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SOBOLEV TESTS FOR SYMMETRY OF DIRECTIONAL DATA

By P. E. Jupp AND B. D. SPURR
University of St. Andrews

For testing a probability distribution on a compact Riemannian manifold
for symmetry under the action of a given group of isometries, two classes of
invariant tests are proposed and some properties noted. These tests are based
on Sobolev norms and generalize Giné’s Sobolev tests of uniformity. For
general compact manifolds randomization tests analogous to Wellner’s tests
for the two-sample case are suggested. For the circle, distribution-free tests
of symmetry based on uniform scores are provided.

1. Introduction. A natural hypothesis in directional statistics is that a given distri-
bution is symmetrical, for example that a circular distribution has antipodal symmetry.
In general, for a probability distribution on a compact Riemannian manifold, this hypoth-
esis is that the distribution is invariant under a specified group of isometries. The purpose
of this paper is to introduce two general classes of invariant tests for such symmetry.
Although tests for symmetry about an axis of a circular distribution have been considered
by Schach (1969a) and by Mardia (1972, page 195), our tests have little connection with
these. The tests introduced here are based on,the machinery introduced by Giné (1975) to
test uniformity and used by Wellner (1979) for the two-sample case.

In Section 2 we review the material on Riemannian manifolds and Sobolev norms
which we shall need. Proposition 2.1 provides the basis for decomposing each of Giné’s
tests of uniformity into the sum of a test of symmetry and a test of uniformity on a
quotient manifold. In Section 3 we introduce randomization tests of symmetry and consider
their consistency properties and asymptotic distributions. Finally, Section 4 provides a
class of distribution-free tests of symmetry on the circle. The asymptotic null distributions
and a consistency result are given and some examples are considered.

2. Preliminaries. We summarize in this section those properties of Riemannian
manifolds, isometry groups, and Sobolev norms which we shall need. Details can be found
in Giné (1975) and the references given there.

Let X be a compact Riemannian manifold. Denote by C(X) the set of continuous
functions on X, by .#(X) the set of bounded Borel measures on X, and by £ (X) the
Borel probability measures on X. The Riemannian metric determines the uniform measure
win 2 (X). Let G be a subgroup of the isometry group of X. Then G acts on C(X) and on
M (X) as follows. If g in G sends x to g.x then, for f € C(X), g sends f to g*f = fog and for
v € #(X), g sends v to g,» = vog™". The hypothesis of symmetry which we wish to test
is that » is invariant under this action, i.e. that g,» = v for all g € G. If » is invariant under
G, then it is also invariant under the closure of G. Therefore we shall assume that G is
closed in the isometry group. It follows that G is a compact Lie group. (See Theorem 3.4
on page 239 of Kobayashi and Nomizu, 1963.) Thus we can use normalized Haar measure
X on G to average the actions on C(X) and .# (X). For f € C(X) we define f € C(X) by

f(x)= J;f(g-x) dn(g).
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Similarly, for v € # (X) we define 7 € _# (X) by

Lfdi=£fdu.

Now C(X) and £ (X) have the important direct-sum decompositions
CX)=C(X)+®C(X)- and Z2(X) C #(X). ® #(X)-
where PX)e=Pr€ PX):v=v}, A(X)-={v€E H(X):v =0}

and similarly for C(X).. In particular, the hypothesis of symmetry can be rewritten as
Hy:v € #(X),.

Denote by N(G) the normaliser of G in the isometry group of X, i.e. the set of isometries
v satisfying ¥y 'Gy = G. Then N(G) sends each of #(X)., C(X). into itself. In particular
the null hypothesis is invariant under N(G), so it is reasonable to seek tests which are
also invariant under N(G). Our tests have this property.

The Laplacian A of X acts on L*(X, u), the space of square-integrable functions on X.
If E, denotes the kth eigenspace of A with eigenvalue ¢, for k=0, 1, - - -, then E, C C(X)
and L*(X, u) = @3- E.. Let the functions {f;} be an orthonormal basis of L*(X, u)
consisting of eigenfunctions of A. Then the function t.: X — E, defined by t.(x) =
Y rek, fi(x)f: is well-defined (as it does not depend on the basis {f:}).

In defining the semi-norms introduced by Giné (1975), the following definition will be
useful.

DEFINITION. A sequence {a;}%-; of real numbers satisfies Condition C if

supy | axai’?| < © for some s> (dimX)/2.

