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BOOTSTRAP TESTS AND CONFIDENCE REGIONS FOR
FUNCTIONS OF A COVARIANCE MATRIX!

By RUDOLF BERAN AND MUNI S. SRIVASTAVA

University of California, Berkeley and University of Toronto

Bootstrap tests and confidence regions for functions of the population
covariance matrix have the desired asymptotic levels, provided model restric-
tions, such as multiple eigenvalues in the covariance matrix, are taken into
account in designing the bootstrap algorithm.

1. Introduction. An important part of standard multivariate analysis deals
with tests and confidence regions for functions of the covariance matrix. Familiar
examples include principal component analysis and tests of structural hypotheses
about the population covariance matrix. The classical theoretical development
for such procedures rests upon the assumption that the data is normally distrib-
uted. Without strict normality, the asymptotic distribution theory for many
multivariate test statistics and confidence regions becomes more complex and
sometimes leads to untabulated limit distributions. Likelihood ratio tests about
the covariance matrix and confidence regions in principal component analyses
offer immediate examples of this phenomenon. As a result, nonnormal model
asymptotic theory has been applied sparingly in the practice of multivariate
analysis, despite the evident nonnormality of much data.

Nonparametric bootstrap methods offer an attractive alternative approach.
Recent studies by several authors suggest that bootstrap procedures can compete
successfully, both in theoretical performance and in practical feasibility, with
more traditional procedures based on asymptotic approximations (cf. Efron,
1979; Bickel and Freedman, 1981; Freedman, 1981; Singh, 1981; Beran 1982,
1984). While these studies have concentrated on certain, mostly univariate,
classes of examples, the potential value of bootstrap methods in nonnormal model
multivariate analysis seems clear.

Bootstrap procedures for eigenvalues, eigenvectors, and other interesting
functions of a covariance matrix are the subject of this paper. Specific topics
include: bootstrap confidence regions for differentiable functions of the popula-
tion covariance matrix; bootstrap confidence regions and tests for eigenvalues
and eigenvectors in both simple and multiple eigenvalue situations; bootstrap
critical values for normal model likelihood ratio and other test statistics used to
test structural hypotheses about the population covariance matrix. The bootstrap
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96 BERAN AND SRIVASTAVA

tests and confidence regions have the desired asymptotic levels if model restric-
tions, such as multiple eigenvalues, are taken into account in designing the
bootstrap algorithm.

2. Bootstrapping the sample covariance matrix. Under natural as-
sumptions, the nonparametric bootstrap distribution for the sample covariance
matrix converges to the actual distribution, as sample size increases. This fact,
to be proved in this section, is basic to further analysis of bootstrap tests and
confidence regions concerning the population covariance matrix.

Suppose the observations {x;; 1 < i < n} are i.i.d. p X 1 random vectors.
Suppose F, the unknown cdf of x; = (i1, Xi2, - - -, X;p)’ has mean vector ur and
covariance matrix Zr = {o5,;}. Let %, = n™' Y%, x; be the sample mean, let

(21) Sn = {sn,ij} = (n - 1)_1 Z:{:—l‘ (xi —jn)(xi - -i'n)l
be the sample covariance matrix, and let
(2.2) Ju(F) = Z[n"*(S, — Zp) | F]

be the distribution of the centered sample covariance matrix.

For any p X p symmetric matrix A = {a;}, let uvec(A) denote the p(p + 1)/2
dimensional column vector {{a;; 1 < i < j}; 1 < j < p} formed from the elements
in the upper trianglar half of A, including the diagonal elements. Suppose
Zp = {zr,;} is a symmetric p X p random matrix such that < [uvec(Zr)] is normal
with mean vector zero and covariance matrix Qp; the components of Qr are
determined by the requirement

2.3) Cov(zr,j, zrrs) = Covel(xy — ur)(xyj — wr), (X1x — up)(%1, — ur)

" 1<i,j,k 4=p.
If F has finite fourth moments, the distributions {J,(F); n = 1} converge weakly
to L (Zp).

Let F, be the sample cdf based on the {x;; 1 < i < n}. The nonparametric
bootstrap estimate of J,(F) is the functional estimate J,(F,), which can be
interpreted as follows: Let the {x}; 1 < i < n} be i.i.d. random vectors whose cdf
is the realized F),, and let S} be the sample covariance matrix of the {x}}. Then
Jn(F,) is the distribution of n'/2(S}% — 2z ). In practice, J.(F,) can be approxi-
mated by Monte Carlo methods. An alternative, more traditional estimate for
Jn(F') is the normal distribution on RP* with mean zero and estimated covariance
structure. Theorem 1 below implies that both of these distributional estimates
coverge to J,(F') as n increases.

In proving convergence of bootstrap estimates, we will rely on a triangular
array approach previously described in Beran (1984).

DEFINITION. A sequence of cdf’s {F,; n = 1} on R” belongs to the class & (¥)
if and only if {F,} converges weakly to the cdf F and

(2.4) limp o E[T]2%1 x7| Fa] = E[T[2, x7| F]

for every set of nonnegative integers such that Y2, r, = 4.
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THEOREM 1. Suppose F has finite fourth moments. If {F,; n = 1} is any
sequence of cdf’s in £ (F), the sequence of distributions {J,(F,); n = 1} converges
weakly to the (0, Qr) distribution. Hence

(2.5) Ju(F) = 7 (0, Qp)
with probability one.
PROOF. By the strong law of large numbers, Pr[{F,} € £ (F)] = 1. Let {F,}

be any sequence in % (F). Since S, = n(n — 1)7'23 , it is enough to show that
LInY4(Zs, — 25) | Fo] = £ (Zp) in order to prove the theorem. Note that, if

(2.6) Zn; = (x; — pp)(x; — pr)" — 25,
then
@7 nY(2h, — 2p) =n? T Zni — 0V &, — ur) (& — pr,)’

Let a be any constant column vector of dimension p(p + 1)/2. By the Lindeberg
central limit theorem for a triangular array,

Zla'uvec(n™? Ty Z,,) | Ful = 4 (0, a’Qra),
which is < [a’uvec(ZF)], provided

(2.8) lim,, . Er [0’ uvec(Z,,)]* = a’Qra <
and
(2.9) lim, .. Er {[a’uvec(Z, ) PI[| @’ uvec(Z,1) | > n'/%]} = 0

for every positive é. Let G, be the cdf of a’uvec(Z, ;) under F, and let G be the
cdf of a’uvec[(x; — ur)(x; — ur)’ — Zr] under F. The assumption {F,} € Z(F)
implies G, = G and

lim, e f y? dGu(y) = f y? dG(y) = o’ Qpa.

