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CONSISTENCY FOR CROSS-VALIDATED NEAREST NEIGHBOR
ESTIMATES IN NONPARAMETRIC REGRESSION

By KEr-CHAU L1

Purdue University

Under suitable conditions, we show that the cross-validated nearest
neighbor estimates for the unknown smooth regression function in R? is
asymptotically consistent.

1. Introduction. Let p be a natual number and 2 be the closure of an
open set in RP. Consider the case that 2 is compact. Suppose n independent
observations ¥,, ys, - -+, ¥, are made at levels x;, Xy, ---, X, € Z. Write y,, =
(y1, -+, ¥n)’. Without loss of generality, assume that x; # x; for i # j. Consider
the model

(1.1) yi=f(xi)+€,’, 1=1,2, -+, n,

where f is continuous on 2 and ¢’s are independent random variables with
means 0 and variances ¢2, i = 1, ---, n. To estimate the unknown function f,
many classes of estimators have been proposed, including the kernel method
(Watson, 1964, Nadaraya, 1964, etc.), the nearest neighbor method (Fix and
Hodges, 1951; Cover and Hart, 1967; Cover, 1968; Stone, 1977, etc.), and the
spline method (particularly for p = 1, Reinsch, 1967, Wahba and Wold, 1975;
Agarwal and Studden, 1980, etc.) Basically, these estimates are linear in the y,’s.
Also, each estimate is associated with an index h (e.g., the bandwidth for the
kernel estimate; the number of neighbors for the nearest neighbor estimate; the
smoothing parameter for the smoothing spline). The choice of h turns out to be
crucial in effectively estimating f. Most studies on the asymptotic aspect have
been addressed to the case where h is deterministically chosen. However, for
practical use, it is often preferable to have a data-driven h. One such practice is
to select h by the cross-validation technique, whose consistency property will be
investigated here for the nearest neighbor method.

Given x;, ---, X, let x,;, denote the jth nearest neighbor of x; in the sense
that || x; — X;(j, || is the jth smallest number among the n values | x; — x;/||, i’ =
1, 2, .-+, n (ties can be broken in any systematic manner). Let H, = {1, 2, - . -,
n}. For any h € H,, the h nearest neighbor estimate of f(x;) is defined by
Sy Wan(J)yi) with W, ,.(-) being a non-negative weight function satisfying
certain conditions to be specified whenever needed. For our development it is
easier to represent the estimate of f, = (f(x}), f(X2), ---, f(X,))’ by a matrix
form of M,(h)y, where M,(h) denotes a suitable n X n matrix with rows being
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certain permutations of the vector (W, (1), W,.(2), ---, W,x(h), O, ---, 0).
Clearly M, (h)y. can also be used to predict the values of y observations to be
made in the future at the same levels x;, ---, x,. To assess its prediction
performance, a naive estimate seems to be || y, — M, (h)y,| % This quantity tends
to underestimate the true error since the same data have been used both to
construct and to evaluate M,(h)y,. Cross-validation circumvents this difficulty
by removing each y; from the data set used in its own prediction.

Precisely, to predict a future y observation at level x;, 1 < i < n, we use only
the data y,, ¥z, -+, ¥i-1, Yis1, -, ¥n; namely 3%, W, ,(j)yij+n. To put it in
matrix form, we write M,(h)y,. Thus M,(h) is an n X n matrix with zero
diagonals and the (i, i(j))th element, j # 1, being W, ,(j — 1). Now the cross-
validated assessment of prediction error for M, (h)y., is |y, — M,.(h)y.||*> and
the cross-validated choice of h € H,,, denoted by h}, is the minimizer of

(1.2) infren, (1/n) | (I, — Ma(h)yall?

where I, denotes the n X n identity matrix.

Although the motivation behind the cross-validation technique is easily un-
derstood (see, Allen, 1974; Stone, 1974; and Geisser, 1975), available theorems
with regards to its statistical properties seem to be sparse. In classification
problems, some interesting properties relating cross-validation with bootstrap-
ping were obtained by Efron (1983). In density estimation, Chow, Geman and
Wu (1983) and Hall (1982) established some asymptotic results for the cross-
validated kernel estimates. In our nonparametric regression problem with kernel
estimates, Wong (1983) proved the consistency in the case that p = 1 with the
x,’s being equi-spaced in a bounded interval. For the spline smoothing, generalized
cross-validation of Craven and Wahba (1979) was shown to possess a certain
asymptotic efficiency property by Speckman (1982).

