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INCONSISTENCY OF THE MAXIMUM LIKELIHOOD
ESTIMATOR OF A DISTRIBUTION HAVING INCREASING
FAILURE RATE AVERAGE

By R. A. BoYLES, A. W. MARSHALL', AND F. PROSCHAN?,

Lawrence Livermore National Laboratory,
University of British Columbia, and Florida State University

Marshall and Proschan (1965) showed that the MLE for a life distribution
with increasing failure rate is strongly consistent. In this note we show that
the MLE for a life distribution with increasing failure rate average is not
consistent; in fact, maximum likelihood estimation in the IFRA case yields
estimators of the average failure rate and of the distribution function which,
in general, converge a.s. to values other than the true values. In the decreasing
failure rate average case, the MLE fails to exist.

1. Introduction and summary. Throughout this paper, “decreasing”
means “nonincreasing” and “increasing” means “nondecreasing”. A life distri-
bution F (i.e., F(07) = 0) with survival function F = 1 — F is said to have an
increasing failure rate average, written “F is IFRA”, if (a) F(0) = 0, and (b)
FY!(t) is decreasing in t > 0. Condition (b) is equivalent to the condition (b)’
that the average failure rate —t ™! log F(t) is increasing in ¢t > 0.

The class of IFRA life distributions plays a fundamental role in reliability
theory. It represents the smallest class containing the exponential distributions,
closed under formation of coherent systems and taking limits in distribution (see
Birnbaum, Esary, and Marshall, 1966). From a more practical point of view, a
coherent system of independent increasing failure rate (IFR) components need
not have an IFR life distribution, but must have an IFRA life distribution. The
IFRA class also arises in a natural way in shock models and wear processes
(Esary, Marshall, and Proschan, 1973; A-Hameed and Proschan, 1973, 1975; and
Esary and Marshall, 1974). Moreover, it has been shown that the renewal quantity
has a distribution on the integers which is IFRA (Esary, Marshall, and Proschan,
1973).

Thus it is of importance and of interest to estimate the distribution function
and the average failure rate for an IFRA life distribution. We are motivated to
find the maximum likelihood estimator (MLE) for IFRA distributions, since the
MLE estimators of the distribution function and of the failure rate function are
strongly consistent when the underlying distribution is known to be IFR (Mar-
shall and Proschan, 1965).
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In this note, we show that the MLE of the distribution function and of the
average failure rate function of an IFRA life distribution converge a.s. to functions
other than the true ones. Thus we have the curious situation that MLE yields
strongly consistent estimators in the relatively small class of IFR distributions,
in the very large class of all distributions, but not in the intermediate class of
IFRA distributions. Another aspect of interest is that this example of the failure
of the MLE to yield a good estimator arises from a realistic problem, rather than
from a mathematically “pathological” class of distributions.

The inconsistency of the MLE for the similar case of starshaped distributions
has been obtained by Barlow, Bartholomew, Bremner and Brunk (1972). They
provide a consistent estimator based on isotonic regression that applies both to
the case of starshaped distributions and to IFRA distributions.

We wish to thank Professor Ronald Pyke for his help.

2. Derivation of the MLE for an IFRA distribution. First assume
X, < X, < -.. < X, constitute the order statistics based on a random sample
from an IFRA life distribution F. Since there is no ¢-finite measure relative to
which every IFRA distribution is absolutely continuous, we employ the concept
of nonparametric maximum likelihood proposed by Kiefer and Wolfowitz (1956).
As noted by Barlow (1968), this concept leads to the likelihood

L = L(F) = n! [[& [F(X) — F(X7)],

which must be rpaximized subject to the IFRA constraint. With X, = 0, it follows
that the MLE F, assumes the form

_fnx for Xj=x<Xp, j=0,--,n—1,

21)  —log F(x) = o for Xo=a
where Ay =0 <A\ <= Ay < ... < \,-;. Note that —x'log FA,,(x)A is increasing on

[0, ) so that F, is IFRA. Note further that by choosing —log F, linear between
ordered observations, no probability is “wasted”, but instead, is assigned to the
fullest extent at the order statistics, where it makes the maximum contribution
to the likelihood function.

Thus the likelihood function L can be expressed as:

(22) L =n!IIE (exp(~N\1Xj-1) — exp(=) X)) Jexp(—An1 X).
With AN, =N, — A, i=1, ..., n—1and A\ = 0, rewrite L as

- L=n! H j=_11 l]/
where U; = exp(—AN (Y71 X)) (1 — exp(—A); X;)). To maximize L by appropriate
choice of A\; = A\ = --. = \,y, it suffices to maximize separately the U; by

appropriate choice of A\; =0, j =1, ---, n — 1. Set d log U;/dA); = 0 to obtain
the maximizing

AN = X;'(log 33 Xi — log 331 X) >0, j=1,---,n— 1
It follows that the corresponding }; is given by
(2.3) A=Y AN = Y, Xit(log 3¢ X; — log Y X))
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Thus
(2.4) ﬁn(Xj) =e N = (32 XYooy X)X

constitutes the MLE of the survival probability F(X;), j =1, ---, n — 1. For
values of the MLE of F(x) for x between the ordered observations, simply replace
A in (2.1) by A; given in (2.3).