Properties (2.8) and (2.9) follow immediately. Hence < [n™Y% 3%, Z,;| F,] =
L (Zp).
By another application of the Lindeberg central limit theorem,

Ln* (% = ur,) | Fal = A#(0, Zp)

(cf. example 3 in Beran, 1984). Thus, the second term on the right side of (2.7)
converges in probability to zero. The theorem follows.

3. Bootstrap confidence regions for functions of Zr. By bootstrapping
appropriately chosen pivots, we can construct confidence regions for =z or
functions of Xr whose coverage probabilities are asymptotically equal to a
specified level 1 — a. For our purposes, a pivot is any function of the observations
and of the parameter of interest whose distribution can be estimated consistently.
For instance, suppose a confidence region for g(Zr) is desired, where gisa k X 1
vector-valued function of uvec(Zr) which is continuously differentiable and has
first derivative matrix g, of dimensions £ X p(p + 1)/2. Let u be a real-valued
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continuous function on R* such that {z € R* u(z) = c} has Lebesgue measure
zero for every c. Let J, ((F) = <L [u(n*?[g(S,) — g(Zr)]) | F] and let J,,(x, F) be

the corresponding cdf. For a € (0, 1), let
3.1) Cnorla, F) = inf{x: Jp.(x, F) =2 1 — a}
) Cngula, F) = supfx: Jy4(x, F) <1 — al.

Suppose ¢, 4(a, F',) is a random variable such that
(3~2) cn,g,L(a, Fn) = cn,g(a, Fn) = Cn,g,u(a, Fn)-

In other words, cn4(e, F,) is an upper a-point of the bootstrap distri-
bution J,(F,). A bootstrap confidence region for g(Zr), based on the pivot
u(n'?[g(S,) — g(Zr)]) and having ostensible level 1 — q, is

(3.3) D, y(a) = {g(Z): un*?[g(S,) — 8(ZP]) < cngla, o)}

In the examples to be considered, the function u has the additional property
that u(bz) = bu(z) for every z in R* and every positive b. Then

(3.4) Dy (@) = {8(ZF): ulg(Sn) — 8(Zp)] = cigla)},

where ¢} (a) is an upper a-point of the distribution of u[g(S}) — g(Z5,)] when
F, is fixed at its realized value and S¥ is the bootstrap sample covariance matrix
defined in Section 2.

COROLLARY 1. Suppose F has finite fourth moments and g is continuously
differentiable over its domain with first derivative matrix g. Then

(3.5) Jng(Fn) = & (u[é(Zp)uvec(Zp)])
with probability one. Consequently, if §(Zr) is nonzero,
(3.6) lim, . Pr[g(2F) € Dpgla)] = 1 — a.

ProoOF. For every sequence of cdf’s {F,} € L (F),
ZLu(n?[g(S,) — g(Zr)) | Fu] = < (u[g(Zr)uvec(Zp)])

because of Theorem 1, the assumptions on g, and continuity of u. This implies
(3.5) as in the proof of Theorem 1. The limit law on the right side of (3.5) is
continuous, because the set {z € R*: u(z) = c} has Lebesgue measure zero for
every c¢. Hence

(3.7 lim, . Pr[u(n*?[(S,) — g(ZP]) < cagle, E)] =1 - a,
which is equivalent to (3.6); see Theorem 1 in Beran (1984) for details.

As immediate applications of Corollary 1, consider the following examples:

(a) Let g(=r) be the correlation coefficient pr;; = or,;j/(or,i0r;). Then g(S,) is
the sample correlation coefficient r, ; and bootstrap confidence regions based on
the pivot |r,; — pr;| have the intended asymptotic level. Also covered by
Corollary 1 is Fisher’s transformation of pg,;: g(Zr) = log[(1 + pr,;)/(1 — pr;)].
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(b) Suppose the random vector x; is partitioned into two subvectors y; and ¢
of dimensions p; X 1 and p, X 1 respectively. Correspondingly 2 is partitioned
into the submatrices {Zr;; 1 < i, j < 2}. Let g(Zr) be the regression coefficients
Br = ZF222r21 which define the best linear predictor of y; given ¢;. The least
squares estimate of 8y is b, = g(S,). By Corollary 1, the Lévy distance between
the bootstrap distribution of n'/2(b, — 8r) and the actual distribution converges
to zero, with probability one. Moreover, if | - | is any norm on RP#*P, bootstrap
confidence regions based on the pivot | b, — 8r| have the intended asymptotic
level. An earlier, somewhat different, analysis of this regression example appeared
in Freedman (1981) for p;, = 1.

3.1 Confidence regions for eigenvalues (simple roots). Suppose F is such that
Zr has simple eigenvalues \;(Zf) > \o(Zp) > -+ > )\,,(2,3) > 0. The vector A\(ZFr)
= (M(ZF), N2(Zp), - -+, A\p(ZF))’ is then a continuously differentiable function of
uvec(Zr) (Kato, 1982, especially Section 6 of Chapter 2). The ordered sample
eigenvalues are 4, = (4,1, + -+, 4np)’, Where £, ; = \(S,). To construct a simulta-
neous confidence region for the {\;(Zr)}, consider the pivot

(3.8) max<i<p | IOg(/n,i) - lOg()\i(EF)) |

where | - | denotes absolute value. The logarithmic transformation stabilizes
variance in the normal model asymptotics for sample eigenvalues. The bootstrap
confidence region D, ,(a) corresponding to (3.8) is

INCR): 4AR = M(ZR) < 4,:A, simultaneously for 1 =i <p

3.9)

and )\1(2};‘) > )\2(21:) > 00> )\,,(EF) > 0}
where
(3.10) A, = expcr 4(a)]

and ¢} ¢(a) is an upper a-point of the bootstrap distribution for the pivot (3.8).
By Corollary 1, the asymptotic level of the confidence region (3.9) is 1 — «. Here
u(z) = max ;= | 2;| for z € R”.