In this paper, we shall show that as n — oo,

(1.3) (1/n) | £, = M,(h¥)y.|* — 0,

in probability for the nearest neighbor estimates (Section 2). Somewhat in line
with Wong (1983), our proofs will consist in establishing the following four
statements (hereafter, unless otherwise specified, any convergence involving
random variables will be interpreted as the convergence in probability):

(8.1) supren, (1/n) |{(I — M,(h))f,, &.)| — 0,
where ¢, = (e1, €2, - -+, ¢,)" and (-, -) dc;notes the inner product in R".
(8.2) supren, (1/n) |(M,(h) e, ,)| — O.
(S.3) There exists a sequence {h,} such that
A/n) £, — M, (hy)y, [ — 0.
(S.4) (1/n) | Mo(B¥)yn — Ma(h3)yall? — 0.
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To see that the above four statements imply (1.3), observe that by (1.1),
(1/m) I, = M, (h))y.|*
= (1/n) | £, — Mu(h)y.|? + (2/n) (I, = M,(h))f., &)
= 2/n)(M,(h)en, £,) + (1/n)]|enll”.
Thus by (S.1) — (S.3) and (1.2) we obtain
(1.4) (1/n) | £, — Ma(h})y.|* — 0

which together with (S.4) 1mphes (1.3) as desired.
The following two regularity conditions on the x sequence will be imposed:

(C.1) There exists a constant A\, such that for any r > 0, there exists an integer
N, such that for any n = N, and any closed ball B(x, r) with center
X € & and radius r,

#ix:|x; €EB(X,r),1 <i=<n}=\nre.
(C.2) There exists a constant A, such that
#ix:|x; € 8,1 <i=<n}=<\n\S),
for any n and Borel set S with Lebesque measure A(S).

(C.1) and (C.2) imply that x sequence gets dense in £ in a uniform fashion.
When x/’s are the realizations of i.i.d. random vectors with a common density
bounded away from both 0 and «© on £, (C.1) and (C.2) are satisfied with
probability one. For such random x cases, note that the consistency property
(1.3) is conditioned on the x values.

We shall also assume the following moment condition on the random errors:

(C.3) The fourth moments of ¢’s are no greater than u*, with a finite constant
u >0, and

(1.5) lim inf; ,.o? > ¢ > 0.
(1.5) is to avoid the trivial case that o7 are eventually 0, while the finite fourth
moment assumption is made to obtain a simple proof of (S.2).
2. Consistency results. Assume the following conditions on the weight
functions:
(C.4) Xy Wor(i) =1, and W, (i) =0 for i > h.
(C.5) W, (i) is nonincreasing in i.
(C.6) There exists a sequence {h,} such that
(C.6.1) hy,/n—0,
and
(C6.2) W, (1) -0

asn-— oo,
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We now show that under (C.1)-(C.6), (S.1)-(S.3) hold.

PROOF OF (S.1). Given 6 > 0, we shall show P {supsen, (1/n)| (I, —
M, (h)f,, &,) | > 6} — 0.

First, since f is continuous on & (this implies the uniform continuity), there
exists #> 0 such that forany x and x’ € & with |[x —x' || =4 | f(x) — f(x")]
< (1/6) - (8/u). Let k, be the largest integer in H, such that supi=i<n || Xi— Xiw,)
</ By (C.1), we have

(2.1) k., = Mn#P, forany n > Ng

Then, we have
1 1 6 1,

(2.2) sUP1<h<i,—1 = |{(In = Mu(B))fs, &) | = % - — - = Xl | &l
n 6 u n

To see this, observe that for 1 < h < k, — 1 the absolute value of each coordinate
of (I, — M,(h))f, is no greater than 6/6u because of the definition of M,(h),
(C.4) and the definition of k,. Clearly, (2.2) implies that

P{sup;<h<k,—1 (1/n) |{(In — Mp(h))f,, &,)|> 8} — 0.
Thus it remains to show that
(2.3) P{supy <n<n (1/n) | (I, — Mu(h))f,, e2) | > 8} — 0.

