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COMMENTS ON A PAPER BY T. AMEMIYA ON ESTIMATION IN
A DICHOTOMOUS LOGIT REGRESSION MODEL'

By LINDA Davis

Stanford University

Amemiya (1980) derived expressions for the n~2-order mean squared
errors of the maximum likelihood and the minimum logit chi-squared
estimators in the dichotomous logit regression model. He numerically evalu-
ated these expressions for a number of specific examples and in all examples
found that the minimum chi-squared estimator has smaller n~%-order mean
squared error. In this paper, we demonstrate examples in which the maximum
likelihood estimator has smaller n~2-order mean squared error.

1. Introduction. Amemiya (1980) derived expressions for the n~2-order
mean squared errors of the maximum likelihood estimator and the minimum
logit chi-squared estimator in the dichotomous logit regression model. He eval-
uated the n~2-order mean squared errors in many examples, both real and
artificial, finding in all examples that the n~2-order mean squared error of the
minimum logit chi-squared estimator is smaller than that of the corresponding
maximum likelihood estimator. He did not show theoretically, however, that the
n~%-order mean squared error of the minimum logit chi-squared estimator is
smaller than that of the maximum likelihood for all designs and parameter
values. The resolution of this question is important in that it can further clarify
which estimator should be used in a given situation.

Since Amemiya’s paper, little work has been done to determine whether the
order relationship observed by Amemiya between the n~2-order mean squared
errors is an artifact of the examples he considered or in fact a property of the
estimators. The only known work is by Ghosh and Sinha (1981) which suggests
that indeed the order relationship is an artifact of the examples. They treat,
however, a slightly different estimator than the minimum logit chi-squared
estimator and do not give any specific numeric results.

In this paper, we demonstrate specific designs and parameter values for which
the n~2-order mean squared error of the maximum likelihood estimator is smaller
than that of the corresponding minimum logit chi-squared estimator. The em-
phasis in these examples is toward determining what aspect of the design
and/or parameter value is the main cause of the n~2-order mean squared error
being smaller for the maximum likelihood estimator. In particular, we find that
the controlling factor in the order relationship between the mean squared errors
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is the number of design points. This result, in fact, explains why Amemiya failed
to observe a smaller n~2-order mean squared error for the maximum likelihood
estimator in any of his examples.

The paper is organized as follows: In Section 2, we briefly review the pertinent
parts of Amemiya’s paper, retaining as much as possible of his notation. In
Section 3, we report the examples considered and the numerical values of the
n~2-order mean squared errors as well as our interpretation of the numerical
results. Finally, in Section 4, we summarize the implications of our findings on
the original question raised by Amemiya in addition to their broader implications
on determining which of these two estimators is preferable in a given situation.

2. Review. The underlying data consists of Y%, n, dichotomous random
variables y,(t =1, 2, ---, T; v = 1, 2, ---, n,) taking values 0 or 1 with
P{y, =1} = {1 + exp(—x/Bo)}~* = P, where x; is a K-dimensional vector of known
constants and 8, is a K-dimensional vector of unknown parameters. We define
re=nit Yot yoand X = (x5, %2, - - -, x7)".

The two estimators we consider are the maximum likelihood estimator and
the minimum logit chi-squared estimator. The maximum likelihood estimator is
defined as usual as a solution to the normal equations which in this case are
3. nr. — Fy)x, = 0 where F, = {1 + exp(—x/8)}~". The minimum logit chi-squared
estimator is defined as

{Zt nri(l — "z)xtxt'}_l Y neri(1 — r)[logir./(1 — rofl:.

The asymptotic assumptions are basically that T is a fixed number greater
than or equal to K and each n; goes to infinity at a common rate designated by
n. The expression derived by Amemiya for the n2-order mean squared error is
essentially just the Taylor series expansion of the mean squared error truncated
after terms of order n~2

Let MSE, and MSE, denote the n~%-order mean squared error matrices of the
maximum likelihood estimator and the minimum logit chi-squared estimator
respectively. The expressions for MSE, and MSE; are quite lengthy and thus we
simply refer you to Amemiya (1980), equations (34) and (62). There is a slight
error, however, in his equation (30) which ultimately affects (34). Equation (30)
should read

1 4%6; 9%°6; P(1 — P,) P(1 — P,
Evovy =35 % X g aror n.
lz 2ﬁth(1 Pt)||2 3_2_@Pt(l—Pt)|
4= n 1=t |
= 2mh~j + m3l~j.

The effect of this on (34) is simply to replace AA by A. Making this one change
in (34) results in the correct expression for MSE;.
The numerical results in the next section involve comparison of the diagonal

elements of MSE; and MSE; only.
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3. Examples. The set of examples we consider is generated by considering
all possible pairings of five different designs (specified by the X matrix) and five
different parameter values. The five different X matrices which we index by the
corresponding values of T are in Table 1 (n,=nforallt=1,2, --., T.) The five
different values of the paramter 3¢ = (B0, Bo2) are in Table 2. These particular
values of the parameter were chosen to provide dlfferent patterns and ranges of
the true probabilities.

Table 3 contains the results of numerically evaluatlng MSE,; and MSE; for all
twenty-five pairings of designs and parameter values. Since for models of the
above type MSE; = A/n + B;/n® for i = 1, 2, we simply report the diagonal
elements of A, B;, and B, in the table. Note that the comparlson of MSE; and
MSE; then reduces to a comparison of B, and B,.