EXAMPLE 1. Mardia, Kent, and Bibby (1979) reported test scores for 88
college students, each of whom took two closed-book and three open-book tests.
Diaconis and Efron (1983) bootstrapped the principal components of this data
with two questions in mind: Which averages of the test scores best discriminate
among students? How trustworthy are the averages suggested by the estimated
principal components? It is interesting to re-examine these and related questions
with the help of the more formal bootstrap confidence regions studied in this
section.

The eigenvalues of the sample covariance matrix are: 687.0, 202.1, 103.7, 84.6,
32.2. Simultaneous confidence regions for the five eigenvalues were constructed
from pivot (3.8) in two ways: by the bootstrap method (3.9), using 200 samples
in the Monte Carlo approximation; and by combining normal model asymptotics
for the individual sample eigenvalues through the Bonferroni inequality. The
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TABLE 1
90% simultaneous confidence intervals for the eigenvalues {\;}. The bootstrap critical value
chg(a) = 0.4527 (A, = 1.5726) was obtained from a Monte Carlo sample of size 200.

)\1 )\2 x8 )\4 M
Bootstr L 436.9 128.5 66.0 53.8 20.4
sirap U 1080.3 317.8 163.1 133.0 50.6
Bonferroni L 483.7 142.3 73.1 59.6 22.6
U 975.7 287.0 147.3 120.2 45.7

TABLE 2

95% simultaneous confidence intervals for the eigenvalues {\;}. The bootstrap critical value
ck4(a) = 0.4870 (A, = 1.6273) was obtained from a Monte Carlo sample of size 200.

A1 A2 < As g s

Bootstra L 4222 124.2 63.8 52.0 19.8
sirap U 1118.0 329.0 168.9 137.8 52.3
Bonferroni L 466.2 137.1 70.4 57.4 21.8
onlerront U 1012.4 297.8 152.9 124.7 474

upper (U) and lower (L) endpoint of the 90% and 95% simultaneous confidence
intervals are reported in Tables 1 and 2.

According to the bootstrap confidence intervals, the largest and smallest
eigenvalues differ substantially from the other three eigenvalues, which could be
clustered together. The Bonferroni intervals are somewhat narrower than the
corresponding bootstrap intervals. Since both intervals are based on the same
pivot, possible explanations include slight nonnormality of the data (though it
passes two tests of multivariate normality) and differing rates of convergence
(both methods are asymptotic.)

Indeed, if there is even slight nonnormality then z,/,, the upper a/2 point of
a standard normal distribution, used in the Bonferroni bounds should be changed
to (ks + 22\?)22,/5/(27\?)"/2 where k4 and \? are estimated from the sample; see
Fujikoshi (1980) for the definition of k4. This change widens the Bonferroni
intervals. The percentage points for the Bonferroni intervals might also be
recalculated using an Edgeworth expansion (cf. Fujikoshi 1980, page 48).

Before deciding how many principal components are needed to summarize a
set of multivariate data, it is helpful to estimate the cumulative eigenvalue ratios:

(3.11) pi(Zp) = L, N(EA/ZL MCR); 1=jsp-—1

by the corresponding sample quantities r,; = p;j(S,); 1 < j < p — 1. To construct
a simultaneous lower confidence bound for the {p;(ZF)}, consider the pivot

(3.12) max<j<p-1(rn; — pj(Zr)).

Since the vector of the {p;(Zr)} is a continuously differentiable function of
uvec(Zr), Corollary 1 applies. The bootstrap confidence region induced by (3.12)



BOOTSTRAPPING COVARIANCE MATRICES 101

and having asymptotic level 1 — « is
(8.13)  {pj(Zp): pj(ZF) > ryj — ci(a) simultaneously for 1 < j < p — 1},

where c¥(a) is an upper a-point of the bootstrap distribution for (3.12).

EXAMPLE 1 (continued). Applied to the test score data, the bootstrap pro-
cedure just discussed yields the simultaneous lower confidence bounds for the
{p;} which are recorded in Table 3. In effect, the raw estimates {r,;} of the
cumulated standardized eigenvalues are reduced by .0744, so as to take their
variability into proper account at the 95% level. Thus, projection of the test-
score data onto the subspace spanned by the first eigenvector of S,, or even the
subspace spanned by the first two eigenvectors, yields only a moderately accurate
representation of the data.

3.2 Confidence regions for eigenvalues (multiple roots). The bootstrap confi-
dence regions constructed in Section 3.1 were derived on the assumption that
the eigenvalues of Zr have multiplicity one. Without this assumption, the
bootstrap estimate Jn,x(Fn) of

(3.14) Jun(F) = L[n*(4, — NZp) | F]

need not converge to o, \(F). The following extreme case illustrates the problem.

Suppose F is absolutely continuous, has finite fourth moments, and is such
that the eigenvalues of Zr are all equal to v(ZF). With probability one, the ordered
sample eigenvalues {4,;; 1 < i < p} are distinct and positive (Okamoto, 1973).
Let P, ; be the sample eigenprojection associated with the sample eigenvalue 4, ;.
Let Zr be the symmetric random matrix defined in Section 2.

COROLLARY 2. Under the model of the preceding paragraph, the Lévy distance
between the bootstrap distribution J, \(F,) and L[tr(ZpPy1), - - -, tr(ZpPnp)], the
latter being computed with respect to the distribution of Zr, converges to zero with
probability one.

