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A CHARACTERIZATION OF CERTAIN STATISTICS IN
EXPONENTIAL MODELS WHOSE DISTRIBUTIONS DEPEND ON A
SUB-VECTOR OF PARAMETERS ONLY

By SHauL K. BAR-LEV

University of Haifa, Israel

Let W be a (¢ + r)-dimensional random (column) vector with distri-
bution F}” belonging to a (¢ + r)-parameter exponential family, II =
(FY:£ € @ C R*"). Let u be a o-finite measure which dominates IT such
that for all £ € ©, F¥ has a density, with respect to g, of the form fW(w:¢) =
h(w) exp{¢’w + c(§)}. Consider the partitions W’ = (U’, T’) and ¢ =
@, v'), where U, 6 € R* and T, » € R". It is proven that the conditional
covariance matrix of U given T = ¢ does not depend on ¢ for almost all values
of ¢ if and only if there exists a unique measurable vector-valued function g(7T')
= (g@(T), -+, g(T))’, such that the random vector Z = U — g(T) is
stochastically independent of T under any member of II. Furthermore, the
distribution of Z is shown to constitute a 2-parameter exponential family with
0 as the vector of natural parameters. Further results are obtained and
exemplified.

1. Introduction. Let W be a random vector taking values in a Borel set % of a
(k + r)-dimensional Euclidean space with associated o-field & and a (k + r)-parameter
exponential family of distributions IT = {F}:¢£ € @ C R**"} defined on (%, «¢). Let p be a
o-finite measure defined on (%, &) which dominates IT such that for all £ € , F}" has a
density, with respect to (w.r.t.) g, of the form

(1.1) Y (w:¢) = h(w) exp{¢'w + c(£)}

(where £’ denotes a transpose of a (k2 + r) column vector £). It is assumed that the
representation given by (1.1) is minimal and that IT is regular (i.e., the natural parameter
space § is a non-empty open subset of R**"). The assumption that I is regular is made for
simplicity only as the results in the sequel hold on int .

Consider a partition of W and ¢ into W’ = (U’, T"), £’ = (¢’, v’) where U, § € R* and T,
vyER" (k=1,r=1). Let © and T stand for the projections of @ onto § = (6y, --- , 6z)" and
v = (v, -+-, »,)’ respectively, and denote by I17 = {F7:£{ € } the family of marginal
distributions of 7.

The present study is concerned with the problem of delineating cases where certain
kinds of statistics are available whose distributions depend on a subvector of parameters
only. The motivation for such a study has been stimulated by Lehmann’s results on the
construction of UMPU tests based on a single test statistic (c.f. Lehmann, 1959, Chapter
5, and also a discussion in Bar-Lev and Reiser, 1982). Consider the case where 2 = 1, r
being arbitrary. The problem in question is of testing 8, = 8% vs 6, 69, where 61 is
specified. Theorem 1 of Lehmann (1959, Chapter 5) states that if there exists a statistic of
the form Z; = a(T)U;, — gi(T), where a:;(T) > 0 a.e. I1%, such that Z, and T are
independent under Il = {F¥:£ = (6, »')}, then a UMPU test for such a hypothesis can
be given in terms of the statistic Z;. It turns out that if Z, is independent of T' not only
when 6; = 6% but under any member of I, then Z; can also be used for deriving UMPU
tests for certain other composite hypotheses concerning 6, that are indicated in the above
reference. At the end of Section 2 we show that in such a case, i.e., where Z; and T are
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independent under II, then a;(T) = constant a.e. II7 and this constant can be chosen to
be one without any loss of generality. Thus the statistic Z, is reduced to be of the form U,
— g1(T). The general question then arises: For arbitrary % and r, what sort of subfamily of
(1.1) admits a similar property to that for the case £ = 1 and r is arbitrary. The results of
Section 2 supply an answer to this question. These results are mainly derived by imposing
some conditions on the structure of the covariance matrix, say V[U|T = t], of the
conditional distribution of U given T = ¢t. Theorem 2.1 shows that V[U| T = t] does not
depend on ¢ for almost all values of ¢, if and only if there exists a unique (up to an affine
transformation) vector valued function g(T) = (g:1(T), - - - , 8(T))’ such that the random
vector Z = U — g(T) is stochastically independent of T under any member of I1. Moreover,
the distribution of Z does not depend on » and constitutes a k-parameter exponential
family with 6 as the vector of natural parameters. Further results are obtained in Theorem
2.2 by requiring that only some elements of V{U| T = ¢] do not depend on £. In Theorem
2.3 we treat the case where V[U| T = t] is functionally independent of £ on some Borel set
of values of £. We end Section 2 by proving our claim connected with Lehmann’s results
(see above). Some illustrative examples are presented in Section 3. It should be emphasized
that even though we started our discussion with hypotheses testing considerations, the
problem of delineating statistics whose distributions depend on a sub-vector of parameters
is of a more general interest, and the derivation of UMPU tests represents only one of
many possible applications of this effect.

