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A NORMAL LIMIT LAW FOR A NONPARAMETRIC ESTIMATOR OF
THE COVERAGE OF A RANDOM SAMPLE!

By WARREN W. EsTY

Montana State University

The coverage of a multinomial random sample is the sum of the proba-
bilities of the observed classes. A normal limit law is rigorously proved for
Good’s (1953) coverage estimator. The result is valid under very general
conditions and all terms except the coverage itself are observable. Nevertheless
the implied confidence intervals are not much wider than those developed
under restrictive assumptions such as in the classical occupancy problem. The
asymptotic variance is somewhat unexpected. The proof utilizes a method of
Holst (1979).

1. Introduction. The coverage of a random sample of size n from a multinomial
population with a perhaps countably infinite number of classes is defined to be the sum of
the probabilities of the observed classes. Denote the probability that any particular
observation belongs to class i by p;, where Y p; = 1. Let X; denote the number of
observations of class i and I; = 1 if X; = 1 and I; = 0 if X; = 0. Then the coverage, C, is given
by

(1) C =3 pl.

1 — C is then equivalent to the probability that the next observation would belong to a
new class. The problem is to estimate C given only {N; £ = 1, 2, - - -} where N, denotes
the number of classes observed exactly % times, and n = Y, kN;.

Good (1953), Good and Toulmin (1956), Harris (1959), Knott (1967), Robbins (1968),
Starr (1979), Chao (1981) and Esty (1982) have addressed various aspects of this problem
which has been studied in relation to species frequency models, vocabulary word models
and artifact preservation models. If the classes are all equally likely, the coverage is the
number of observed classes divided by the total number of classes, which gives a relation-
ship with the classical occupancy problem.

The estimation of the number of classes in the population is a related problem
(Goodman, 1949, mentions several interesting applications) which requires a parametric
model (Fisher, Corbet, and Williams, 1943; McNeil, 1973; Engen, 1974; Efron and Thisted,
1976), for without some restriction on {p:} there could be any number of extremely
unlikely classes.

Good (1953) found the estimator

(2) C, =1- (Nl/n)

for the coverage. Note that C is a random variable and not a parameter of the population,
so results about C’ (Chao, 1981) are insufficient to yield confidence intervals for C. Also,
C and C’ are dependent (Starr, 1979) so we cannot merely treat the two variables separately
and combine results. Therefore the appropriate variable to analyze is C — C'.

This paper rigorously proves a normal limit law for C — C’ under very general
conditions. All the terms except C itself are observable. A corollary gives approximate
confidence intervals for the coverage that are easily calculated and compare favorably with
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parametric confidence intervals. The variance is smaller than a previous approximation of
it. The proof utilizes a method of Holst (1979).

2. The theorem. In order to obtain a limit theorem, sequences of n’s and { p:}’s are
required, so a subscript, m, is implied but usually suppressed for notational simplicity.
THEOREM 1. Let ({pim:Yipm=1};m=1,2, -..) and n, be such that
E(Ni/n) —> ¢, 0<ci<1l and E(N:/n)— c=0.
Then
n'’[C — (1 = (Ni/n))I[(N1/n) + (2N2/n) — (N:1/n)*17/2
converges in distribution to a standard normal.
COROLLARY. If n is large and N,/n is not very near 0 or 1, then an approximate
(1 — a) confidence interval for C has endpoints
1= (Ni/n) % 2o2([(N1 + 2N2)/n — (N1/n)%)/n) ",
where z,/2 is the usual constant for a normal confidence interval.

CoMMENTS. For the case ¢; = 1 see Esty (1982). The reason for the exclusion of
c¢1 = 0 and ¢; = 1 above is in the proof at Theorem 4.

The proof of Theorem 1 uses a method of Holst (1979) in which the characteristic
function of n'/%(C — (1 — (IN1/n))) is shown to converge appropriately. The proof is greatly
complicated by the facts that the p,’s are not equal and E(N;)/n does not appear directly
in the characteristic function.

