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MINIMUM DISTANCE ESTIMATION IN
A LINEAR REGRESSION MODEL

By H. Kour' AND T. DEWET
Michigan State University and Rhodes University

This paper discusses a class of minimum distance Cramer-Von Mises type
estimators of the slope parameter in a linear regression model. These esti-
mators are obtained by minimizing an integral of squared difference between
weighted empiricals of the residuals and their expectations with respect to a
large class of integrating measures. The estimator corresponding to the weights
proportional to the design variable is shown to be asymptotically efficient
within the class at a given error distribution. The paper also discusses the
asymptotic null distribution of a class of minimum Cramer-Von Mises type
goodness-of-fit test statistics.

.

1. Introduction. Minimum distance (m.d.) estimation methods in the one sample
problem have recently received considerable attention in the literature, e.g. see Beran
(1977, 1978), Boos (1981), Parr and Schucany (1981), Parr and DeWet (1981), Millar (1981),
among others. For more detailed references see the bibliography by Parr (1981). The most
usual distance statistics used in the literature are the Cramer-Von Mises type statistics.
One of the reasons for this is that the corresponding m.d. estimators are asymptotically
normal. More recently, Millar (1981) has shown that these estimators are also asymptoti-
cally minimax and robust. In this paper we provide suitable analogues of the Cramer-Von
Mises type m.d. estimators in a linear regression model.

Consider the linear regression model

(L1) Yu=2xB+ €, 1=<i=<n,

where ¢,;, 1 =i =< n, are independent identically distributed (i.i.d.) random variables (r.v’s)
with known d.f. F, x,1, - - - , X, are known constants and 8 is the parameter of interest. We
are interested in seeking m.d. estimators of 3, using Cramer-Von Mises type statistics, that
will have properties similar to those of the one sample location parameter estimators. One
natural thing to do is to construct the empirical d.f. based on the residuals {Y,; — x.:b,
1 =<i=n} and find b that minimizes the Cramer-Von Mises type statistics between this
empirical d.f. and the error d.f. F. Theorem 3.2 below says that such estimators are not
asymptotically as efficient as those obtained by using a certain weighted empirical process.
To introduce this process, let d, = (dn1, - -+ , dus) be a vector of real numbers and define
a class of weighted empirical processes, one corresponding to each vector d,, by

(1.2) Va(y, 0) =3 dnil(Yni< y + Xuib), —0 < y, b < +0oo.
Summations run from 1 to n throughout this paper. Note that {d,;} need not be non-
negative.

The process that arises naturally in the model (1.1) is V., the V;-process with d,; =
%x(3 x2;) 7Y% 1 < i < n. Observe that if F is continuous then the process { V. (y, 0), —o
<y < + o} completely summarizes the data given in model (1.1) with probability one. The
role played by this process is at least as important to the regression model as that of the
process {Vi(y, 0), —» < y < 400} in the one sample problem. Here V; = V; with d,; =
n~'2, The V,-process arises naturally in the least squares, M, L, and R estimators of 8.
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922 H. KOUL AND T. DEWET

(See Koul, 1979, 1977, for a further discussion of this.) We are thus led naturally to the
following definition of a class of estimators of 8.
Observe that if 8 is true then EV;(y, B) = (¥ d..)F(y). Therefore, define

(1.3) Ta(b) = f {(Va(y, b) — (¥ dni)F(y)}* dH(y)

where H is as in (3.4) below. Define f; by the relation
(1.4) inf, Ta(b) = Ta(Ba).

