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My brief in writing this article was not only to review the two books but also
to provide a survey of the field of regression diagnostics, including some mention
of unsolved problems; these suggestions for research come at the end of the
article. In the major part of the article the methods of regression diagnostics are
developed with reference to the material in the two books. But first the material
must be put in context.

Diagnostic methods are directed at the building and criticism of statistical
models. Traditional statistical procedures, such as model fitting and hypothesis
testing, are not adequate for this task. For example, rejection of a model does
not, per se, give guidance as to a more suitable model. Similarly, failure to reject
a model does not guarantee that all important aspects of the fit have been
adequately examined. One effect of the almost ubiquitous use of the computer in
statistics has been the relative ease with which graphs may be produced and used
to test models. At the level of text books on regression, the increase in the use of
graphical material can be seen by comparing the books of Brownlee (Second
edition, 1965), Draper and Smith (1966) and Box, Hunter and Hunter (1978).
This trend may be partly due to the increased impact in our society of television
as against the printed word. But one of the achievements of diagnostic regression
analysis is to provide a framework within which to produce graphs which illustrate
both the effect of individual observations on aspects of the fitted model and also
ways in which the model is systematically inadequate.

A second consequence of the computer is that complicated statistical analyses
can now be routinely performed by scientists with little statistical training or
expertise. A major use of diagnostic methods, especially plots, is to call attention
to important features of the data which may have been overlooked. The combi-
nation of computer and the diagnostic' approach may then serve as a substitute
for the insight and guile of an experienced statistician. For this combination to
be effective the methods have to be easy to program, so that they can readily be
added to, or incorporated in, a statistical package. They must also be cheap to
compute and the results must be easily intelligible.

The product of a diagnostic analysis may be the identification of an inadequate
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model, in which case the model can be elaborated and the cycle of fitting and
diagnosis repeated. Or the analysis may lead to the identification of inexplicable
features in the data, such as apparent outliers. Such features should, in turn,
lead to further experimentation or data collection. Cook and Weisberg (1983)
contrast this emphasis on identification with robust methods where the emphasis
is on accomodation. By this they are calling attention to the use of robust
methods to fit a model to the data in the knowledge that a small, but unidentified,
fraction of the observations comes from some other process.

There is nothing in these general remarks which is specific to regression
models and least squares. Box (1980) provides a discussion of model building and
criticism from a Bayesian point of view. Several of the diagnostic measures which
he derives are close to those discussed in the two books. There is also no
restriction to linear models: diagnostic measures can readily be developed for all
members of the family of generalized linear models (McCullagh and Nelder,
1983). But we begin where the books begin, with the least squares analysis of
linear regression models.

A regression model and the data to which it is fitted may disagree for several
reasons. These include:

1. There may be gross errors in either response or explanatory variables,
which could arise, for example, from errors in key punching or data entry;

2. The linear model may be inadequate to describe the systematic structure
of the data;

3. It may be that the data would be better analysed in another scale, for
example after a logarithmic or other transformation;

4. The error distribution for the response variable may be appreciably longer
tailed than the normal distribution. As a result, least squares may be far
from the best method of fitting the model.

These departures are not all equally easy to identify. The methods of diagnostic
regression analysis are concerned with detection of the first three kinds of
departure. The main purpose of robust regression is estimation in the presence
of the fourth departure, that of error distributions other than normal. We return
to this topic at the end of the article where unsolved problems are discussed.

To detect departures which are hidden by the fitting process, the methods of
diagnostic regression rely on the effect on the fitted model and its residuals of
the deletion of one, or a group, of observations. We begin by considering the
linear regression model E(Y) = Xg, where X is an n X p matrix of known carriers,
which are functions of the explanatory variables: as usual, var(Y) = o¢2I. The
deletion of only one observation at a time will be considered. The deletion of a
group of observations introduces few new ideas, although it can lead to appreciable
difficulties in interpretation of the mass of material which results.