PROOF. Let {F,} be any sequence of cdf’s in % (F) such that the eigenvalues
of 2y, have multiplicity one, for every n = p. Let P;(Zr,) be the eigenprojection
associated with the eigenvalue \;(Z5,). By Kato (1982),

(3.15) "\,/;l,i = )\,-(Epn) + tr[(S,, - EF”)Pi(EF")] + O( " Sn - EF,, "),

where || - || is the Euclidean matrix norm. The elements of P;(Zr,) are bounded
TABLE 3

95% simultaneous lower confidence bounds for the cumulated standardized eigenvalues {p;}. The
bootstrap critical value c}; ,(a) = .0744 was obtained from a Monte Carlo sample of size 200.

P P2 Ps Pa
Lower bound 0.5447 0.7269 0.8204 0.8967
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in absolute value by one. Hence, by Theorem 1 and (3.15), the Lévy distance
between J,,\(F) and & [tr(ZrP1(ZF,)), - - -, tr(ZrPp(ZF,))] converges to zero as
n increases. The corollary follows from thls because, with probability one, {£.,}
belongs to £’ (F) and the eigenvalues of 2z, are distinct for every n = p.

Davis (1977), extending Anderson’s (1963) normal model asymptotics for
spectral decompositions, showed that the actual distribution J,, \(F') converges
weakly to Z[A(Z5), - - -, Ap(ZF)]. Thus, the bootstrap distribution J, (¥, does
not converge to the actual distribution J,,(F) in the equal roots case. It is
possible to construct another bootstrap estimate for J,, \(¥) which works when
the eigenvalues of Zr are not all different (see Corollary 4 of Section 4.2).
However, that construction presupposes knowledge of the eigenvalue multiplici-
ties, a situation arising more naturally in testing theory than in confidence region
theory.

A different approach is needed to obtain theoretically valid bootstrap confi-
dence regions for the ordered eigenvalues {\;(Zr)} when no asumptions are made
about eigenvalue multiplicities. Let the {8;(2F); 1 = i < p} be the p elementary
symmetric polynomials in the variables {\;(Zp); 1 =i < p}:

B1(Zp) = Xfa M(ZF)
(3.16) Ba(Zr) = ik N(Zr)Ae(ZF)

Bo(Zr) = [1%1 N(Zp).

Since the eigenvalues are roots of the characteristic polynomial, each G8;(Zr) is a
continuously differentiable function of the elements of uvec(Zy). Let the {b, ;] be
the sample estimates b,; = 8:(S,); 1 < i < p. By bootstrapping the pivot

(3.17) max;<i<p | log(bn,:) — log(Bi(Zr)) |

and arguing as in the first paragraph of Section 3.1, we obtain a simultaneous
confidence region for the {8,(ZF)}, of asymptotic level 1 — . This region can be
reinterpreted as a confidence region for the ordered eigenvalues {\;(Zr)}, because
the mapping (3.16) from ordered eigenvalues to elementary symmetric polyno-
mials is one-to-one.

Though the eigenvalue confidence region so obtained has the correct asymp-
totic level whatever the eigenvalue multiplicities may be, its shape in eigenvalue
space is relatively strange, even when p = 2. For applications where distinctness
of the eigenvalues is a reasonable assumption, confidence regions like the one
decribed in Section 3.1 may be preferred.

3.3 Bootstrap distributions for eigenvalues versus Edgeworth expansions.
When F is standard bivariate normal with strictly positive correlation p, means
zero and variances one, the eigenvalues of Zrare \; =1 + pand A\; =1 — p. The
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marginal cdf of w; = (n/2)Y*(4.,; — \)/Ni, 1 = 1, 2, has an Edgeworth expansion
(Fujikoshi, 1980):

Plw; = x]
= &(x) — n*[auoi'®V(x) + a5io7 @ ()]
+ n (b + 27%}) o720 (x) + (by + au + az)oi PP (x)
+ 27%3,67%0®(x)] + o(n7?h)

(3.18)

where ®(x) is the jth derivative of the standard normal cdf ®(x) and

o? =202, ay = Yjm ML — N7 as = e}

(3.19)
bai = —Xjmi NN (N — N)7% by = 20

The parameters in the expansion (3.18) can be estimated from the sample
eigenvalues Z,; and 4, ,. How well does the nonparametric bootstrap cdf for w;
compare with Edgeworth cdf estimates of various orders? Asymptotic theory in
related situations indicates that, for moderate sample sizes, the difference beween
the bootstrap cdf and the two-term Edgeworth estimate should be small; both of
these estimates should be less biased than the normal cdf approximation; and
higher order Edgeworth estimates should differ little from the bootstrap or two-
term Edgeworth estimate (Beran, 1982; Singh, 1981). The same conclusions are
indicated when F is nonnormal, though in this case the Edgeworth expansion
becomes rather complicated.

To test these surmises, random samples of size 30 were generated from the
bivariate normal distributions with p = 0.1, 0.5, 0.9, means zero and variances
one. The bootstrap cdf (approximated in a Monte Carlo simulation using 200
samples from F,) and Edgeworth cdf estimates with one, two, or three terms
were computed for each of the three samples. Figure 1 compares the bootstrap
cdf with the three-term Edgeworth estimate and with the simple normal approx-
imation (the first term in (3.18)). The two-term Edgeworth estimates are not
plotted, because they are nearly identical to the three-term estimates. The
agreement between the bootstrap cdf and the three-term Edgeworth estimates is
remarkable, as is the bias in the normal approximation when p = 0.1.

How well do the bootstrap cdf and the Edgeworth cdf estimates of various
orders approximate the actual cdf of w;? The theory in Beran (1982) indicates
that the bootstrap cdf and the Edgeworth estimates of two or more terms are
locally asymptotically minimax among all estimates for the actual cdf. Moreover,
the bias in the normal cdf estimate causes it to be suboptimal, except for very
special choices of F where the bias vanishes.

3.4 Confidence cones for eigenvectors. Suppose F is such that the eigenvalues
of =r have multiplicity one. Let v:(Zr) be a p X 1 eigenvector of unit length
associated with the ith eigenvalue \;(Zr); the sign of v;(Zr) may be chosen
arbitrarily. A sample eigenvector associated with the ith sample eigenvalue 4,; is
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1.8

2.4

Bootstrap cdf
..... Normal Approximation
_____ Edgeworth with 3 terms

1.2

8.8

az2

b Jd. [ § - e

2.a

|
|
i
|
|
2

-2 -1 2 1

Smallest sample eigenvalue with p = 0.1.