2. The main results. Let (% %r) be the range space of T. By well known results
connected with the exponential family (see Lehmann, 1959, Barndorff-Nielsen, 1978,
Andersen, 1973, and Johansen, 1979), it follows that the members of I17 and of the family
of conditional distributions of U given T = ¢ have the forms

(2.1) dF7(t:0, v) = exp{v't + c(0, v) +log b(8, t)} dN*(t)
(2.2) dFU'"u:0) = h(u, t) exp{0’u —log b0, t)} d\: (u),
where

(2.3) b,t)= J h(u, t) exp{8'u} dA (u)

and the existence of the measures A\* and X, is ensured by Lemma 8 of Lehmann (1959)

(see also Andersen, 1973).

Since (2.2) constitutes a k-parameter exponential family with § as the natural parameter
vector, we obtain the following expressions for the mean vector, the covariance matrix and
the characteristic function of the conditional distribution of U given T = ¢, which are valid

forall € O and a.e. II™:
(2.4) E[U|T=¢t]=2alog b(0,1t)/e0, V[U|T=t]=8210g b, t)/a60’a0
(2.5) CE{e¥Y|T=t)=b@0+1ist)/b0,t), s= (s, --,5)"

The results in the sequel are mainly connected with imposing conditions on the form of
VIU| T = t]. As the methods of proof for the theorems and corollaries following Lemma
2.1 and Theorem 2.1 are quite similar to those of the latter, their proofs are omitted for the
sake of brevity.

LeEmMma 2.1. V[U|T = t] depends on 0 only a.e. 17 < log b(4, t) is of the form

(2.6) log b(0,t) = H(@) + 0'g(t) +r(),
where H(0) is a function of § only and g(t) = (g1 (¢), --- , &(t))’ and r(¢) are functions
of t only.

ProoF. The non-trivial part of the lemma is =>. Assume that V[U|T = t] =
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9%H(0) /06’30 for some function H(f), where the (i, j) element of the latter matrix, say
HY)(9), is equal to 9°H(0)/36:86;, i,j = 1, - - -, k. Let H?(8) denote aH(0)/86;,i=1, .-,
k. By (2.4), H"(9) = 9% log b(6, t)/30:80;, i, j = 1, -+, k and thus d log b(6, ¢)/36; = [
H (@) df; + si(0Y, t), where si(8Y, t) is a function of £ and 6 only through 89" = (6,,
v, 0i-1, 0541, -+ -, 0)". Since the si(8", t)’s are equal for all j = 1, - - -, % it follows that
sV, t) =gi(t)Vj=1, ---, k, where g(t) is a function of £ only, i.e.,

2.7) dlog b(0,t)/a0; = HY(0) + gi(¢), i=1,+-- k.