For the linear model, the least squares estimate of 8 is 8 = (X7X)'X"y and
the predicted values are given by

(1) 9= X8 = X(X"X)"'XTy = Hy,
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where H, with diagonal elements h;, is the “hat” matrix. The ordinary residuals

(2) r=y—-y=U—-H)y
have variance var(r) = ¢%(I — H), so that the standardized residuals
3) rl =r/Js*(1 — h;)

all have the same variance. In (3) s? is the usual residual mean square estimate
of o2

The agreement of the ith observation with the fit from the remaining n — 1
observations can be checked by comparing the prediction

(4) S = xFBaw,

where the subscripted i in parentheses is to be read as “with observation i
deleted”, with the observed value y;. The ¢t test for this comparison reduces to
the “deletion” residual

(%) r¥ = "i/VS%i)(l — hy),

which can be shown to be a monotone function of the standardized residual r/.

How do these quantities relate to the departures mentioned at the beginning
of this article, and how are they to be used? The quantity h;, often called a
“leverage” measure, indicates how remote, in the space of the carriers, the ith
observation is from the other n — 1 observations. For a balanced experimental
design, such as a D-optimum design, all h; = p/n. For a point with high leverage,
h; — 1 and the prediction at x; will be almost solely determined by y;, the rest of
the data being irrelevent. The ordinary residual r; will therefore have very small
variance. Points with high leverage are often created by errors in entering the
values of the explanatory variables. Investigation of the values of h; and of the
deletion residuals rf is therefore one way of checking for such a departure. For
the r¥ which, unlike the h;, are random variables, it is possible to conduct a
formal ¢ test for departure from the model, allowance for selection being made
by use of the Bonferroni inequality. It is usual, and more helpful, to give plots of
the values. Both Belsley, Kuh and Welsch (1980) and Cook and Weisberg (1982)
give normal probability plots of residuals: r¥ in the former case and r/ in the
latter. Both sets of authors also give plots of the residuals against observation
number, that is, index plots. Cook and Weisberg also give examples of index
plots of the h;.

The nomenclature in the two books:is not the same. Cook and Weisberg call
(3) an internally studentized residual, with (5) called externally studentized. In
the analysis of examples (3) is used and is called studentized, the name which
Belsley et al. reserve for (5). In view of the potential for confusion which this
introduces, it seems prudent to avoid the term studentized, as has been done
here, where (5) is called a deletion residual. The notation of Belsley et al. for this
residual is RSTUDENT, one of many examples in their book of the rebarbative
effect of Fortran on notation and variable names. Although the two residuals are
monotone functions of each other, the use of (5) is slightly to be preferred for
normal plotting. Obviously there can be no difference for hypothesis testing,
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although it is easier to refer (5) to tables of the ¢ distribution than to refer the
square of (3) to the scaled beta distribution.

Perhaps more important than the identification of outliers is the use of
diagnostic methods to identify influential observations, that is, observations
which significantly affect the inferences drawn from the data. Methods for
assessing influence are based on the change in the vector of parameter estimates
when observations are deleted, given by

(6) B — Bw = (XTX)ri/(1 — hy).

The individual components of this p vector can be used to determine the effect
of observation i on the estimation of ;. The change can also be scaled by the
estimated standard error of 3;. When ¢ is estimated by s?, this procedure yields
the quantity which Belsley et al. call DFBETAS;;.

If particular components of (6) are of interest, the sensitivity of the parameter
estimate to individual observations can be displayed in an index plot. If instead
the vector of estimates is of interest, Cook’s distance measure, a version of the
sample influence curve, is found by considering the position of 3, relative to the
confidence region for 38 derived from all the data. Then

) D; = (Bw — B)TX"X(Bw — B)/ps® = (1/p)ri?{hi/(1 — hy)}.

Cook and Weisberg give index plots of (7). Modifications of the square root of
(7) lead to quantities which are multiples of residuals, which can therefore
meaningfully be plotted in ways similar to those used for residuals. For example,
in Atkinson (1981) I suggested the use of half normal plots, with a simulation
envelope, of the modified Cook statistic

_ Y
C: = fn—p P

LS *
(8) D 1-— hi I l ri l
Examples of the use of this quantity, which Belsley et al. call DFFITS;, are given
by Cook and Weisberg.