If tied observations occur, results (2.3) and (2.4) still hold. This is a conse-
quence of the fact that >\ and F »(X;) are continuous functions of X, -- -, X,.

3. Inconsistency of MLE. To demonstrate the inconsistency of the MLE
derived in Section 2, assume F is continuous and let Y;, Y,, .-+, Y, denote the
unordered sample. Then for X; < x < Xj,; we have from (2.3)

(3.1) Rul@) = & = Thy Xi® logll + Xu(Thet X))
Consider now the inequality
3.2) 0<1/s — (1/t)log(1 + t/s) < t/s(s + t),

valid for all s, t > 0. We apply (3.2) to each term in the sum in (3.1), taking
t = X, and s = Y% X;, to obtain

(3.3) 0< Thoy (Tha X)™ = Aa®) < By Xu(Ther X)7H(Tk X) 7
The latter term is bound above by
(3.4) (2] X (T X072 = (T} Y[l — L(x)(Z} Yili(x)) ™

where I,(x) is the indicator function of {Y, > x}. Since E(Y) < + if Y has an
IFRA distribution, the strong law of large numbers (SLLN) implies that the
right-hand side of (3.4) is a.s. O(n™"). It therefore follows from (3.3) and (3.4)

that
M(x) = T (Ska X)7 + O(n7Y).

In terms of the empirical distribution function F,, this expression becomes

(3.5) An(x) = J:O ] Gn(y) dF.(y) + O(n™)
where :
Gn(y) = [X% Yil(y)/n]™".

The representation (3.5) is valid when there are no tied observations, which is
why we restrict attention to continuous F.
By SLLN, with probability one

lim,_.Gn(y) = G(y) = [ f 2 dF(z)] .
Y

We actually have a stronger result, from which the inconsistency of F, will
follow.
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LEMMA. Assume 0 < F(x) <1. Then as n — o
(36) SUPo<y<x | Gn(y) - G(y) ' —as. 0.
ProoOF. Evidently, G is continuous and nondecreasing, and G, is right con-

tinuous and nondecreasing. Now, with x fixed, we define right continuous
distribution functions H,,, H by

0 y<o0

Hn(y) = Gn(y)/Gn(x) 0 =< y =X
]1 <y
0 y<o0

H(y) = 1G(»)/G(x) 0=y=x
1 x < y.

Since G,(y) —.s. G(y) for each y, the arguments used to prove the Glivenko-
Cantelli Theorem yield

(3.7 SUP-w<y<en | Hn(y) — H(y) | —as. 0
(cf. Chung, 1974, page 133). Since Gn(x) —,s. G(x) < +% and
| Ga(y) — G(¥) | = | Gu(y) — Gu(x)H(y) | + | Go(x)H(y) — G(y) |
= Gu(x) | Ho(y) — H(y) | + H(y) | Gulx) — G(x) |

for 0 = y < x, (3.6) follows from (3.7).
Using the lemma, we now have with probability one

limp, e Aa(x) = lim,_. f G.(y) dFu(y) = limyw I ]G(y) dF,(y)
(0,x] 0,x]

= J; G(y) dF(y),

the last step being another application of SLLN. Consequently, Ao(x) is a
consistent estimator of

x o I-1
(3.8) vr(x) = J; [ f z dF(2) ] dF(y)
Y
rather than a consistent estimator of the true failure rate average
' x o -1 )
(3.9) AMx) = x7! f [f dF(z)J dF(y).
0 v

Note that, in general, the limit of X,,(x) given in (3.8) differ§ from the true value
given in (3.9), and similarly the limit of Fux)=1- exp(—x\,(x) differs from the
true value F(x) = 1 — exp(—xX(x)). That is, the ML estimators of the failure rate
average and distribution function are not strongly consistent.
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ExXAMPLE 1. (Exponential distribution). Let F(x) = exp(—\x) for x = 0.
Then

x 00 -1
vr(x) = J; [f 2\ exp(—Az) dz] A exp(—Ay) dy = X log(1 + A\x),
Yy

after simplification, whereas the true failure rate average is = \. Thus ﬁ,,(x)
converges almost surely to (1 + Ax)™* rather than to F(x) = exp(—\x). Note that
the limiting distribution is IFR, hence IFRA.

EXAMPLE 2. (Uniform distribution). Let F(x) = x for 0 < x < 1. Then

x 1 -1
ve = | [ | zdz} dy = log[1 = x],
0 y 1—x

A

after simplification. Thus, F,(x) converges almost surely to [(1 — x)/(1 + x)]J*
rather than to F(x) = 1 — x.
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