Partition the space 2 into 27, 2, -+ -, Zn for some fixed number m such
that the diameter of each £ is no greater than « a number to be set suitably
later on (see (2.5) below). Define Hi, = {i| x; € Zj} forj =1, - - -, m. Denote the
ith coordinate of M, (h)f, by [M.(h)f.];. We claim that

(2.4) d can be .chosen so that for any n = N,, any h with k, < h < n, and any
i, 1’ € HY,

3

4

Assuming the validity of (2.4) and letting £.(j) denote [M,(h)f,]; with i being
the smallest integer in H/,, we then have

| (M. (h)f.]: — [Mn(h)f,]:| <

1
SUPg,<h=n ; I ((In - Mn(h))fm en) |

IA

IA
Sk SI= S|

1
| (£n, en) | + SUPs,<nzn | (M. (R)f,, ) |
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where | |- denotes the supremum of | f(x) | over x € Z. In the last expression,
it is clear that the first and the second terms tend to 0 in probability, while the
third term is asymptotically no greater than (3/4) 6. Thus (2.3) is established.

Therefore to complete the proof of (S.1), it remains to verify (2.4). The
following lemma will be useful. Write Z[i], = k when i(k) = ¢/, i.e., when x, is
the kth nearest neighbor of x;.

LEMMA 2.1. There exists a constant = such that |Z[i], — Z[jl.|l < 2 - n
- x;— x| forany1=<1i,j, 7 <n.

The proof of this lemma will be given in the Appendix. Now observe that for
anyk, <h<nandi i’ € Hj,

[ [Mn (W), ]: — [Ma(R)f, ]|
= | Tkt Wan(B)f (Riksn)) — That Won(R)f (Xirrs) |
< | $ktt W n(B)(F (Riker) — F(Xirgen)) | + Soea, | Wan(2liln)
= Warn(Z' 1) | - 1f x| + Zren, Wan(Z[i]n) | (%)

+ Zrec, WanlZli' 1) | f(x) ],

where A, = {i(R): k. <k=n}N{i"(k): k.<k=n},B,={i(k): k,<k<n}-—
A,,and C, = {i’(k): k, < k < n} — A,. In the last expression the first term will
be no greater than (%) - (6/u) supposing than ~ < # The second term is no
greater than

[flo - Xrea, | Wan(Zliln) — Won(Z[i']0) |
= | fle © Zread(Wan(Zliln) — Won(Zliln + aan))
+ (Won(Z[i']n) — Won(Z[i]n + aan))}
(by Lemma 2.1 and (C.5))
S 2(fle + Zkek, (Won(k) — Won(k + 2/ n))
=2|fle - TR Won(k)

< 2(fle - Tt Wan(k)  (by (2.1))

ad N

=2|fl= - NFP % adn (by (C.5))
ad
< 2|fwl - NP

(Note that in the above expressions, the term “z~n” should be interpreted as the
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largest integer < 2~ n, whenever necessary). Furthermore, by Lemma 2.1,
E/EB,, Wn,h(/[i]n) [f(x)] < |fle Ei';k,,—m/n W.n(R)

ad
— [} L 2- 3 .
= |fl N (by (2.1) and (C.5))
We obtain the same bound for ¥ ,ec, W n(#[i’]s)|f(x.)| in a similar way.
Therefore, we have

16 ad
|IM.(h)f.]; — [M,(h)f, ]| < 3 ; +4|fl» NP
Thus (2.4) holds for
R W N
2.5) Z=min 4, — - .
( 1“16 " “ulfl.]

The proof of (S.1) is now complete. We turn to:
Proor oF (S.2). First, observe that
| (1/n)(en, Ma(R)en) | = (1/n) | i1 &i(TP, Wan(Deion) |
< (1/n) 2 Won(2 = 1) | Bk siein |-
Therefore, by (C.4) we have
1
P{Suplshsn ; I (Cny Mn(h)8n>| > 6}

< P{sups<, <, | Y11 &6y | > nd}
= ¥, P{(Zk eiei))* > ntst}

= Z?:Z n464

4n’ut ) )
=y, oy ;, (by some combinatorial arguments)

44

PrOOF OF (S.3). For the sequence {h,} of (C.6), we have
SUpPi<i=n || Xi — Xiny| = 0, as n — oo,
because of (C.1) and (C.6.1). Now by the continuity of f, we see that
1/m) | (I, = Mu(h.)f,]* — 0.
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On the other hand, (C.4), (C.5) and (C.6.2) imply that
E (1/n) ” Mn(hn)en”2 — 0.