By similar argument we obtain log b(6, t) = H(0) + 0;g:(t) + m;(0?,¢t) fori=1, ...,
k. But by (2.7), am; (0, t)/90; = gi(t) forj#iandj=1, --. , k, = m:(09, t) = 0,g;(t) +
n;;(8%?, t) where n;;(8%”, t) is a function of ¢ and @ excluding the components 6; and 6.
Repetition of the same argument for all j i results in m; (09, t) = ¥ .:0,g;(t) + r(t), and
thus the desired result. 0

THEOREM 2.1. The following three conditions are equivalent:
(i) log b(6, t) is of the form given by (2.6).
(i) Z= U — g(T) and T are stochastically independent under any number of II for
some function g(T).
(iii) The distribution of Z depends on ¢ only through 6.
Moreover, when these conditions hold, the distribution of Z constitutes a k-parameter
exponential family with natural parameter vector 0 and characteristic function
exp{H (0 + is) — H(6)}. :

ProoF. We first show that (ii) < (iii) and then (i) & (ii).

(iii) = (ii): For fixed 6, II” is complete and T is sufficient for I, whereas the
distribution of Z is independent of ». Basu’s Theorem (see Sverdrup, 1966, Theorem 10) is
now applicable and thus Z and T are independent.

(i) = (iii): Since the members of II are equivalent, no two distributions of Il are
singular (for definition, see Sverdrup, 1966, page 318). Also, for fixed 6, T is sufficient for
II, whereas, by assumption, Z is stochastically independent of 7. We can now apply
another theorem due to Basu (see Theorem 11 of Sverdrup, 1966) to obtain that the
distribution of Z is independent of ».

(i) = (il): Using (2.6) in (2.5), we obtain

(2.8) E{exp(is’U)|T =t} =exp{H(@ + is) — H@) + is'g(t)}
or

(2.9 E{exp[is"(U — g(TN]| T =t} = exp{H@O + is) — H@O)},
from which it follows that Z and T are independent and that

(2.10) ¢%(s) = E {exp(is’Z)} = exp{H (0 + is) — H(@)},

a function of 6 only.

Since FU(u:0) is a k-parameter exponential family, log b(f, ) is analytic in , and
thus, by (2.6), H(6) is analytic also. This, together with the structure of ¢Z(s) in (2.10), are
shown by Patil (1963, 1965) to characterize a k-parameter exponential family with 6 as its
natural parameter vector.

(ii) = (i): We have

(2.11) log E{exp(is’Z) | T =t} = —is'g(t) + log E{exp(is’U) | T =t}
= —is'g(t) +log b(d + is, t) —log b0, t),

which, by assumption, does not depend on ¢. Thus, the second order partials 8> log b (6 +
is, t)/9s:8s;, 1,7 =1, - -+ , k, are also independent of ¢. This, as in the proof of Lemma 2.1,
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leads to
log b(0 + is, t) = H(0 + is) + (0 + is)'m(t) + r(t), m(t) = (m1 (), -+ , ms (£))".

Substituting this expression for log &(8 + is, t) in (2.11), we obtain that m (£) = g(t)aeIIT
and thus the desired result. 0

REMARK. If one is interested in constructing UMPU tests for hypotheses concerning
one of the components of 6, say 6, the tests can be based on the conditional distribution
of Z, given (Z,, ---, Z)'. This follows since, by the above theorem, the family of
distributions of Z is k-parameter exponential, so that the results of Lehmann (1959,
Chapter 4) are applicable.

The following two corollaries are obtained as straightforward applications of Theorem
2.1

COROLLARY 2.1. Assume that log b(6, t) is of the form given by (2.6). Let 1 < pP=k
and1=1i < ... <i, <k be arbitrary, and Ci, =+ + , ¢; be constants. Then & (T) = ¢, for
J=1,.-.,pae 7 if and only if the random vectors U* = Ui, -, U) and T are
stochastically independent. In particular, for the case p = k, U and T are independent
such that their marginal distributions are k and r-parameter exponential families with
0 and v as their natural parameter vectors, respectively. [

Corollary 2.1 supplies trivial applications of Theorem 2.1 for the case D = k, just by
taking U and 7, which are distributed as % and r-parameter exponential families respec-
tively, to be stochastically independent.