3. Proofs. Let fur(x) = pmz if x = 0, —1/n if x = 1, and 0 if x = 2. Recall that n and
Dr are functions of m, but we will suppress the m in the following. Unindexed sums will be
over all k.

Define ZM = ZkEMfk(Xk)- If M is all k, ZM defines Z = (1 - C) - (Nl/n) =C'—-C. We
are interested in the limit of E (exp(isZn*/?)).

We need the well-known:

LEMMA 1. With {X,} as in (1), for non-negative integers {x;} with Y, xx = n,
PXp=xpk=1,2, .- )=P(Yr=x;k=1,2, .-+ |Y Y =n) where {Y:} are independent
random variables and Y}, is Poisson distributed with mean np;.

By Lemma 1, Zy is distributed as Y f(Y%)|Y Yz = n and thus E(exp(isZuyn'’?)) =

E(exp(is Y fo(Yr)n'?)| ¥ Y = n). We also use the following partial inversion formula for
characteristic functions due to Bartlett (1938) (see also Holst, 1979).

LEMMA 2. Let (U, V) ‘be a two-dimensional random vector with U integer valued.
Then

E(exp(ivV|U = n)) = 2aP(U =n))™} j E(exp(iu(U — n) + ivV)) du.

Thus E (exp(isZun'’?)) is

@27P(3 Yr=n))"! j Elexp(iu Y, (Yx — pen) + isZyn''?)] du.

Let ¢t = un'’? to obtain
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anl/2

@27n?P(Y Y, = n))* f E(exp(it Y (Y, — npe)n™'2 + isZyn'?)) dt.

—an /2

Since Y, Y} is Poisson distributed with mean n, (27n)/2P(Y, Y: = n) — 1. Define
an1/2

H,(s) = (217)‘1/2j Elexp(it Y (Yr — npe)n™"% + isZyn'/?)] dt.

—anV/2

We are going to evaluate the limit of H,(s). Three difficulties lie ahead: evaluating the
integrand and its limit, relating the limit to E(N;) and E(N:), and proving the limit of the
integral of the limit.

Unfortunately, if we choose M to be the set of all % in the definition of Z», dominated
convergence theorems are insufficient to justify the last step, since the integrand has
modulus 1. However, if we sum over a set of indicies, M, such that

(3) EMpk—)d<1,

we can circumvent the problem at the cost of additional complexity. Note that for any d
near 1 there exists such an M because E(N;)/n — ¢, > 0. Call the complementary set of
indicies MC. Thus H,(s) becomes

mnl/2
(2m)~ V2 J’ [1» Elexp(it(Yr — npe)n™* + isfi(Yz)n'/?)]

/2
Tl nmc E[exp(it(Yr — npx)n~"?)] dt.

Call the first product A..(s, ¢) and the second A2,(t). Now

han(t) = exp(—itn Y uc prn~2)exp(n Y uc pr(e™ " — 1)),
since Y mc Y} is Poisson distributed with mean n Y ¢ pr. Because of (3)
hon(t) = exp(—£2(1 — d)/2 + o(£?) + O(£#3n7'72)).
Since d < 1, this is integrable and
fm / | h2n(t)| dt — fo exp(—(1 — d)¢*/2) dt.

—anl/2

Since | A1.(s, t)| = 1, a generalized Lebesgue dominated convergence theorem (e.g. Rao,
1973, page 136) proves

) lim H,(s) = (2m)"/2 J exp(—(1 — d)2/2)lim A, (s, t) dt.

The calculation of this limit requires a large number of preliminary results not paralleled
in Holst. ,
Consider the factors of A1,(s, t).

E(exp[it(Yr — npr)n™"% + isfo(Yr)n'?])