Fi16. 1. Comparison of the bootstrap, normal approximation, and estimated three-term Edgeworth
expansion for the cdfs of the centered sample eigenvalues in a bivariate normal sample of size 30. The
bootstrap Monte Carlo used 200 samples.

¢ni = vi(Sr). To construct a confidence cone for v;(Zr), consider the pivot

(3.20)

1 - lehvi(Zo |

whose nonnormal model asymptotics have been studied by Davis (1977). Let
c¥(a) be an upper a-point of the bootstrap distribution for (3.20). The bootstrap
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1.8

e s S
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-2 -1 ) 1 2 a

Largest sample eigenvalue with p = 0.5.

1.8
¢

2.8

2.6

=
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-3 -2 -1 2 1 2 3

Smallest sample eigenvalue with p = 0.5.

Fi1G. 1. (continued)

confidence cone generated by (3.20) is
(3.21) (7i(Zp): | enivi(Cp) | = di(@), | v:(Zp) | = 1},

where d¥(a) = 1 — cX*(«). In practice, d}¥(a) could be calculated as a lower a-point
of the bootstrap distribution for | ¢/ ;v:(ZF) |-

To see that confidence cone (3.21) has asymptotic level 1 — a, let P;(Zp) =
v{(Zr)v{(ZF) be the eigenprojection corresponding to \i(Zy) and let P,; = ¢y icn,i
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4
Largest sample eigenvalue with p = 0.9.
3 e el —mae
@ -
o
0 e
o
Sk i
o
N =3
[
z S __.‘E,...., L.. L ST TR, 4 S W
-3 -2 -1 1 2 3 4
Smallest sample eigenvalue with p = 0.9.
Fi1G. 1. (continued)
be the ith sample eigenprojection. By algebraic manipulation,
(3.22) 1= lenivi(ZA | =1=[1 = 27| P, — Pi(Zp) |12
where || - || is the Euclidean matrix norm. Since P;(Zr) is a continuously differ-

entiable function of uvec(Zr) (Kato, 1982), Corollary 1 can be applied with g =
P;. Consequently, the bootstrap distribution of n[1 — | ¢}, ;v:(Zr) | ] converges with
probability one to the same continuous limit distribution as does the actual
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distribution of n[1 — | ¢, ;v:(Zr) |]. Hence, confidence cone (3.21) has asymptotic
level a.

Simultaneous confidence cones of asymptotic level 1 — o can be constructed
by bootstrapping the pivot

(3.23) max<i<p[l — | cnivi(ZP) | ]

Unfortunately, the simultaneous confidence cones so obtained tend to be very
wide in practice, because the distribution of | ¢, ;v:(Zr) | may vary substantially
with 7.

EXAMPLE 1 (continued). For the test score data discussed in Section 3.1, the
first three sample eigenvectors are

1 = (0.505, 0.386, 0.346, 0.451, 0.535)
(3.24) ¢,z = (0.749, 0.207, —0.075, —0.301, —0.548)
¢n,3 = (—0.300, 0.416, 0.145, 0.547, —0.600).

The critical values d7(«) defining the 95% bootstrap confidence cones for v:(Zr),
v2(Zr) and v3(Zr) are 0.985, 0.915, and 0.310 respectively. The confidence cone
for v;(Zr) widens substantially as i increases.

As might be expected, the 95% confidence cone for v;(Zr) contains the vector
5Y2(\s, Ys, Y, Ys, Y)’, which corresponds to the average test score for each
student. On general grounds, a natural candidate for v.(Zr) is the vector
(%%)Y2(Y%, Yo, —V5, —Y5, —14); the associated principal component is the difference
between the average closed-book score and the average open-book score for each
student. However, this vector lies well outside the 95% confidence cone for
v2(ZF). On the other hand, the modified comparison-of-averages vector (%2, %, 0,
—4, —14), which ignores the first open-book test, very nearly lies within the same
confidence cone.

From this analysis and the earlier examination of the cumulated eigenvalue
ratios, we draw the following conclusions: The average score is a rough summary
of a student’s performance in the five tests. Finer distinctions among students
can be made by calculating the difference between the average of the two closed
book tests and the average of the second and third open book tests.

When the eigenvalues of 7 are not simple, it is still possible to devise bootstrap
confidence regions for eigenvectors which have the desired asymptotic level.
Suppose A\i-1(Zr) > Ni(Zp) = « -+ = Nigg-1(ZF) > Nisg(ZF). Let Ti(Zp) beap X g;
matrix whose columns are orthonormal eigenvectors corresponding to this eigen-
value of multiplicity ¢;. Let C,, ; be a p X ¢; matrix whose columns are orthonormal
eigenvectors associated with the sample eigenvalues 4,; = 4,41 = -+ - = £ i4g1-
The eigenprojections corresponding to I';(Zz) and C,; are P;(Zr) = I'(Zp)T(ZF)
and P, ; = C,;C,,; respectively. The pivot (3.20) generalizes to

(3.25) @ = ICLiTi(Zp) | = q* = [@i = 271 || P — Pi(Zp) |12,

where || - || is the Euclidean matrix norm. Because the eigenprojection P;(Zy) is
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still continuously differentiable, the earlier analysis for g; = 1 may be extended
to general g;. The confidence region of asymptotic level 1 — « for I';(Z5) is

(3.26) {T:(Zp): | CriT(Zp) || = di(a); TV (ZPTi(ZF) = I},
where d}(a) is a lower a-point of the bootstrap distribution for | C;;T:(ZF) ||.

4. Bootstrap tests about . A bootstrap confidence region for g(Zr) can
be inverted in the usual way to test hypotheses about the value of g(Z5). It is also
possible, and sometimes simpler, to construct bootstrap tests directly from a test
statistic (cf. Beran, 1984). This second approach to testing structural hypotheses
about Zr is the subject of this section.