These are some of the basic diagnostic quantities which are becoming available
in computer packages. Use of them can lead to detection of the first of the four
kinds of departure with which I began this article. For the detection of systematic
departures another tool is needed. Suppose that the model with carriers X has
been fitted and it is desired to determine whether a new carrier w should be
added to the model. The augmented model is

9) E(Y) = X8 + wy.

Although a plot of residuals against w may indicate the need to include the new
carrier, this plot will not, in general, have slope v. Plots with this desirable
property can be derived from least squares estimation in the partitioned model
(9) which yields

wil - XX"X)"' X"y  w'I-H)y wAy

whl - XX™X)'XTlw  wT™l-Hw wlAw’

a result familiar from the analysis of covariance. Since A is idempotent, v is the

(10) ¥ =
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coefficient of regression of the residuals r on the residual variable
(11) w = Aw.

A plot of r against w is called an added variable plot. It provides a means of
assessing the effect of individual observations on the estimated coefficient +.

With these basic ideas and definitions established, it is time to begin the
review of the two books. One important basic difference is that the work described
in Belsley et al. arose in economics, whereas Cook and Weisberg take their
examples from the natural and engineering sciences. The ethos of the latter book
will therefore be familiar to readers of Biometrika or of Technometrics. Perhaps
because of this difference in applications, Belsley et al. stay much closer to least
squares than do Cook and Weisberg.

Both books open with a brief first chapter. Chapter 2 of Belsley et al. lists the
diagnostic tools described above, together with some others that are closely
related. To my mind, a defect of this section is that the writing does not
distinguish sufficiently between those tools that are important and those that
are not. The second section of the chapter applies the methods to an analysis of
data on personal savings in 50 countries. The results presented in the book do
not entirely avoid the sensation of being the uncritical reproduction of tables
produced by computer. The ability to produce an indigestible amount of numerical
information by the application of even a few single deletion diagnostics to a
handful of models is the main hazard of diagnostic regression. The solution is
the use of graphical methods to highlight informative results. For their example
Belsley et al. give one normal plot of residuals and five added variable plots.
Because these are calculated to show the effect of dropping variables from the
model, the calculations, but not the plots, are different. To stress the difference,
the name partial regression leverage plots is used.

The basic material on diagnostic quantities is spread over two chapters in
Cook and Weisberg. Chapter 2, “Diagnostic Methods using Residuals”, describes
the residuals mentioned above as well as BLUS and recursive residuals. Examples
are given of the use of plots in the analysis of five data sets. The plots include
normal plots, index plots and added variable plots. Chapter 3, “Assessment of
Influence”, begins with a general theoretical discussion of influence, from which
Cook’s distance measure emerges as one of several related possibilities. Further
examples are analysed and plots given, including half normal plots of the modified
Cook statistic (8) with a simulation envelope as an aid to interpretation.

One kind of departure not mentioned since the beginning of this review is the
third in the initial list. That is, a transformation of the response may be needed
to reconcile the data and a simple linear model. Experience suggests that lack of
a transformation is a frequent cause of apparent outliers. The subject is fully
covered by Cook and Weisberg, perhaps rather surprisingly in their second
chapter on methods using residuals. Belsley et al. accord the topic the penultimate
half page of their book.

As the start for a diagnostic approach to transformations, consider the stand-
ardized transformation z(\) introduced by Box and Cox (1964), which is such
that the log likelihood maximized over all parameters except \ is proportional to
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the residual sum of squares of z(\). The approximate model is that, for some A
and to a sufficient degree of approximation,

z(\) =XB + e

This model can be expanded about a hypothesized value A, to yield the linearized
model

(12) 2(ho) = XB — (X — No)w(ho) + ¢,

where the derivative w(X\o) = 92(N)/ON| X = \o is what Box (1980) calls a
constructed variable. Often in diagnostic work A\, = 1, corresponding to the
hypothesis of no transformation.

Comparison of (12) with (9) shows that testing the significance of regression
on the constructed variable w()\o) is locally equivalent to testing the hypothesis
X = Ao. This ¢ test is an easily calculated approximation to the score test based
on the slope of the partially maximized log likelihood.