Write B, and B, for 8, when dn; = n™ % and d,; = % < x%) 72 1 = i < n, respectively.
In this paper we study some finite and large sample propertles of the class of estimators
{,Bd} We also study the asymptotic null distribution of a goodness-of-fit test statistic
T, (,Bx) for testing hypotheses about the error distributions.
Section 2 contains some_ finite sample properties of {,Bd} Section 3 dlscusses the
asymptotic distribution of {,Bd} In particular, Theorem 3.2 contains the result that ,Bx has
the smallest asymptotic variance among those 8, for which d,, = (dn1, -+, dun) satisfies

lim inf(Y x%:) 2| Y duixnil =20 >0, Y dii=1 maxici<,dZ— 0
and dnixni<0 or dpnx.,=0 for 1<i=<n,

for a fairly large class of error distributions F' and integrating measures H. The same
section dlscusses asymptotic efficiency properties of 8, for various H. Remark 3.7 gives an
extension of B, to the multiple linear regression model with the known error d.f.

Admittedly model (1.1) is quite restrictive from the practical point of view because it
assumes known intercept and completely known error distribution. One main reason for
restricting attention to this model has been to reveal the importance of V,-process in the
m.d. estimation problem as clearly as possible. If, instead, one assumes the model

(1.5) Yiu=a+ Bx,;+oe, 1l<i=<n,

where {e;} are i.i.d. with a known d.f. and (a, 8, 0) are the parameters of interest, then one
can also define m.d. estimators of (a, B, 0) using suitably modified V; and V, processes.
This is elaborated upon in Remark 3.8. The results one can obtain here extend those
mentioned by Boos (1981) for the one sample scale-location model.

In Section 4 we propose and study the asymptotic null distribution of T (8.) as a
goodness-of-fit test for the error distribution of the model (1.1). The asymptotic null
distribution of this statistic is the same as that of its analogue in the one sample location
model. Remark 4.3 discusses goodness-of-fit tests for model (1.5). Section 5 contains most
of the technical details for doing the asymptotic theory of Sections 3 and 4.

One of the members of {Bd} when d,; o< Xp; — X, 1 =i =<n and H(y) = y was studied
by Williamson (1979). He showed that this estimator is asymptotically equivalent to the
Wilcoxon type R estimator. Generally the class of estimators {8, (EH )}, H satisfying
conditions of Theorem 3.1 below, does not have any connection with M or R estimators of
B for finite n. However, as is pointed out in the Remark 3.3, asymptotically this class is
related to a certain class of M and R estimators but has no relation with the least squares
estimators.

During the course of the writing of this paper the authors became aware of an alternative
approach of m.d. estimation in regression by Millar (1982). He in fact deals with a much
more general problem of independent, not identically distributed r.v.’s where each d.f. is
indexed by a parameter. In the case of the regression model, his approach is different from
the one being proposed here. For further discussion on this see Remark 3.5 below.

NoTATIONAL REMARK. In what follows, the index i in the maximum runs from 1 to n
and all limits are taken as n — «, unless mentioned otherwise. For any real numbers {d,;}
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let % = ¥ d%:. By 0,(1) (Op(1)) we mean a sequence of r.v.’s that converges to zero (stays
bounded) in probability. Often in a proof or a discussion we shall drop the suffix n from
various underlying quantities for the sake of convenience. Thus d; will stand for d.: etc.

For any function g and & on # X # to &, let | g,|% denote [ g*(y, s) dH(y) and
| & — he| % denote f {g(y, s) — h(y, t)}*dH(y) for any real numbers s and ¢.

2. Finite sample properties of ﬁd. In order to discuss various properties of ,éd, we
need to assume

(2.1a) dix;=0, 1=i=n,

or

(2.1b) dix;<0, 1=i=<n,

and that F satisfies (3.61) below. Let

(2.2) Ua(y, b) = Va(y, b) = § d)F ().

By the Cauchy-Schwarz inequality we have

(23) Ta(d)= {j Ua(y, ' *(y) dH(y)F/(f f/dH) = Li‘}(b)/(f f/dH), say.