Consider the following framework. Let = be a continuous projection, not the
identity map, which takes any nonsingular p X p covariance matrix into ap X p
covariance matrix. Suppose T, = nh(S,) is a test statistic for the null hypothesis

(4.1) Ho: the {x;; i = 1} are independent identically distributed p X 1
random vectors with unknown cdf F,,, which has finite fourth
moments; F is such that 2z = 7(Z5,).

The function h defining the test statistic T, is twice continuously differentiable
at uvec(Zg,), with h and the first derivative of h vanishing there for every possible
choice of 2y, satisfying the hypothesis Hy. The test rejects Hy if T), is sufficiently
large. As will be seen later in the section, this formulation includes likelihood
ratio and other multisided tests concerning the structure of Zp.

The asymptotic distribution under H, of the test statistic T, may be found by
Taylor expansion of h(S,) about h(Zr) and by reference to Theorem 1. Let h
denote the second derivative of h, and let zp, = uvec(Zr,). Then

(4.2) ZLITn| Fo]l = ZL[zk,h(ZF)2r,]

as n tends to infinity. Approximate critical values for the test under discussion
can be obtained by computing the upper quantiles of the limiting distribution on
the right side of (4.2), after first estimating the unknown cdf F, by the empirical
cdf F',. Substantial algebraic calculations are required in this approach.

Alternatively and more simply, we can construct a bootstrap estimate for the
null distribution [T, | Fo] as follows. Let

(4.3) Vior = [« P2 2528, 27/ [ (Zp)]

and let K, 4(F) = <[nh(V,r) | F]. The bootstrap estimate for the null distribu-

tion of T, is defined to be K,.,h(ﬁ',.). Let d, i(, F) be an upper a-point of K,,,h(F',,).
COROLLARY 3. Under the null hypothesis H,,

(4.4) Kon(Ey) = L2k, h(Zr)28,)

with probability one. Hence, the test which rejects Hy whenever T, > d, x(a, E)

has asymptotic size a, provided h(Zr,) is nonzero.

PRrROOF. Suppose the {x;} are i.i.d. with cdf F, which satisfies the constraint
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(4.1). Let {F,,; n = 1} be any sequence of cdf’s in £ (Fo). Both {25} and {x(ZF,)}
converge to 2, as n increases. Thus, by Theorem 1,

(4.5) LY (Vor, — 7(Zr,)) | Fal = L[Zg].
From this, the vanishing of & and h at #(Zr,), and the continuity of h at =,
(4.6) Ko n(Fy) = ZLz,h(ZF)2r)

as n increases. Equation (4.4) follows because Ppo[{ﬁ‘n} € % (Fy)] = 1. The other
assertion in Corollary 3 is also an immediate consequence, the limit law on the
right side of (4.6) being continuous (cf. the proof of Theorem 1 in Beran, 1984).

In practice, the bootstrap null distribution can be constructed as follows. Let
(4.7) yi = [wCe)225 %, 1<isn

Let the { y¥; 1 =i =< n} be i.i.d. random vectors whose cdf is the realized empirical
cdf of the {y;; 1 < i < n}. Let S}, be the sample covariance matrix of the {y{}.
Then Kn,h(ﬁ’n) is the distribution of nh(S},) and can be approximated by Monte
Carlo methods.

From the proof of Corollary 3, it is evident that factorizations of 2 other than
the symmetric square root factorization can be used to construct consistent
bootstrap null distribution estimates.

When the map w is a linear projection (see Section 4.1 for an example),
equation (4.7) is equivalent to y; = [x(S,)]"/2S,*?x;. The sample covariance
matrix S, , of the {y;; 1 <i =< n} now satisfies the relation S, , = =(S,,), a sample
analog of the null hypothesis constraint 2z = x(25). The bootstrap algorithm
discussed in Corollary 3 was motivated by this consideration.

4.1. Testing for specified eigenvectors. Let B be a p X r matrix whose columns
are orthonormal. Suppose the null hypothesis asserts that the columns of B
are eigenvectors of the unknown covariance matrix of the data. Let C be any
p X (p — r) matrix such that I = (B : C) is orthogonal. Let the {x;; 1 =i =< n} be
the images under I’ of the original sample random vectors. The null hypothesis
states that Zp,, the covariance matrix of the {x;}, has the form

S = diag{apo,,-,-; l1<i=< I‘} 0
o 0 Zr,)’

where 2y, o, is ‘an arbitrary covariance matrix of dimension (p — r) X (p — r).
The normal model likelihood ratio test rejects this hypothesis if

(4.9) h(Sa) = ier log(sns) + logldet(S,,22)] — logldet(S,)]

is too large (Mallows, 1961), The test does not depend upon the choice of C
(Srivastava, 1983).

The null hypotheses for the transformed observation vectors {x;} is of the form
(4.1). Let Z be any p X p covariance matrix, partitioned into four submatrices of
the dimensions indicated in (4.8). Then = is the linear projection of £ which
zeroes the submatrices =12, 2o; and the off-diagonal elements of =,;. The function

(4.8)
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h defined by (4.9) is twice continously differentiable at =(Z), with both & and the
first derivative of h vanishing there. Thus, by Corollary 3, the bootstrap test
based on nh(S,) has asymptotic size a.

4.2. Testing hypotheses about eigenvalue multiplicities. Sometimes a null
hypothesis concerning the structure of =y implies or is equivalent to a hypothesis
about the multiplicities of the eigenvalues of . Natural test statistics for such
eigenvalue hypotheses are often expressible as smooth functions of the sample
eigenvalues. Let A(Zr) be the p X 1 vector of ordered eigenvalues A\, (Zz) = \(Zp)
= ... 2 N(ZF) > 0 of Zp; let I'(ZF) be an orthogonal matrix whose columns are
eigenvectors of Zr; and let A(Zr) = diag{\;(Zr); 1 =i < p}. Suppose T = nh*(4,),
a function of the sample eigenvalues £,; = 4,2 = - - - = 4, ,, is a test statistic for
the null hypothesis

Hj: the {x;; { = 1} are i.i.d. with unknown cdf F, which has finite
fourth moments; 25, has eigenvalue matrix

(Zp )y, 0
V2(EF0)Iq2
(4.10) A(Zp,) =

0 v(Zr ),

where »(25) > v2(Zp) > -+ - > v (Zp) >0and ¥, g; =p.