If A = {ou}%-, satisfies condition C, the corresponding Sobolev semi-norm |- || = |- || 4
on _# (X) is defined by
2
1) 1ol = S5 of Sen ( f i dy) .

Thus || » ||? is a weighted sum of squares of Fourier coefficients of v. A neat expression for
[ ||? can be obtained from the function t: X — L*(X, u) defined by t(x) = %=1 axtr(x).
If {«)} %= satisfies condition C then

(2.2) Iv|?= ” ftdv

where | - ||, is the L? norm on L?*(X, ). There are other useful expressions for | »|?
generalizing equations (2.7) and (4.7) of Giné’s (1975) paper.

If G is a group of isometries of X, then the decomposition C(X) = C(X). ® C(X)-
gives a decomposition of each E, into E,, ® E,_ and similarly of L%(X, u) into L*(X, u).
® L*(X, p)-. Let t, = tpr + t.— form the decomposition of t:3X — L*X, u) above and
define || - [+, |- |- by [ #[|2 = ||  t. dv||3. The following proposition is immediate.

2
2

PROPOSITION 2.1. For any sequence {ax}%-1 satisfying condition C and for all v €
M (X),

@ Il =10v12+ vz
(i) ly-vIZ=1»1% v€N(G).

Let ¢, denote the empirical distribution of a sample of size n. From Proposition 2.1 (i)
and some invariance arguments we obtain

(2.3) nlle.—pl®>=nlell2 +nlé — pli.
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The term n| ¢, — u||% is the test statistic of one of Giné’s (1975) Sobolev tests for
uniformity on the quotient space 5 /G; while we shall use n | ¢, || as a test for symmetry
under G. We thus have the fundamental partitioning of each Sobolev test of uniformity
into a test of symmetry and a test of uniformity on a quotient space.

3. Randomization tests of symmetry. Giné (1975) used the test statistics
n| e, — u||? to measure the distance between ¢,, the empirical distribution of a sample of
size n, and u, the uniform distribution. He thus obtained a class of invariant tests for
uniformity on compact Riemannian manifolds. These tests include Rayleigh’s (1919),
Watson’s (1961) U? and Ajne’s (1968) A,. Wellner (1979) considered the corresponding
two-sample problem and used the statistics nyns(n;, + ny)™' || el) — &2 ||? to measure the
distance between ¢ and ¢, the empirical distributions of samples of sizes n, and n, from
the two populations. Similarly, we test our hypothesis Hy: v = 5 by measuring the distance
between the sample analogues ¢, and ¢, of v and 5 by n || ¢, — ¢, [| 2. Note that if G is equal
to the isometry group of X, then our hypothesis is that of uniformity and our statistics
are Giné’s. For other subgroups G, however, our hypothesis is composite and the asymptotic
null distribution of n || &, — ¢, || depends on ». Under the null hypothesis, ¢, is a sufficient
statistic, so we follow Wellner’s randomization approach.

More precisely, let {a:}s-; be a sequence of real numbers satisfying condition C

and let || - | be the corresponding Sobolev semi-norm on _# (X). Then, given a sample
(%3, -+ -, x,) with empirical measure ¢,, define
(3-1) Tn=n"€n—5n"2=n"€n"2—'

The observed value of T, is compared with its null distribution conditional on &,, and the
null hypothesis of symmetry is rejected for large values of T,.

A difficulty with these tests as with all randomization tests is that of determining the
null distribution of T, conditional on ¢,. If G is finite, of order [ say, this can in principle
be done by enumeration but involves O(l") operations. Accordingly, we suggest following
Wellner (1979) in simulating the distribution by sampling from the distribution under H,
of (Xi, - -+, X,) conditional on ¢,, where Xj, - - -, X, are i.i.d. random variables on X. As
this distribution is the image of the uniform distribution on G", such simulation is straight-
forward.

By construction these randomization tests are similar tests. Also, these tests are
invariant under N (G) by Proposition 2.1 (ii).

A simple criterion for consistency is given in the following theorem. The proof is
analogous to the corresponding proofs in Giné (1975) and Wellner (1979) but uses the
central limit theorem for triangular arrays (Gnedenko and Kolmogorov, 1954, page 128)
rather than the usual or permutational versions. Details are given in Jupp and Spurr
(1982).

THEOREM 3.1. The sequence of tests based on n | ¢, ||% conditional on &, is consistent
against an alternative v if and only if || v |2 > 0. In particular, a sequence of tests is consistent
against all alternatives if and only if a, # 0 for all k with E,— # {0}.