Thus E (1/n) || £, — M,.(h,)y.|? = 0, which implies (S.3). 0O

To prove (S.4), we shall further assume the following condition:
(C.7) There exists fixed numbers A3, A4 > 0 such that
Won(1) < Ash™/2**)_ for any n and any h € H,.

This condition is satisfied by most commonly-used weight functions including
(see Stone, 1977):

(i) (uniform weight function) W, ,(i) = (1/h) for 1 =i < h.
(ii) (triangular weight function) W, ,(i) =2(h— i+ 1)/h(h+ 1) for1 <i<h.
(iii) (quadratic weight function) W, ,(i) = 6(h* — (i — 1)*)/h(h + 1)(4 h — 1) for
l<i<h.

In general, given a nonincreasing positive continuous function W(-) on [0, 1],
we may construct weight functions satisfying (C.4)—(C.7) by letting W, »(i) be
proportional to W (i/h).

Now, we prove (S.4) by establishing

(26) SUp1<h<n (1/n) | Mo(h)f, — M,(h)E, |2 — O,
and

ProOF OF (2.6). It suffices to show that given any 6 > 0, we have

SUP1<h=nSUP1<i<n| Dic1 Won(O)f (Xi) — 22t Won(O)f Riosr) | < 6

for large n.
First define b, k, as in the proof of (S.l) with u = 2/3. Then,

SUP1<h<k,~18UP1=izn| im1 Wan(Z)(f(Xi) — f(Xi+)) |
< SUPi<izni=<k,—1 | F(Xi)) — [ (Xig+1) |

= SuplsiSn,IS/skn—llf(xi(/)) —fx)| + [ f(x) — fXig+1) |

=

+

o
o
[\
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On the other hand,
SUPg, <h=nSUP1=i=n | ZLI Won(O)f (X)) — 25'=1 wn(E)f (Xia)) |
< SUD k <henSUP1=izn | D520 Whn(O)(f (i) — f(Xigan) |

+ SUDP1<i<nSUPL <h=n W,n(kn) | f(xi(k,,)) |
+ X0, (Won(2) = Won(2 + 1) f(Xigan) |
=< (8/2) + supp,=h=n Wy n(k:) | fa |
= (6/2) + k3 | f=1,
where the last inequality is due to (C.4) and (C.5). Now, by (2.1), k, — o and the
proof is complete. 0
PRrOOF OF (2.7). Observe that
(l/n) " Mn(h:)en - Mn(h:)en ”2
2 Il n 21 % n 1 2
< 2(Woni(1)) \n 2ol + Y {2y Wow(2) — Won(2 — 1))}
2 Il n 21_ g n hp+1 2
< 2(W,n:(1)) ln ) Cij + . Y AX Wons(2) = Wons(2— 1))%
AT ek
1 2 . '
< 2(W,;(1))? {; X e?}' + (Wn,h;(l))z‘{; =1 Zﬁileﬁ/)},
where the last inequality is due to (C.5). In view of (C.7), the proof of (2.7) will
be complete supposing that the following two statements hold:
(2.8) h% — oo, in probability.
(2.9) There exists a constant A5 such that

hy+1 9 2
Y X0, el = Xs hi Xy €.

PROOF OF (2.8). It suffices to show that for any natural number N,
P{h% = N} — 0. Given any §, 8’ > 0, (1.4) implies that there exists an N’ such
that

P{(1/n) | £f,— M,(h¥)y.|*>> 6} <6’ forany n = N’.
Thus for n = N’,
PthY = N} = P{(1/n)| £, — M.(N)y,|l*> < 8} + §".

Take 6 < ¢°/2N*. We shall show that as n tends to o, the first term on the right
side of the above inequality tends to 0.
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First, due to the continuity of f, it is clear that (1/n) | f, — M,,(N)f,||> = 0 as
n — oo, Therefore, it suffices to show that

2

1
(2.10) P{; | Ma(N)eo|? < ==

l
< 2N2[ — 0.