Suppose further that the function h* defining the test statistic 7% is twice
continuously differentiable at A\(Z,), with both h* and its first derivative vanish-
ing there for every possible choice of 25, satisfying the hypothesis H§. The test
rejects H§ if T is sufficiently large. Examples of such tests are discussed in

Section 4.3.
Davis (1977), extending Anderson’s (1963) normal model asymptotics for
spectral decompositions, showed that, as n increases,

(411) L[4 = MZr)] | Fol = L [MUn(Fo, T)), - -+, NU(Fo, D)],

where Uj;(Fy, T') is the ith diagonal block, of dimension g; X g;, in the random
matrix

(4.12) U(Fo, T) = T (2r) Zr,I(Zr,)-

Here Zp, is the p X p symmetric random matrix defined in Corollary 1. Let wp,
be a p X 1 random vector which has the distribution on the right side of (4.11).
Note that < (wr,) does not depend upon the particular choice of I'(Z,), because
the left side of (4.11) does not; and that ' (wg,) is continuous. From (4.11) and
the properties of h*,

(4.13) LTy | Fol = Lwi h*(AN(Zr,))wr,],

h* being the second derivative matrix of h*. )
As was seen in Section 3.2, the simple bootstrap estimate o/, \(F,) does not
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converge to <L [n*(4, — A(2g,)) | Fo] whenever eigenvalue multiplicities exceed
one. However, a more sophisticated bootstrap distribution estimate, which ex-
plicitly recognizes the multiplicities q;, gs, - - -, g, specified in the hypothesis
Hg, does converge appropriately and yields consistent bootstrap critical values
for the test statistic T';. The construction runs as follows:

Let

MNCERI, 0
_ A2(El°‘)1q2
(4.14) A(Zp) = - )

0 —Xr( EF)I qr

where \;(Z5) is the average of the g; eigenvalues in the ith diagonal block of
A(Zp), {N(Zp): Y qr + 1 < j < i gi). Let Zp = T(Zp) AT (Zp). Observe
that Zris a perturbation of 2y which has precisely the eigenvalue multiplicities
specified in H§. Let

(4.15) Wor = ZH?Z5/28, 252 TH?

and let J¥\(F) = <L[nYANW,r) — MZp)|F]. The bootstrap- estimate for
,% [n1/2(/ — NMZ2g)) | Fo] when F, satisfies hypothesis H§ is defined to be
J¥ * \(F.). The corresponding bootstrap estimate for .~ [T¥| Fo] is K} h(F,.), where
Kin(F) = L [nh*(W,r) | F].
In practice, K ﬁ,h(ﬁ’n) can be constructed as follows. Let

(4.16) yi=Z{Zi %, 1sisn

Let the { y¥; 1 =i =< n} be i.i.d. random vectors whose cdf is the realized empirical
cdf of the {y;; 1 =< i < n}. Let S}, be the sample covariance matrix of the {y}}.
Then K¥,(F,) is the distribution of nh*[\(S* ',)] and can be approximated by
Monte Carlo methods.

This construction can be simplified algebraically because sample eigenvalues
are invariant under rotations of the sample. Let D, = diag{/,;; 1 < i < p} and let

Cnaly 0
/ny2Iq2

=]
S
[

(4.17)

0 [ z n,rIq

r

where 7 ,; is the average of the sample eigenvalues in the ith diagonal block,
having dimension g; X g;, of D,. In place of (4.16), define
(4.18) v; = DY’D;V?Clx;, 1<i<n

where C, = I'(S,); that is C, is the sample eigenvector matrix (cn,1, Cn2, - - *5 Cn,p)
associated with S,. Complete the construction of K*,(F,) as in the precedmg
paragraph.
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Let d¥ (a, F,)) be an upper o point of K¥,(F,).

COROLLARY 4. Under the null hypothesis Hf,

(4.19) JiAE) = & (wr,)
with probability one. Consequently
(4.20) Kin(F,) = Lwhh*(NEr))wr,]

with probability one and thg test which rejects H§ when T > dji(a, F) has
asymptotic size a, provided h*(\(ZF,)) is nonzero.

PROOF. Let {F,} be any sequence of cdf’s in % (Fy). Both {Zr} and {2}
converge to 2y, the former by definition of £ (F,) and the latter by continuity
of the relevant eigenvalues and eigenprojections (Kato, 1982). Since

(4.21) nY Wz, — 2r,) = ZH Z5*nY%(S, — 255 ZH?,
it follows, with the help of Theorem 1, that

(4.22) LW, 5, — Z5,) | Fa] = £ (Zr,).

From the variational characterization of eigenvalues,

(4.23) IN(Wer,) = NCp) | < | Wor, — Zp,ll, 1<isp.

In view of (4.22) and (4.23), the sequence of distributions {J},\(F,); n = 1} is
relatively compact.

Suppose J7 \(F,) does not converge weakly to < (wr,) as n tends to infinity.
By going to a subsequence, we can assume without loss of generality that
Jr\(F,) converges weakly to a limit law J; which differ from < (wg,). By going
to a further subsequence, we can assume in addition that I'(2r,) converges to I'y,
a p X p matrix whose columns are an orthonormal set of eigenvectors for Zz,.
(Reason: the set of all p X p orthogonal matrices is compact in p*-dimensional
Euclidean space and lim, ,.A(Z5) = NM(Zg)).

Replacing Zr_and Zr_ in (4.15) by their spectral representations yields

(4.24) Wik, = TEp)(ZF)Du(F)I(Zr )T (ZF,)

where _
I(Zg) = AVA(Zp)A™VA(Zy)
Dy(F,) = T"(Zr)S:T'(ZF).