Note that under (2.1a)((2.1b))Lq(d) is a nondecreasing (non-increasing) function of b.
Therefore, by (2.3), Tz is bounded below by a nonnegative function which is nonincreasing
on (—®, by) and non-decreasing on [, ®) for some finite bo. This observation ensures that
Ba, though it may not be uniquely defined, can be uniquely defined as an average of the
two quantities at which 7(b) is minimized for the first time and for the last time as b
moves from the left to the right. The inequality (2.3) implies that these quantities are
finite with probablhty 1.

Next, let ,Bd denote a minimizer of T (b). Write T (Y, bx) for T4(b) and observe that

(2.4) Ti(Y + ax, bx) = T4(Y, (b — a)x), —»o<a,b<oo.
Thus, if B2(Y, x) denotes Bq of (1.4) based on {(x:, Yi), 1 =i =<n}, then (2.4) implies that
(2.5) Ba(Y + ax, x) = Ba(Y, x) + a for all real a.

Consequently, the distribution of Bd -8B does not depend on .

Another interesting property is that f4(Y, ax) = a ~18,4(Y, x), for all a # 0. This means
that the estimators {Bd} are invariant under the reparameterization of the design, a
desirable property.

Next, we mention the symmetry property. If either (i) F and H are symmetnc about 0
and H is continuous or (i) d; = —dn_i+1, X = —%Xn_i+1, 1 =i =n, then Ba is symmetrically
distributed about B. This follows by observing that under (i) or (i), Ta(-Y, bx) =
T (Y, —bx) for every b and hence Ba(-Y, x) = —f4(Y, x). The details are similar to the
proof of the symmetry of R estimators of Adichie (1967).

Finally, we would like to point out that if d; = n™"? then (2.1a) or (2.1b) is a restriction
on the design variables {x;} whereas if d; = x;(Y x?) V2,1 < i< n, then (2.1a) is a priori
satisfied thereby giving 8. an added advantage.

3. Asymptotic distribution of f#,. To begin with we state our assumptions as
follows.
3.1) max;x2;r72— 0;
(3.2) t2=1 and max; d%— 0;
(3.3) lim inf 7' | Y, dix;] = 7> 0 for some »;
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H is a nondecreasing right continuous real valued function inducing a o-finite

34 measure on (%, #), the Borel line;
F has a continuous density f with respect to (w.r.t.) the Lebesgue measure A on
B3, );
36) (NO<[fdH< o, (ii)lims,o [f(y+ s) dH(y) = [ fdH;
3.7 f f2dH < oo
(3.8) J’ F(1 - F)dH < o
(3.9) Lim [ [T (y, A) — Jur(y, 0) — Ak (¥)12 dH(y) = 0 for £ = 1, 2 and for every fixed

real number A, where
I (3, 8) = T duiF(y + Axpit 2" ) (dnini = 0),
(3.10) Iz (¥, A) =Y duiF(y + 2077 ) (i i < 0),
£ (y) = 72" Y dnixnil (dnixns = O)f ();
and
(3.11) bn2(y) = 73" ¥ dniknil (dnidni < Of (y), —0 <y, A <oo.

In what follows ﬁd is a solution of (1.4).

THEOREM 3.1. Let {Y,,1<i=<n} be as in the model (1.1). Assume that {(x,;, dn:),
1=1i=n}, F and H satisfy (2.1a) or (2.1b) and (3.1) through (3.9). Then

812 m(Ba—f) = ( j 7 dH) - f Uy, Bf(3) dH(y)-rsd + 0, (1)

where

(3.13) Ixd = 7;1 2 AniXni.
Proor. The proof is given in Section 5. 00

Using the Lindeberg-Feller central limit theorem, one concludes the following:

CoroLLARY 3.1. Under the assumptions of Theorem 3.1 the asymptotic distribution
of 1:(Ba — B) is Normal with mean 0 and variance

(3.14) : vwa(F, H) =13} (J'f2 dH)_Z-K(F, H)
where

(3.15) K(F, H) = I I {F(xA\y) = F(x)F(y)}f(x)f(y) dH(x) dH(y). O

Now, the Cauchy-Schwarz inequality yieldsrz7 = 1 with equality if, and only if, d; =
x;7%', 1 =i = n. Thus we have the following:

THEOREM 3.2. Among all estimators {,Bd} where d, = (d,1, - - , dnn) satisfy (2.1a) or
(2.1b), (3.2), (3.3) and (3.9) for every F anAd H satisfying (3.4)-(3.8), the one that minimizes
the asymptotic variance vU.q is B — the Ba when d; = x;77', 1 <i<n.
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REMARKS 3.1. A consequence of Theorem 3.2 is that fi—the Bawith d; = n""?—is less
efficient than g.. In view of (2.1a) or (2.1b) this comparison is valid only if all x; = 0 or all
x:=<0.

Another important and desirable property of B. is that the asymptotic distribution of
Tx (ﬁx — pB) is the same as that of a standardized m.d. Cramer-Von Mises type estimators of
location parameter (see e.g. Parr and DeWet, 1981). The results obtained there concerning
the choice of H for optimality or robustness also apply then to the present situation. Thus,
e.g., in order to have an asymptotically efficient estimator B.or B, H is given by the relation

(3.16) f(3) dH(y) = =I"" d(f'(»/f(), I=1(f) =j (/1) dF < .

In many interesting cases this H gives infinite mass to the real line. For example if F is
logistic then dH(y) = (%)dy and in this case 7.| 8 — Bw| = 0,(1) as may be seen from the
results of Theorem 3.1. Here By is the Wilcoxon rank estimator of B. Note that here H
induces a o-finite measure. :

Often when m.d. Cramer-Von Mises type estimators are driven to be asymptotically
efficient the optimal H turns out to be a o-finite measure. This phenomenon seems to be
in contrast with the robustness of Millar (1981) where finite H are preferred.

REMARK 3.2. An important H that is covered by the above theory is dH =
{F(1 — F)} 'dF, the so called Anderson-Darling (1952) weights. From the > property of the
Logistic distribution (viz. f = F'(1 — F)) and from (3.12) one again has 7.| Be — Bw| = 0,(1)
at Logistic F. In other words the Anderson-Darling type estimator is also asymptotically
efficient at the Logistic errors.

REMARK 3.3. Connection with other estimators. If we define Y(y) = [, f dH then
from (3.12) one again has | 7.(8: — B(¥)) | = 0,(1) where B(¢) is the M estimator (Huber,
1973) corresponding to the score function . Now, it 1s well known that if Y(y) = y then
B(y) is the least squares estimator. Thus in order for B. to be approximately equivalent to
the least squares estimator, H would have to be such that .. f dH = y, but this would
imply [ f/dH = o , violating (3.6i), rather a crucial condition for our theory to hold. Thus
,Bx has no connection with the least squares under the conditions of this paper.

Next, let ,B(q)) denote Adichie’s (op. cit.) rank estimator correspondmg to the score
function ¢. If we choose g(u) = [F.® f(x) dH(x) then again .| B: — B(9)| = 0,(1) as
follows from (3.12) and the asymptotic properties of R estimators.

REMARK 3.4. When H = F, the corresponding ,éx has high asymptotic efficiency
relative to some of the well known estimators of 8. For example the asymptotic variances
of frx,éx at the Double exponential, Logistic and N (0, 1) distribution are 1.2, 3.0357 and
1.0942, respectively. Compare these with those of the Wilcoxon type estimator which are
1.333, 3 and 1.0472, respectively. For comparison with some other estimators see Koul
(1979) or Williamson (1979, 1982).

. REMARK 3.5. If Millar (1982) is specialized to the above model (1.1) then his estimator
B is essentially obtained by minimizing

J J’ [n V23, (I(Y:isy) — F(y — %:0)}) ds dH (y)
0

w.r.t. b. Clearly this is different from ,é,. Moreover, if x,; = 1, (the one sample location
model), then

asymptotic var.(n"/2f) = (18/15) asymptotic var.@'/?8;).
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If x,; = i (the first order polynomial), then the asymptotic var. (. ﬁ ) = (400/168) asymptotic
var.(7x0x). These results are valid for 8 = 0 and for all F and H satisfying the above
conditions. ,

Thus, even though Millar considers a much more general problem, in the above special
cases the procedure proposed here possesses some superiority.