One diagnostic tool which can be used to detect the effect of individual
observations on the evidence for a transformation is an added variable plot for
the constructed variable. In their Section 2.4, Cook and Weisberg give plots of
partially maximized log likelihoods and added variable plots for the parametric
family of power transformations. Other constructed variables include those
formed by series expansion of the constructed variable for the power transfor-
mation and by substitution of predicted values for observations, which yields an
exact test. The combination of these two procedures provides one derivation of
Tukey’s one degree of freedom for nonadditivity. A measure of the up-to-date
nature of the book is that some of this material is taken from Atkinson (1982)
which was not yet printed when the book was delivered to the publisher.

The material so far reviewed in this article is fast becoming standard. Less
standard material is covered in the 107-page third chapter of Belsley et al.,
“Detecting and Assessing Collinearity”. The problem of collinearity is not acute
in the data from the natural and engineering sciences with which I have been
concerned. But it does arise in economic modelling where there is an understand-
able reluctance to exclude from models variables which economic theory suggests
are important.

The fourth and last major chapter of Belsley et al., “Applications and Reme-
dies”, describes cures for collinearity which include “Bayesian-type Techniques”
divided into “Pure Bayes”, “Mixed Estimation” and “Ridge Regression”. The
fruitful relationships between these three are not explored. The chapter includes
analyses of several economic series using both regression diagnostics and the
cures for collinearity.

Less standard material of a very different type is also to be found in Chapter
4 of Cook and Weisberg, “Alternative Approaches to Influence”. These ap-
proaches include the effect of deletion on the volume of confidence regions and
on the volume of ellipsoids generated in the combined space of the carriers and
of the response. The third approach is via predictive influence. A comparison of
these and more conventional measures of influence shows that all are functions
of the basic building blocks r/ and h;.
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My personal opinion is that this material is unlikely to lead to interesting
future developments. The same is not true of the material in Cook and Weisberg’s
fifth chapter, “Assessment of Influence in Other Problems”. The first section
applies diagnostic procedures to the maximum likelihood residuals of Cox and
Snell (1968). The most important new developments are likely to come from
work of the kind contained in Sections 5.2-5.4. The first of these, “A General
Approach to Influence”, widens the scope to maximum likelihood estimation of
the vector parameter 0 Influence curves can be derived from the distance
6 — 6y, which will in general require the possibly iterative calculation of n + 1
sets of maximum likelihood estimates. Approximations to this distance can be
found from the quadratic approximation to the log likelihood at 6, which yields
the “one-step” estimates 0};,. Assessment of influence is then based on the
likelihood distance

(18) LD; = 2{L(f) — L(d)}

where L(6) is the log likelihood at 6, or on the one-step approximation in which
6%, replaces 6 in (13). One special case of this theory is “Nonlinear Least
Squares”, Section 5.3, when the one-step estimates of the parameters are found
from the model linearised at §. Using this linearised model, residuals and influence
measures are constructed as for the linear model which has been the main subject
of this review. If these approximations are not sufficiently accurate, the nonlinear
model can be used combined with the one step parameter estimates.

The choice of one-step or fully iterated estimates arises also in Section 5.4 of
Cook and Weisberg “Logistic Regression and Generalized Linear Models”, which
is based on Pregibon’s trailblazing paper published in this journal in 1981. In
this work linear regression diagnostics are elegantly expanded to cover the range
of generalized linear models through the use of diagnostics obtained by down-
weighting observations. Application of these results to the iterative weighted
least squares fitting method used in GLIM provides easily calculated diagnostics
for generalized linear models. Cook and Weisberg illustrate these methods with
an extensive analysis of a set of data on leukemia.

The last major section of Cook and Weisberg covers robust regression. Both
here and in Belsley et al., where the technique is also used, the method employed
can be inelegantly described as the Huberization of the residuals. Thus, very
surprisingly, both sets of authors fail to allow for the effect of leverage on robust
estimation, the difficulties with which are considered by Huber (1981, Section
7.9).

The fifth chapter of Belsley et al:, “Research Issues and Directions for
Extensions”, is little more than a 15-page list of possibilities for further work.
Amongst these is the extension of diagnostic methods to sets of simultaneous
equations and also to nonlinear least squares. The two year gap between the two
books is shown by the absence from the chapter of numerical examples.