Observe that lim, ..I(Zr) = I, because both A(Zr) and Z(Epn) converge to
A(Zg,).
Let

(4.25)

Un = I(Zr,)n?[Du(Fn) — ACZr)U(ZF,)

Ay(Zr) = diag{Xi(Zp),; 2 < i<}
Set s = p — g, and let |A| denote the determinant of A. The characteristic

(4.26)
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polynomial for the matrix W, 5 is

| Wn,F,. - VIpI
(427) = InU, = 01, — B(z,)]
= n_<11/2 U",ll - n1/2(” - X1(2:}7‘,.))1111 n_l/ZUn,IZ —_
Una nY2U, 9 — (I, — Az(ZF,)

a representation suggested by the argument in Section 7 of Anderson (1963).
Thus, | W, r, — vI,| = 0 if any only if

| n2Up 9 — (I, — Z2(EF,,))I

(4.28) -
| Un1 = 020 = M(Cp ), — Ea(@) | = 0,
where :
(4'29) En(V) = n_l/2Un,12[n_l/2Un,22 - (VIs - Z2(EFn))]_l n,21-.
From Theorem 1 and the convergence of I'(Zy,) to I'y, it follows that
(4.30) LU, | Fr) = L[U(F,, Th)],

the random matrix on the right side being defined in (4.12). By Skorokhod’s
theorem, there exist versions of the {U,} and of U(Fy, I';) such that U, converges
to U(Fy, T;) with probability one. To these versions correspond versions of
{W,.r,}, defined by

(4.31) W, = Zp, + n72T(Zp)UTV (Zr),

such that W, r converges to 2y, with probability one and therefore N(W, )
converges to A(Zp,) with probability one. For the versions of {U,, Wz},
U(F(), Fl) andforl<i=< [*}1

(4.32) limp o | n~\? Un,22 = (A( Wn,F,,)Is - Zz(EF,,))I = H§=2 [VI(EFO) - ”j(EFO)]qj

with probability one, the limit on the right side being strictly positive.

Comparing (4.28) with (4.32) yields the following conclusion: with probability
one, the eigenvalues in the first cluster, {N(W,r); 1 < i < qi}, satisfy the
equation

(4.33) | Unt = Ed(M(Wy 1)) = n*2(N(W ) = M), | =0

for all sufficieritly large n. In other words, n*?[\;(W,. ) — X\1(Zr,)] is ultimately
the ith eigenvalue of U, 11 — En.(Mi(W,r)), for 1 <i < g, and n sufficiently large.
From (4.29), E.(M\(W, r,)) converges to zero with probability one for the special
versions of {U,}, etc. Thus n?[\(W,r) — A\i(ZF,)] converges with probability
one to the ith eigenvalue of U;,(Fy, I';).

Since rows and columns may be permuted freely in the determinant defining
the characteristic polynomial of W,z , the same argument works for the other
r — 1 clusters of eigenvalues. Consequently,

(4.34)  lim,_on MW, 5) = MZr)] = AUn(Fo, T1), -+, NUn(Fo, T1)))

with probability one, for the special versions of {U,}, etc. The implication of
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(4.34), that J3\(F,.) = < (wg,) for the original random vectors involved, contra-
dicts the assumption made at the start of this proof. The conclusions stated as
Corollary 4 follow readily now.

4.3 Testing the positive intraclass correlation model. Under this model, the
covariance matrix of each random vector observed is

(4.35) Zr, = 0% l(1 — pr), + pree’]
where e = (1, 1, - - -, 1)’, the intraclass correlation pj, lies between 0 and 1, and
F, is unknown. Since the eigenvalue matrix of 2z, has the form
_ [n(Zg) 0
(4.36) ACSR,) < 0 ey

with »1(Zr,) > v2(ZF,), any level o test for (4.36) is necessarily of level « for (4.35).
The normal model likelihood ratio test for the hypothesis (4.36) rejects whenever

(4.37) h*(4) = —log[[1Z2 4. + (p — Dlogl(p — 1)7* 325 4,]

is too large (cf. Srivastava and Khatri, 1979, page 292). Corollary 4 applies.

Corollary 3 provides another way to bootstrap T’ validly, because the null
hypothesis (4.35) is of the form (4.1) and the functions A,(Z), Y&, \(Z),
ITZ: Ai(Z) are twice continuously differentiable at = = 2, (Kato, 1982). On the
other hand, the test based on the statistic h*(4,) = log[(4, 2 + 4.,)%] — log[44,.24.p]
can be handled by Corollary 4 but not by Corollary 3 when p = 4.

ExXAMPLE 2. Rao (1948) reported 4-dimensional observations on 28 cork
oaks. Each observation consisted of the weights of four cork borings taken from
the north, south, east, and west sides of the tree trunk. Of particular interest was
the following question: does the weight, and therefore thickness, of a boring
depend on the direction from which it is taken? If the data follows the one-way
random effects model, this question could be addressed by analysis of variance
techniques rather than by more general multivariate methods.

Under the random effects model, the covariance matrix of each observation
has the form (4.35) with p = 4; and the smallest three eigenvalues of the
covariance matrix are therefore equal. The eigenvalues of the sample covariance
matrix are: 984.4, 59.8, 23.9, 18.2. A refinement of the test statistic T = nh*(4,)
defined by (4.37) is

(4.38) Q=(—-1-6"2(p-1)—-1-2p-1)7'}h*%)

(Lawley, 1956). If the null hypothesis (4.36) holds and the data is normal, then
the asymptotic distribution of @, is chi-squared with 27 (p — 1)p — 1 = 5 degrees
of freedom. The observed value of @, is 10.5. The 5% critical value for @, is 11.1
according to the chi-squared approximation; and 14.3 according to the bootstrap
(using 200 samples in the Monte Carlo approximation). The p-value of the
observed Q, is 6% according to the chi-squared asymptotics but 9% according to
the bootstrap null distribution.
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One possible explanation for the discrepancy between the two critical values
is nonnormality of the data, a conclusion supported by an independent analysis
in Srivastava and Hui (1983). Nonnormality invalidates the chi-squared calcu-
lation of critical values, but not the bootstrap.
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