REMARK 3.6. We now discuss conditions (3.1)-(3.9). All the conditions except for (3.9),
are readily verifiable. It is desirable to have readily verifiable sufficient conditions for (3.9).
Consider the following conditions.

(3.17) F has uniformly continuous bounded density f.
(3.18) (i) dni=T:'%mi, 1=i=<n, (i) lim.,o J Ay +s) dH(y) = J f*dH.

Then the following two statements hold.
(3.19) If (3.1), (3.2), (3.4), (3.6), (3.8) and (3.17) hold then (3.9) holds.
(3.20) If (3.1), (3.4)-(3.8) and (3.18) hold then (3.9) holds.

Proofs of these statements use Fubini’s theorem and the usual uniform integrability
techniques. Details are left out for the sake of brevity.
Note that if H is absolutely continuous w.r.t. A then (3.6i) and (3.7) imply (3.6ii) and
(3.18ii).
REMARK 3.7. Extension to multiple linear regression. Suppose
Yi=X,'B+£,‘, 1<i=sn

where x; is a 1 X p vector, the ith row of the design matrix, 8 is a p X 1 vector and {e;} are
ii.d. with known d.f. F. An extension of B, to the multiple regression model is as follows.
Define, for a p X 1 vector b and a real number y,

Ui(3b) =1 {I(Yisy+x:0) - F(y)}, 1=sj=sp

where X; = (i1, Xi2, +++, Xpp) and 77 = Y7, x%}. Let U’ = (Uy, - -+, Uy,) and form
T(b) = f U’(y, b)U(y, b) dH(y).

Then ﬁ is defined as a minimizer of T'(b). This is one right extension of ,éx. Asymptotic
theory of this estimator is somewhat involved and will be reported elsewhere. Results
analogous to Theorems 3.1 and 3.2 are expected to hold here also.

REMARK 3.8. Simple linear regression with unknown scale. Here we will give m.d.
estimators of (a, B8, o) of the model (1.5) and mention as to what kind of results can be
obtained. Define

Vl(y: a, b: S) = n_1/2 2 I(Y; =ys+ a+ bxi)
Vi(y,a,b,8) =1y x:I(Y;< ys + a + bx;), y,a,breal, s=0.
Let F now stand for the d.f. of e; and define

T(a, b, s) =f [{(Vi(y, a, b, s) — n'?’F(y))* + {Vi(y, a, b, 8) — 75" ¥ % F(»)Y1dH(y).

One way to define m.d. estimators of (o, B, o) is by the relation

(3.21) infy preas=0T(a, b, 5) = T(&, B, 6).
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Using the techniques of this paper, one can show, under the conditions similar to those
given above and under some additional mild conditions (involving [ yf dH, [ yf* dH and
J (yf)? dH), that

(n"2(& — a), (B — B), n*3 — o))

(3.22) = —BI(J (W1 + a. Wa)f dH, J (a. W1 + W)f dH,

f {(W1i(y) + an Wa(9)}f () dH(y)> + 0p(1).

where
a,=n""1'Y x, Wi(y) =n"2Y {I(e<y) — F(y)}
Wa(y) = 7' Y x:{I(e; = y) — F(y))}
and where
thyfz(y) dH(y) 2anfyf2(y) dH(y) th {yf(y)¥ dH(y)
oB = tnff2dH 2anff2 dH tnfyfz(y) dH(y)
2a, JF dH tn J f?dH 2a, Jyfz(y) dH(y)

with t, = 1 + a?.

