems 3 and 4 may be proved by modifying arguments in Hall (1982), and
so are not derived here.

We should note that Hill (1975) suggests r be chosen on an adaptive, data-
analytic basis, while Hall (1982) considers deterministic values of r. In the latter
case, optimal selection of r depends on the ratio 8o/ao. The problem of adaptive,
“asymptotically optimal” approaches to choosing r will be the subject of a
forthcoming paper.
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