Now,
E@1/n) | Ma(N)eall? = E(1/n) 31 (T Wan()eian}®
= (1/n) T TE Wi N2 okosn
= (1/n) Win(1) Tk ol

= NL“’n Yy ofz by (C5).
By (1.5) and Lemma 2.2 below (taking h = 1), we see that Y2, 0%, = no? for n
sufficiently large. Thus we have lim inf, ..E(1/n) || M,(N)e,||? = ¢2/N> On the
other hand, with the fourth moment condition of (C.3), one can easily verify that
{(1/n) | M(N)e, || — E(1/n) | M,,(N)e,||?} — 0 in probability. Hence (2.11) holds.
The proof of (2.8) is now complete. 0

PRrOOF OF (2.9). Recall the notation /[i], from the paragraph preceding
Lemma 2.1. Clearly, (2.9) follows from the following lemma.

LEMMA 2.2 There exists a universal constant \s (depending only on the
dimension p) such that

#{i: 2=</[il.=h+ 1} < \sh, forany 4 h,n.

The proof of this lemma will be given in the Appendix. We may take, for
instance, A; = 2 for p = 1 and A5 = 6 for p = 2.
We summarize our results by the following.

THEOREM. Under (C.1)-(C.5) and (C.7), (1.3) holds in probability.
Here note that (C.6) is implied by (C.7).

REMARK 1. Suppose that instead of M,(h}) y,., we use M, (h})y, as our
estimate, then the consistency can be proved under (C.1)-(C.6) (see (1.4)). Now,
is the estimate M, (h¥)y, better than M, (h})y.? Intuitively speaking, the answer
seems to be yes because it appears that the estimate M, (h¥)y, does not use the
full information. For instance, in estimating f(x;), the observation y; seems to
have been ignored. However, M,,(h})y, does use y, in estimating f(x;) since h¥*
depends partly on y;. Moreover, if M,(h¥)y, is very much different from
M., (h})y., then the cross-validation method may be questionable for such cases.
To warrant the success of cross-validation, it is important that our prescription
about the class of estimates to be cross-validated should be appropriate (Stone,
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1974). To assess the appropriateness of a prescription, one should at least check
whether or not M,(h})y, and M, (h})y, are close to each other. The condition
(C.7) (or any other similar condition) on the prescription about the weight
functions serves the purpose of diminishing the chance of the possible drastic
changes from M, (h¥)y, to M,(h})y,.

REMARK 2. It is clear that similar arguments apply to the case of cross-
validation by the leaving-k-out method with k being a fixed integer.

APPENDIX

PrROOF OF LEMMA 2.1. Recall the notation of A(-) and B(x, r) from (C.2)
and (C.1). Let o = sup{|| v —u|: v, u € 27}. Suppose #[j], = #[i].. Then by
(C.2),

2[j1n = Zliln = Men{NB(x;, | x,— x| + [ x: — x;[1)) = MB(x;, | x,— x:]))}
= MonCl(llx — x| + 1 x — x;D)7 = [ x,— x| 7]
(where C = X(B(0, 1)))
< MnCl(a + | xi — %) — af)
< 2PaP7I\,Cn | x; — x/].

Therefore we may take . = 2°a”~*\,C to complete the proof. 0

PROOF OF LEMMA 2.2. Denote S(x,r) = {v:vE R’ and | v — x || = r} and
O(x,r) ={v:ve R" and | v — x|| <r} for any x € R” and r > 0. Since S(0, 1)
is compact, we can find a finite number (= X;) of vectors v, - -, v, € S(0, 1)
such that Uk, O(vy, %) D S(0, 1). Take Ci(x) = {rv + x: r=0 and v €
O(vi, ) N S(0, 1)} for 1 < k < Xs. Let X,(j;1,») denote the jth nearest neighbor
of x among {x;, - -+, X,} N C,(x,). It suffices to show that

{i:2=</[ll,=h+1CU} {/Aj; k,n):2<j<h+ 1]}
To see this, observe that for any 1 < i < n such that x; € C,(x,) for some k and
1€ {/(j;k,n):2=<j=<h+ 1}, we have
Ix; — x| = sup{ll x; — x||:x € Ce(x,) N B(x,, | X, — X otnsstm )}
> maxs<j<n+1ll Xi — Xagem |,

where the last inequality holds because for j, 2 <j < h + 1, x,(j; k, n) belongs
to the set Cr(x,) N B(X,, | X, — X, (h+1,,n) ||). This implies that Z[i], > h + 1.
Thus the proof is complete. O
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