The joint asymptotic normality can be readily deduced from (3.22). Note that a, =
O(1). Note also that if we specialize (1.5) to the one sample location-scale model by taking
x; = 0, then (3.22) reduces to (4.3) of Boos (1981).

4. Goodness-of-fit test for the error distribution. The m.d. Cramer-Von Mises
type statistics are well known as goodness-of-fit statistics (see, e.g., Durbin, 1973) in the
one sample problem. Relatively little is known about their analogues suitable in the
regression model. Consider the model (1.1) with error distribution F. We are interested in
testing

Hy:F=F,

with F, a known continuous d.f.

In order to describe the proposed test, write T (b, F) for T4(b) of (1.3). Then the
proposed test rejects H, for the large values of T, (,éx, Fy). The asymptotic null distribution
of this statistic is deduced from the following.

THEOREM 4.1. Let {Y,i, 1 <i<n} be as in model (1.1) with {e,;, 1 <i<n} iid. F,.
Assume {x,:} satisfy (3.1), that (3.4)-(3.8) and (3.18ii) are satisfied by F, and H. Then

(4.1) Tx(,én F) = J’ {U«(y, B) + Tx(Bx - ﬂ)fo(y)}2 dH(y) + 0,(1).

Proor. Without loss of generality assume that the true 8 = 0. Then apply Theorem
5.1withd;=xr;,1<i<n F=F, A= ‘rxﬁx to conclude (4.1). Note that we also need
the conclusion of Corollary 3.1 which says that *rxl,éxl = 0,(1). Recall from Remark 3.6
that (3.9) is implied by the conditions of this theorem. O

From now we shall assume that the true 8 = 0 and we shall write U.(-) for U.(-, 0).
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Now observe that
J U:fo dH = =1 Y x: ($o(Y:) — Eyo(Y3)),

where Yo(y) = [Y« fo dH. Using the Lindeberg-Feller central limit theorem, one readily
concludes, in view of (3.1) and (3.6i) with f = f;, that

42) f Uty dH —p J (BeFo)fs dH

where B is the Brownian Bridge. From this one has [ U.fo dH = O,(1). Using this, (3.12),
(4.1), (3.6i) and (3.7) with f = f,, and expanding the quadratic one has

-1 2
(4.3) Tx(,éx, Fo) =J' U2dH - (J' s dH) (J U.fo dH) + 0p(1).
Now note that, using (3.8)
(4.4) EJ UidH = J Fy(1 - F,) dH = EJ (Bo F,)? dH < .

This together with an argument given in the proof of Proposition 4.1 of Millar (1981) yields
that

(4.5) J' U2 dH-—»DJ (B°F,)? dH.
Therefore, (4.5), (4.4), (4.3) and (4.2) together yield:

COROLLARY 4.1. Under the assumptions of Theorem 4.1 and under H,

4.6)  Te(Be, Fo) >p J’ (B Fo)® dH

- (J 8 dH)_ {J (B Fo)fo dH} = G(B°F,), say.

REMARK 4.1. The first term in the limiting r.v. G(B ¢ F) is the limiting r.v. of the test
statistic had we known B and the second term comes from estimating 8. Note also that the
regression constants {x;} do not appear in the limiting r.v. G(B° F,). As a matter of fact,
G(B-° F) is the same as the limiting r.v. obtained in the one sample location model. The
distribution of this r.v. is available, e.g., see Boos (1981) or Martinov (1975).

For similar conclusions pertaining to statistics sup,| Va(y, 8) — Y diFo(y)|, see Koul
(1980) for the cases d; = n~"? and d; = 73 'x;, 1 = i < n. See also Pierce and Kopecky (1979)
regarding the process {Ui(y, 8) — © <y < +o}.

REMARK 4.2. Corollary 4.1 holds for H given by dH = {Fo(1 — F,)} ™' dF, at F, equal
to logistic, normal and double exponential and many others. Other examples of weight
functions can be found in DeWet and Venter (1973).