-1/2

= [exp(—itnprn~""* + isprn'/?)]Jexp(—nps)

2 — isn™'n'?)Inprexp(—np)

+ [exp(it(1 — npr)n~
+ Y iz exp(it(j — npe)n " 2)P(Yy, = j)

=Y -0 exp(it(j — npr)n ) P(Y, = j)
+ [exp(—itprn'’? + isppn'’?) — exp(—itppn'/?)lexp(—np:)

+ [exp(—itprn'’®)][exp(itn ") J[exp(—isn~"/?) — 1]nprexp(—np).
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Note that the first term is the characteristic function of a Poisson distributed random
variable with mean np, translated to mean 0 and then divided by n'/% Call the terms By,
C:, and Dy, respectively.

By, = exp(—itprn'/?)[exp(npr(e™ " — 1))].
(5 Ci = exp(—itprn'/*)[exp(ispen'/?) — 1]exp(—npe).
Dy, = exp(—itpen'?)exp(itn™"*)[exp(—isn™"/?) — 1]nprexp(—np).

Denote Cy, + D, = E;. We now need to evaluate the limit of the product [[ (B + Ez),
which is lim A;,(s, £).

We now list a sequence of substantial results in the remainder of the proof of Theorem
1. Proofs appear in the next section. It is regrettable that so much work is required, but
products of sums are complex unless there are stringent conditions satisfied. Theorem 2 is
a useful result, but it does not solve the whole problem because the hypotheses are not

satisfied for all k.

THEOREM 2. Let ((But)), ((Emt)), and (M,,) satisfy (dropping the m) i) [[m Br ~
B, i) (Xu Er) — E — 0, iil) B, — 1 uniformly, iv) E; — 0 uniformly, and there exist
constants D, and D, such that v) Yu | Br — 1| < Dy and vi) Y ;| Ex| < D, then

[1s (Bi + Ex) ~ Be®

where B and E may also depend upon m.
LEMMA 3. hin(s, t) ~ exp(—dt?/2)exp(Y m exp(—npr)[(—s%/2) (pr + npi) + stpi]).

LEMMA 4.
Lim H,(s) = exp{(—s*/2)[im[ s pre™™ + Y nple "] — (Lm[3x pre "*1)%]}.

THEOREM 3. If E(Niy)/n — cs, then ¥y pre " — c3. Also if E(Nza)/n — ca, then
Y unpie " — c,.

Now, from Lemma 4 and Theorem 3 we have immediately

LEmMMA 5. Under the hypotheses of Theorem 38, if 0 < c3 <1

nl/ZZM—m N(O, Cc3 + ¢4 — c§)

THEOREM 4. Under the hypotheses of Theorem 1,
n'?[C — (1 = (Ni/n))I(E(Ny)/n + E(2N:)/n — [E(Ny) /n]?)~?

converges in distribution to a standard normal random variable.

To show that Theorem 1 follows from Theorem 4 we need only show N;/n and N:/n
converge in probability to ¢, and c., respectively, so we may replace the expected values in
Theorem 4 with their corresponding observed values. These steps will complete the proof
of Theorem 1. The corollary is immediate.

Var(Ni/n) — 0 implies Ni/n converges to c¢; in probability. Let Z; = 1 if X; = 1 and
Z; = 0 otherwise. Then N, = }; Z; and Var(N:/n) = n%(}; E(Z}) + Y.ix;j Cov(Z;, Z;)). The
first term is E(N:1)/n® — 0. The second is bounded above by

Y Dipi(1 — )" (1 — p;)* *(p: + p))
=4n-1)7"Yi(n— Dp}1 - p)"22Y,;pil —p)"t=4(n—1)""> 0.
A similar proof holds for Var(N;/n) — 0.
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4. More proofs. The proof of Theorem 2 is straightforward and omitted. For Lemma
3, recall the definitions of B;, Ci, Dy, and E; of (5). Lemma 3 evaluates the limit of the
product [[» (Bx + E&). Unfortunately, the hypotheses of Theorem 2 are not satisfied as it
stands. For instance, neither iii) nor iv) need hold. Therefore we break the product into
two factors, each of which is tractable. Let