The first thing to note in Table 3 is that there are examples in which the
maximum likelihood estimator has smaller n~2-order mean squared error. Thus,
these examples resolve the issue raised by Amemiya as to whether in general the
n~2-order mean squared error of the minimum logit chi-squared estimator is
smaller than that of the maximum likelihood estimator. In general, this statement
is not true.

The next point we would like to emphasize by using the table is what aspect
of the design and/or parameter value is the main cause of the switch over in the
relative sizes of the n~%-order mean squared errors. The general pattern in the
table is that for a fixed Sy;, the n~2-order mean squared error is smaller for the
minimum logit chi-squared estimator when T is small and smaller for the
maximum likelihood estimator when T is large. Furthermore, the value of T at
which the switch occurs is inversely related to the size of 8y in that the larger
Boi, the smaller the value of T at which the switch occurs.

Finally, note that the smallest value of T for which the maximum likelihood
estimator has smaller n%-order mean squared error is always at least nine in

TABLE 1
T _16 1 -16 1 -16 i —}g
T 18 1 -8 1 -12 1 -14 -
1 o 10 S o P
1 16 18 1 12 1 14 1 15
1 16 1 16 1 16 1 16
‘T=3 T=5 T=9 T=17 T=33
TABLE 2
Parameter 1 2 3 4 5
Index
Bo 0 .67496 1.09861 1.52226 2.19722
Boz .13733 095141 .068663 .042185 0
Minimum P, 1 3 5 N 9

Maximum P, 9 9 9 9 9
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TABLE 3
n~2-order mean squared errors
Parameter r Estimation of (o, Estimation of Soz
Index ‘ A B, B, A B, B,

1 3 2.33 7.30 1.58 0217 .2056 1171
5 1.24 2.17 -.76 .0143 .0559 .0005

9 .65 .58 -1.06 .0086 .0166 -.0018

17 .33 .15 -.73 .0048 .0046 0127

33 17 .04 —.42 .0025 .0012 .0253

2 3 2.10 7.57 3.02 0143 0737 .0379
5 1.16 2.25 -.37 .0105 .0289 .0006

9 .62 .63 —-.54 .0066 .0094 —.0039

17 32 17 —-.04 +.0038 .0027 .0026

33 .16 .04 40 .0020 .0007 .0094

3 3 2.21 10.35 5.02 0134 .0616 .0287
5 1.26 3.17 -.06 .0102 .0258 —-.0005

9 .68 91 -.13 .0066 .0088 —.0052

17 .36 25 7 .0038 .0026 —.0000

33 .18 .06, 1.53 .0021 .0007 .0058

4 3 2.51 15.44 8.81 .0146 0731 .0353
5 1.47 5.07 .68 0114 .0315 —.0022

9 .81 1.51 .59 0075 0112 -.0097

17 42 42 2.23 .0044 .0034 —.0051

33 22 A1 3.63 .0024 .0010 .0009

5 3 3.70 40.05 26.61 0217 .1648 .0804
5 2.22 14.42 4.64 0174 0755 -.0120

9 1.23 4.45 4.24 0116 0275 —.0346

17 .65 1.25 9.32 .0068 .0085 —.0287

33 34 .33 13.76 .0037 .0024 —-.0181

these examples. In all of the examples reported by Amemiya (1980), T is at most
six, which explains why he did not observe a smaller n~%-order mean squared
error for the maximum likelihood estimator in any of his examples.

There might be some skepticism as to whether such large T values arise in
practice as well as whether the asymptotic expansions are valid for such large
values of T. Amemiya (1979), however, computed the n~2-order mean squared
errors of both estimators for a real example adopted from Amemiya and Nold
(1975) in which T = 16. (In this example, he found the n2-order mean squared
error smaller for the minimum logit chi-squared estimator. If the range of (x.),
in this example is converted to [—16, 16], however, the converted parameter value
is Bo; = .184 and By, = .0408. Thus, the results in Table 1 indicate that the value
of By; is too small for the maximum likelihood estimator to have smaller n~2-

order mean squared error even for T' = 16.)

4. Conclusions. In this paper, we have shown that the minimum logit chi-
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squared estimator has smaller n~>-order mean squared error than the maximum
likelihood estimator only for certain designs and parameter values. Thus, we
have resolved the question raised by Amemiya (1980). Furthermore, we have
shown that the minimum logit chi-squared estimator has smaller n~2-order mean
squared error when the true parameter value is small or the number of design
points is small. Thus, it appears that consideration of the size of T should enter
into the choice of which estimator to use in a given situation.

There are of course other estimators of 3, that have been suggested. One such
estimator is the weighted least squares estimator, i.e., the value of 3 minimizing
i ni(r: — F)?/{F,(1 — F,)}. This is easily seen to be equivalent to the minimum
Pearson’s chi-squared estimator. We derived an expression for the n~2-order
mean squared error of this estimator and found it to be equivalent to that derived
by Amemiya (1980) for the minimum logit chi-squared estimator. Thus, all of
the above discussion applies directly to the comparison of the weighted least
squares estimator and the maximum likelihood estimator.
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