REMARK 4.3. Consider the model (1.5) and the above HQ where now f; is the d.f. of e,.
An analogue of T( ,éx, Fy) in this problem is given by T'(a, B, 6) of (3.21) with F replaced
by F,. Using the methods of this paper one can show, under the conditions of Theorem 4.1
and under some additional conditions (see Remark 3.8), that under H,

T(&, B, 6) = J’ [Wi(y) + (g + Aan + wy)fo(y)o ™' T dH(y)

+ f [Wa(y) + {an(g + wy) + A} fo(y)o ' T dH(y) + 0,(1)
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where ¢ = n%(6 — @), A = 1.(8 — B), u = n"/%(6 — o) with &, B and & as defined in (3.21).
Using the approximation (3.22) it is possible to arrive at an analogue of Corollary 4.1.

5. Asymptotic quadraticity of T, and some proofs. In this section we prove the
asymptotic quadraticity of T in b. Corollary 5.1 is useful in concluding that 7. (Ba—B) =
O,(1). The section is concluded with the proof of Theorem 3.1. We begin with the
statement and the proof of:

THEOREM 5.1. Let Y., +++, Y, be iid. F. Assume that (3.1), (3.2), and (3.4)-(3.19)
are satisfied by {(xni, dni), 1 =i < n)}, F and H. Then, for any 0 < B < o,

(5.1) E{supjaj=5| Ta(AT3") — Td(A‘f;l) [}—0
where
(5.2) Ta(b) = j {Ua(y, 0) + 1:b-rxaf ()} dH(y)

with req as in (3.13).

PRrOOF. Recall the definitions of J%, &, £ = 1, 2 from (3.10) and (3.11). Let

(5.3) IJ=di+d, E=&+&.

Define ,

(5.4) Wy, A) =Y di{l(Yi=y+Ac) —F(y+Aq)}, —o<y, A<om,
with ¢; = x;75', 1 = i = n. Note that

(5.5) Y cdi)? =1

Observe that

Ta(AT:") =f [{W(y, A) — W(y,0)} + {W(y, 0) + A&(y)}

+ {J(y, &) — J(y,0) — A&(¥)}] dH(y).

Expanding the quadratic and using the Cauchy-Schwarz inequality on the product terms
yield (see Introduction for notation)

| M) — M) | < | Wa— Wo|k+ |Ja— Jo — AE|%
(5.6) + 2| Wo + Af|u|da — Jo — Af|m
+ 2| Wa — Wo|u(| Wo + Aé| g + | Ja — Jo — AE|R),

where M(A) = Ta(Ar3"), M(8) = Ta(Ar7").

From (5.6), (5.1) will follow if we show (i) lim sup E {sup| W, + A¢ |4} <, (ii) sup|Ja
—Jo— A&|%— 0, and (iii) E {sup| Wa — W |%} — 0. Here and elsewhere the supremum
is being taken over A in [—B, B], unless mentioned otherwise.

ProoF oF (i). Using (a + b)? < 2a® + 2b% Fubini and 7% = 1, one gets
E{sup| Wy + A |3} =2 f F(1 - F) dH + 2B*(§, dic;)* J’ f? dH.
Therefore (i) follows from (5.5), (3.7) and (3.8).

ProoF oF (ii). Note that J;(J;) is a nondecreasing (non-increasing) function of A for
each fixed y. Let —B = A¢ < --- < A, = B be a decomposition of [—B, B] such that

(5.7) max;<j<(A; — Aj—1)? —> 0 asr— o.
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Using the monotonicity of Jx, & = 1, 2, and the elementary inequality a < b < ¢ => b2
= a® + ¢? and the inequality (a + b)> < 2a® + 2b® one gets that for Aioi=As A
| Tea — Jro — Aéx |3 =< 2(|Jrs, — Jro — D B + | Jaa,_y — Jho — Aj—1e |})

(5.8)
+ 48— A1) &l k=12

Therefore (5.3) yields

sup|Ja — Jo — AL |fr =< 4 ¥jmy (| Jia, — Jro — Ak |5 + |Jan, — Joo — Aja|3)

(5.9)

+ 8 max;<j=r (A — Aj—1)2(| & |%~I + | & |%~1)

Hence (ii) follows from (5.5), (3.9), (3.7), (5.7) and (5.9) by lettmg first n — o and then r
— o in (5.9).