(6) I={({k:pen?<n"%%) and II= {k:np.=n"*}\L
If 2 & I then pr > n~"/® and np, > n'/® so k € II. Therefore I U II = {k}. Then
[1a (Be + E&) = [11 (Bx + E¢) [ (Br + Er) ~ [I1 (B + E) [[r B by Lemma 6
~ [1z Be(exp X1 Ex) [[u Bx by Lemma 7
~ [12 Brlexp ¥ » Er) by Lemma 6.
The completed proof of Lemma 3 requires the evaluation of these terms. The limits appear
as we work our way through the necessary preliminaries.
LEMMA 6. [[u (Be+ E)/[[uBr— 1and Yz | Ex| — 0.
PROOF. Yn|Ex|=2Yu(e™™* + npre ™) = 2n"5(1 + n'/®)exp(—n"/®) — 0, since the
number of indices in I is less than or equal to n"/%, Now, for all &,
B:. = exp[—itpsn'? + npr(itn ™% — (£2/2n) + O(t’n~%?))]
= exp[(—£?/2)pe + O(t°prn™"%)]
and B; is bounded away from 0 so
|In(Bx + Ei) — In Bx| < | Ex|/(| Br| — | Er|),
and Lemma 6 follows.
LEMMA 7. The hypotheses of Theorem 2 are satisfied with M = I and B, and E;, as
in (5).
PROOF. iii), iv), and v) are easily checked. For vi), E. = e "P*exp(—itpin'/?)

[exp(isprn'/?) — 1 + npre™ "(exp(—isn %) — 1)]. Since, for k € I, pxn'/> — 0 uniformly,
we have

E;, = e "Prexp(—itprn'/?)(isprn'’? — (s’pin/2) + O(s’pin®?)
+ npp[1 + itn~V2 — (£2/2n) + O(£3n =) ][—isn~ "% — (s*/2n) + O(s*n*?)])
= e "Prexp(—itp,n'/?)[—(s2/2)(np} + pr) + stp, + O(pin®?) + O(p,n""?)].
The second factor tends to one uniformly and will not affect the limit
Y1 Er ~ Tre "(—(s%/2)(npk + npr) + stpr),

/4 on I. This yields the necessary

using Y7 O(pin®?) = ¥; O(prn™*) — 0, since pi = n~
limit. Applying absolute value signs yields Lemma 7.
To finish the proof of Lemma 3, we need only note that, from the definition of B in (5),

lim [ Bx = exp(—dt?/2).

Proor oF LEMMA 4. Using the result of Lemma 3 in (4), the integrand is a multiple of
a normal probability density and easily integrated. The result is non-degenerate if

Hm(Y p pre~" + Y ur npte="Px) — (lim Y »r pre~"P#)% # 0.

ProoF oF THEOREM 3. A result like Theorem 3 might be expected from the Poisson
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approximation to the binomial, but this result follows even if the p:’s are not small. Again
we need to distinguish the two types of indicies in (6).

EN)/n=Yp:(l —pe)" . Yupe(l —pr)" ' < Y uprexp(—pr(n — 1)) = 0.

Thus Y7 pr(1 — pr)" ' — c3. Now
(7) S ipe(l — pr)" ' = Y1 prexp(—pr(n — 1)) < exp(sups pz) Y 1pre” "

Also ¥ pr(l — pr)" ™' = Y1 prexp(—pe(n — 1)/(1 — pz)) since 1 — ¢ = exp(—t/(1 — t)) for
0 <t <1 (Feller, 1968, (12.26)). Note if p; = 1 the result holds anyway.

Yrpe(l — pp)" ' = Y1 prexp(—npr/(1 — supipr)) = Y1 prexp((—npx)(1 + 2 supzp:))
for all large n since sup;pr — 0
(8) = exp(—2n(supzpr)®) X1 prexp(—npe)

and the first factor approaches one by the definition of I. Combining (7) and (8) yields
31 pre " — c3. Noting Y ;s pre ™ — 0 yields }, pre " — cs. The second part is similar.
To prove Theorem 4, note Z = Zy + Zyc. From the above the limit distributions of Z and
Zuc follow. Using Lemma 5 of LeCam (1958), the result follows.