The asymptotic distribution of T, under local and under fixed alternatives are given in
the next two theorems. Again, the results are analogous to those of Giné (1975) and
Wellner (1979). As in Giné (1975), Z®(f) denotes the Gaussian process indexed by f €
L?(X, v) with mean zero and covariance structure given by

Cov(Z"(f), Z*'(g)) = f(f-— J:fdn/)(g - fg dv) dv.

Also, —,~ and —, denote respectively convergence in the weak (star) topology of &?(X)
and convergence in distribution.
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THEOREM 3.2 (Local alternatives). Let {v,}%-1 be a sequence in P(X) satisfying
Un—> o+ v for some v € P (X), such that

lim,,_,n'? ffi d(v, —v) =d; for f, € E,. with Y5, af Yjer, df < oo

Then
T, —a Xim1 0} Yper (ZY(f) + dif?

THEOREM 3.3 (Fixed alternatives). For random samples from v € @ (X) with | v|2 >
0,

(T, = nllv||2) =4 # (0, Var,(u))

where u(x) = 2 Yi-; af Yres,. ( f f: du)ﬁ(x) ie u=2E,[t].

4. Uniform scores tests. A distinguishing feature of the circle, S?, among compact
Riemannian manifolds is that, once an origin and orientation have been chosen, each
probability distribution » on S determines a unique probability integral transform H,: S*
— S defined by H,(8) = 2« [%. dv where S* is considered as the circle of unit radius. In
the two-sample case, H, transforms the combined sample to uniform scores. By applying
tests of uniformity to the uniform scores of one sample, Wheeler and Watson (1964)
Mardia (1967) and Beran (1969) derived two-sample tests for the circle which are
distribution-free under the null hypothesis of a continuous common distribution. Closely-
related tests were considered by Schach (1969b). Similarly, we obtain invariant distribu-
tion-free tests for symmetry on the circle by using the symmetrized empirical distribution
to define uniform scores of the observed sample and by applying a Sobolev test of
uniformity to these. Thus, given the empirical distribution e,, the probability integral
transform of its symmetrization ¢, transforms e, into the uniform-scores distribution 7,
and our test statistic is

4.1) Tr=nln—al* =nlnl2.

Symmetry is rejected for large values of T}.
The isometry group of the circle is O(2), the orthogonal group of R? consisting of
rotations and reflections. The only closed subgroups G are:
(i) G = 0(2) or G = SO(2), the rotation group. In either case, N(G) = 0(2), G-
invariance is the same as uniformity, and our tests are those of Giné (1975).
(i) G = z,, a cyclic group of rotations, generated by § — 6 + 2x/l for some positive
integer . Then N(G) = O(2).
(iii) G is generated by a cyclic group of rotations, Z;, and by a reflection. Then N(G)
is generated by this reflection and by Z,.
We now give explicit versions of our tests in the case G = Z,;. The null hypothesis in
this case is that the distribution function F(8) of v satisfies F (8 + 2x1™') = F(0) + [ If
6y, - - -, 0, is a sample from v, let {¢,, - - -, ¢n:} be

{0, +j2rl™1<i<nl1l=sj=<l!l} with 0s¢;=-..- < ¢y <27

The distribution assigning mass (In)™ to each ¢, is &,. Choose an origin 0 and an
orientation for the circle and let F;, be the corresponding distribution function of &,. In
the absence of ties between the ¢,’s, the uniform scores 8;, 1 < i < n, are defined by 8; =

2w F; (0.), where 0, ---, 0(n) are the order-statistics of 8;, --- 8,. For computational
purposes it is useful to put T in the form used by Beran (1969)
(4.2) T% = (1/n) X1 Ties h-(Bi — B)

where h_(8) = 2 ¥ rsowmodr @} cos k6. Equivalence of the two forms follows from Proposition
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5.2 of Giné (1975). Note that, as |- |2 is invariant under O(2), T is well-defined
independently of the origin and orientation of S'. Note also that T} is invariant under
0(2).

The case where G is a finite group which includes a reflection is similar except that the
origin may be taken as any point on an axis of symmetry and that the analogue of the
computational formula (4.2) contains extra terms.