ProoF oF (ili), Write W= W, + W, where W;(W,) consists of those summands in W
for which x; /d; = 0 (x;/d; < 0). Direct calculations and Fubini yield

E| Wis = Wkol?fszd?f |F(y + Ac;) = F(y)| dH(y)

sf {Jf(y+s)dH(y)}ds for k=12,
—Bm

Here m = max| c;| and we used 7% = 1. Thus for every fixed | A| = B, by (3.6ii),
(5.10) E|Wia — Wio|E— 0, k=12

Next, exploit the monotonic structure that is inherent in these processes to get, just like
(5.9),

sup| Wa — Wo k=435 (| Wi, — Wil + | Waa, — Wao|%)
(5.11) ~ ~ ~ ~
+ 8 maxi<j<, (| Ju, — Ju,_, &+ | Jon, — Jon;_, |%).

By (5.5), (3.9), (5.10) and (5.11) for every fixed r,
(512) hm sup E(sup| WA - W() |%{) =32 maxlst,(Aj - Aj_1)2 f f2 dH

Therefore (iii) follows by letting r — o in (5.12). This also completes the proof of the
Theorem. 0

COROLLARY 5.1. In addition to the conditions of Theorem 5.1 assume that (2.1a) or
(2.1b) and (3.3) hold. Then for any e > 0,0 < M <  there exists an N, and 0 < g < o
(depending on ¢ and M) such that

(5.13) P{inf,A|>gTd(A7;1) = M} =1-—c¢ fOI' n= N,.
ProOF. From the inequality (2.3),

(5.14) P{infja>gTa(A75") = M} = P{infia)-,L%(Ar7') = Mg},

where g = [ f dH. Now, define

(56.15) La(b) =f {(Ua(y, 0) + 7:b - reaf(y)}f*(y) dH(y).
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Observe that
(5.16) | La(A73Y) — La(Ar3Y) | < @M%(| Wa — Wolu + | Ja — Jo — Areaf| ).

From (5.16), (ii) and (iii) contained in the proof of Theorem 5.1 we have that for any 0 <
B < o,

(5.17) E{supjaj=s| La(A73") — La(arzY) |} — 0.
Next, let S = [ Ua(y, 0)f*(y)dH(y), v = [ f¥? dH. Note that

ES=0;EstqJ'F(1—F) dH.

Thus, for any & > 0 there exists N;. and K, such that

(5.18) P(S|=K)=1-¢/2, n=N..
Let g satisfy .
(5.19) g> (K. + (Mg)"*}(mv)™" where 7 is asin (3.3).

Then we have the following inequalities.

P{inf|A|=g §(A'r;1) = Mq} = P{|S| = —(Mq)l/2 + glrxdlv}
(5.20)
=P(|S|=K)=1-¢/2, n > Ni.

By (5.17), for every & > 0 there exists N, such that for all n = N,
(5.21) P{infjs-,L%(A7") = Mq) = P{inﬂA|=3E§(A7;1) = Mgq} — ¢/2.

Thus, choose N, = max(Ni., N;.) and use the monotoneity of L, in A together with (5.21)
and (5.20) to conclude (5.13) for g given by (5.19). 0

ProoF oF THEOREM 3.1. Because of (2.5), without loss of generality, we will assume
B=0.ThenY, ..., Y, are iid. F and the above results are applicable. From (5.13) one
concludes that 7| 84| = O,(1). Details are similar to those in Millar (1981, 1982) or
Williamson (1982). This together with (5.1) and the quadratic nature of T, of (5.2) yields
(3.12).0
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