In Lemma 5 we see why ¢; cannot be 0 or 1. The variance would be 0 and the scale
factor, n'/%, incorrect.

5. Applications. The following example is from one of many areas in which the
coverage of a sample is of great interest, namely the historical analysis of ancient coin
hoards (see the American Numismatic Society bibliography, 1974). Coins are classified by
die variety and the completeness of a hoard as measured by its coverage yields information
about coinage in antiquity. Since coin hoards cannot be increased in size to improve the
accuracy of point estimates, confidence intervals are necessary supplements to the usual
point estimates.

The following typical data are from Holst (1981) and are from a hoard of Indo-Greek
coins, N; = 156, N, = 19, N; = 2, N, = 1, and N; = 0 and n = 204. From the corollary to
Theorem 1, an approximate 95 per cent confidence interval for C has endpoints .235 +
.083. We return to this example in Section 7.

Harris (1959, page 548), without attempting to obtain a limiting distribution, approxi-
mated E((C — C’)?) by

(&) E(N: + 2N;)/n?,

which omits the third term in the correct result. In this example the omission would make
the confidence interval 61 per cent wider, a serious loss.

6. Comments. C’is not unbiased. A short calculation shows E(C’ — C) is approxi-
mately —2E(N;)/(n(n — 1)). Users may wish to incorporate this factor into their calcula-
tions.

It is interesting to note that as E(N;)/n — 1 the variance tends to that of the “low
coverage” result of Esty (1982), where 2N./(n — 1) estimates C and ¢, would be 1. In that
context Var(n(2N,/(n — 1) — C)) ~ Var(2N,) ~ 4E(N:) since N; is asymptotically Poisson
distributed. Also E(N;) ~ n and n — (E(N; + 2N;)) — 0. Thus

Var(n(C’ — C)) ~ E(N; + 2N;) — E*(N,)/n  from Theorem 4
~n —[(n — 2E(N:))*/n] — 4E(N:).

If the third term is omitted as in (9), for small ¢; the variance approximation is far too
large (see Esty, 1982, example 1).
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7. Comparison with the occupancy problem. If data is actually from a parametric
family, we expect the appropriate parametric theory to outperform nonparametric theory.
Nevertheless, the intervals from the corollary compare very favorably to the intervals for
the case of equally likely classes, the classical occupancy problem.

If all & classes are equally likely, the distribution of the number of observed classes is
asymptotically N(k(1 — e™), ke >"(e™ — 1 — m)) where m = n/k (Weiss, 1958). To find an
approximate 95 per cent confidence interval for 2, the number of classes, solve for % in

(10) Na=k(1 —e™) + 1.96(ke *™(e™ — 1 — m))'?,

where N, denotes the number of distinct classes observed.

To compare intervals, suppose we create the ideal data based on n = 100 and 2 = 100.
With observed values taken to be their expectations, we would have N; = 37 (36.8), N; =
18 (18.4), N3 = 6 (6.13), N, = 1 (1.5) and ns = 1 (.5). Thus N, = 63 and N, = 37. Then C’
=1 - (37/100) = .63 and, from (10), E= 99.2, which is equivalent to € = .635. Note C =
.63. From the corollary we calculate the approximate 95 per cent confidence interval to be
(.479, .781), which is equivalent to & € (80.7, 131.5). On the other hand, using (10), we find,
with a great deal more work, the approximate 95 percent confidence interval (80.8, 128.3),
which is only slightly narrower.

Returning to the coin hoard data, if the classes were equally likely, our result would
correspond to an estimate of 757 and the interval (559, 1171). Under the restrictive equally
likely assumption, using (10), the estimate is 731 and the interval is (526, 1051). The results
are comparable. Since numismatists question the validity of the equally likely hypothesis,
the concept of coverage is more appropriate for discussing the completeness of a sample
than the number of dies, and the use of the result in this paper is to be preferred in
numismatic examples, as well as any others in which the equally likely hypothesis is false
or in doubt.
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