An important property of the uniform scores tests is that they are distribution-free for
sampling from continuous distributions. This is because under the null hypothesis of
symmetry and in the absence of ties, the distribution of 5, conditional on 7, is the image
of a uniform distribution on G". The null distribution of T} may be determined by
enumeration or by sampling. This null distribution is not in general the same as that of
the corresponding test for uniformity or two-sample tests. However the following theorem
combined with Theorem 4.1 of Giné (1975) and Theorem 1 of Beran (1969) shows that
the asymptotic distributions are the same.

THEOREM 4.1. Under random sampling from a continuous circular distribution which
is invariant under G,
(1) if G = Z, is a group of rotations,

T —q Zk;éo(modl) ain,
(ii) if G is generated by a reflection and by a group Z, of rotations,
Ty —a 2;;1 al?cHIv

Here { H,}%-1 is a sequence of independent chi-squared random variables with two degrees
of freedom if k # 0(mod [) and one degree of freedom otherwise.

There is also a consistency result analogous to Theorem 2 of Beran (1969).

THEOREM 4.2 (consisteney). Let v be a continuous distribution on the circle and let
H:S' — S! be a probability integral transform of v. Then, if | vo H™!||2 > 0, the sequence of
tests based on T} is consistent against v. If {axk*} is bounded for some s > 3/2, then the
sequence of tests based on T is consistent against v if and only if | vo H™ |2 > 0.

We conclude this section with two examples.

EXAMPLE 1. A quick test for Z,-symmetry is obtained by taking a; = 1 and «, = 0,
for k = 2. Then T} = 2n™* ¥, 3%, cos(B: — ;) = 2nR? where R is the mean resultant
length of the uniform scores. This is the analogue of the Rayleigh test for uniformity
(Mardia, 1972, page 133) and of the uniform scores two-sample test of Wheeler and
Watson (1964) and Mardia (1967). The asymptotic null distribution of T is x3.

ExXAMPLE 2. If o, = k7! for k = 1, then the corresponding test is consistent against
all non-symmetric alternatives. For testing Z,-symmetry, T% = 4x*{ U7, — (12ni®)~'} where
U2 denotes Watson’s (1961) U2-statistic for testing uniformity applied to the uniform
scores (3, -+, Ba.

In the case of antipodal symmetry (I = 2), we have T} = %A, = 7%x%/4 where A, is
Watson’s (1967) A,-statistic of Ajne’s (1968) test and x2 is Rao’s (1972) averaged x?
statistic on the circle for 2 intervals, each statistic being applied to the uniform scores.

For any integer [ = 2, it can be shown using the method of Watson (1961, pages 111~
112) that

lim,,_,wP(T,",‘ > x) = (2l/7) Yot (1) *m'sin(mx /l)exp(—mx?/2).

Some critical values of T'¥ for [ = 2 are given in Jupp and Spurr (1982).
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5. An astronomical example. In the study of the orbits of long-period comets two
questions of interest arise:

(i) are the perihelion directions uniformly distributed over the celestial sphere?
(ii) are the orbital planes of comets with a given perihelion direction distributed with
circular symmetry about that axis?

The orientation of a comet’s orbit can be represented by an element of the rotation
group SO(3). The unit vector x, in the direction of the perihelion and the unit vector x,
normal to the plane of the orbit (with direction specified by the sense of rotation) determine
a unit vector x; such that X = (X,, X, X3) is in SO(3). Jupp and Mardia (1979) considered
just (X;, X2). The symmetry in the second question above is that of R in G = SO(3) acting
on X = SO(3) by premultiplication by block diag[1, R]. Taking t to be the inclusion of
SO(3) in the space of 3 X 3 matrices yields the Rayleigh-type test of uniformity on SO(3)
considered by Khatri and Mardia (1977) and by Prentice (1978). Let X, %,, and X, denote
the sample means of X, x;, and (X,, X3). Then the terms ini the decomposition (2.3) of the
corresponding test statistic are

nlen —pl2=ntrX’X), T.=nlel?=ntr(X;X,), and
nllé — pli =nXi %
with respective asymptotic null distributions
371x3, 3_1)(%,‘ and 37'x3.

For the data set of 240 comets considered by Jupp and Mardia (1979) we obtain 3nXx!X;
= 213.0 and 3n tr(X7X;) = 11.8. Thus uniformity of perihelion directions is rejected
strongly as in Jupp and Mardia (1979) and as in Mardia’s (1975) analysis of a similar data
set. On the other hand, as P(x3 > 11.8) > 0.05, we may accept symmetry of the orbital
planes.

Acknowledgement. We are grateful to Professor K. V. Mardia for introducing us
to Giné’s work.
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