With these comments my comparative review of the two books is complete.
What of future developmens in this area? It seems clear that linear regression
diagnostics will become increasingly available in regression packages. It is to be
hoped that increasing use of the methods will lead to improved statistical analyses
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rather than to an explosion of indigestible tables and graphs. One readily available
source of such overkill is the use of multiple deletion diagnostics. The description
in this review, although not in the two books, has been in terms of deletion
measures for a single observation. Are there real, rather than didactic, examples
in which important features of the data would be missed in the absence of
multiple deletion diagnostics? If so how do we deal with the resultant explosion
of calculated quantities?

A broader problem is to improve our understanding of diagnostics for the
generalized linear model. For the practitioner there will be a series of decisions
to be made. What diagnostic measures should be calculated? What definition of
residuals will yield greatest insight? Should fully iterated estimates be used, or
are one-step approximations adequate? Given enough time, these questions can
be resolved, example by example, perhaps through the use of simulation. But the
diagnostic measures lose much of their appeal if they are not both easy to
calculate and easy to interpret. A valuable contribution from theoretical statis-
ticians would be to provide signposts with would make it possible, in a particular
case, to put bounds on the accuracy of the approximations. Perhaps the ideas of
differential geometry might be helpful.

A class of problems of a different order of magnitude arises when consideration
is given to the next logical stage in the development of these methods. At the
beginning of this review there was the image of a nonexpert statistician being
guided in the analysis of data by diagnostic plots for features of the data which
might have been overlooked. The next stage is an expert or intelligent knowledge
based system in which decisions about the structure and direction of the analysis
are made with minimal human intervention. Whether such a system is desirable
or possible, and at least one start has already been made on linear regression,
the attempt at implementation will require a thorough understanding of diagnos-
tic techniques.

At a more conventional level of statistical research, the role of robust regression
needs further definition. Huber (1983, page 66) repeats his assertion mentioned
above that robust regression is not “concerned with gross errors in the independ-
ent variables”. This comment comes in a paper which has as its starting point
the bounded influence regression of Krasker and Welsch (1982), a preliminary
version of which is mentioned on page 274 of Belsley et al. In a dissenting
comment on Huber’s paper, Krasker and Welsch (1983) state that concern for
gross errors in the explanatory variables is one of the most important reasons
for interest in bounded influence regression. Clearly the dispute requires resolu-
tion. One possible role of such a regression analysis would be diagnostic, so that
differences between robust and least squares fitting indicate that the data require
more thoughtful analysis. But such a use highlights the difference between
identification and accomodation mentioned at the beginning of this article. While
the careful analysis encouraged by diagnostic methods may be appropriate for a
few dozen valuable observations, such care is hardly possible in the semi-
automatic analysis of tens of thousands of data points. If robust methods are
more appropriate in the latter case, what are the differences in objective and are
there situations where both techniques are useful?
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These are not anything like all the ideas stimulated by the two books. Many
interesting questions remain about the power transformation and related proce-
dures such as the score tests and added varible plots (Bickel and Doksum, 1981;
Box and Cox, 1982; Carroll, 1982; Cook, 1982). But the time has come to sum
up. It should be clear from what I have written that I prefer Cook and Weisberg’s
book as clearly written, up-to-date, broad in coverage and illuminated by a wide
variety of examples. Statisticians whose interest is in aplications in economics
may prefer the book of Belsley et al., however.

The level of the two books is similar. The source of Belsley et al. lies in a
series of technical reports, co-authored by Welsch, which appeared in the years
immediately before publication of the book. The level and style of Cook and
Weisberg is much like that of their paper, Cook and Weisberg (1980), and so
should present no problems to academic statisticians. However, one of the
excitements of the current development of regression diagnostics is that the tools
provided by research are being almost immediately made available in computer
packages. For scientists and engineers interested in the methods, the level of
Cook and Weisberg may be too high. An introduction to the methods may be
found in Chapters 5 and 6 of Weisberg (1980). There remains an appreciable
distance between this introduction and the more advanced treatment given by
Cook and Weisberg. I hope that my forthcoming book (Atkinson, 1985) will help
to fill this gap.
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