COROLLARY 2.2. Letlog b(6, t) be of the form (2.6). For arbitrary 1 < p=<k—1and
lsi< .o <p=kleT’ = (T, ---, T;)’ and T™ denote the vector of components of
T not included in T?. Then g(T) is a function of T only through T? (a.e. II7) < U and
T are conditionally independent given T? = t*. [

We proceed by treating the case where only a principal sub-matrix of VIU|T = ¢t], of
order p X p(1 = p < k — 1), depends on 8 only. For simplicity, we consider the case
where p = 1 (the case where p > 1 can be constructed by a similar argument). Assume
that for fixed j, the (j, j) term of V[U|T = ¢] is a function of only (a.e. ITI7), i.e.,
d*log b(0, t)/ 80;-" = HY%(@). As in the proof of Lemma 2.1, this assumption can be shown
to imply that

(2.12) log b0, ¢t) = H@) + 6,209, ¢) + r@Y, ¢).

Thus we have the following theorem analogous to Theorem 2.1.

THEOREM 2.2. The following two conditions are equivalent:
(i) log b(8, t) is of the form given by (2.12).
(i) V;=U;—g(0", T) and T are independent for some g(8", ¢).
Moreover, when these conditions hold, the distribution of V; depends on 6 only and
for fixed 8 constitutes a 1-parameter exponential family with 6, as the natural
parameter. [

Note that if in the above theorem g(8", t) = s(¢) where s(¢) does not involve 09, then
T and Z; = U; — s(T) are stochastically independent and the distribution of Zj depends on
£ only through 6.

In the above developments, the conditions imposed on the form of V[U | T = t] were
required to hold for almost all values of £. Weakening the requirement so that it holds on
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only a Borel set B € %7, for which P;(T € B) > 0 for some ¢ € Q (and thus for all £ €
), still enables us to obtain results similar to those obtained above. The following theorem
summarizes this idea.

THEOREM 2.3. Let B be a Borel set of values of t for which P:(T € B) > 0,1(8, t) a
function of 0 and t and g(t) = (gi(t), ---, g(t)). Then the following conditions are
equivalent:

(i) log b(0,t) = (H(0) + 0'g(t) + r(t)}Is(t) + log L(8, t)I5. (t), where Is(t) is the indicator
function of the set B and B° is its complement.

(i) VIU|T = ¢] = (HP@)Is(t) + (8% log 1(8, t)/00:80))I5.(2), i,j = 1, - -+, k, where
(H%(9)) and (3> log L(8, t)/80,86;) are matrices of second order partials of H(0) and
log 1(8, t), respectively.

(ili) Z = U — g(T) and T are conditionally independent given B.[0

We now consider the problem raised in Section 1, concerning Lehmann’s results on the
construction of UMPU tests based on a single test statistic. For the case treated by
Lehmann (i.e., 2 = 1 and r arbitrary), we assume that T'and Z; = a:(T)U: — g1 (T), (a:(T)
> 0 a.e. I17) are independent under any member of IT. Then, a;(T') = constant (a.e. I17),
as is shown below. To simplify the derivation, without losing the essence, we further
assume that Z; possesses a finite second moment. A more involved proof is available
without this condition. Now, V(Z;| T = t) = ai(t)V[Ui| T = t] = a’ (t) 8* log b(6:, t)/363
which, by the independence of Z; and T, depends on 6, only. This, as in Lemma 2.1, leads
to the relation 9 log b(6:, t)/36: = H®(6,)/ai(t) + mi(t)/a3(t), where m;(¢) depends on
tonly. Since E[Z,| T=t]=H™(6:)/a:1(t) + m1(t)/a:(¢) — gi(t) is functionally independent
of ¢, we obtain that a,(¢) = ¢; and g1 (¢) = m1(t)/c1 + ¢ for arbitrary constants ¢; and c,.

3. Examples. Before providing some illustrative examples, we note that in order to
employ the above results for specific distributions, it is sufficient to derive only the
marginal distribution of T, from which log b(0, ¢) can be obtained (see (2.1)). Then if
log b(d, t) is one of the required forms indicated in Section 2, we can derive the structure
of Z and its characteristic function.

The set of examples given below is divided according to three different forms (cases) of
log b(8, t) given by (2.6), (2.12) and (i) of Theorem 2.3, respectively.

Case I. log b(8, t) is of the form given by (2.6).

We first treat this case for 2 = 1, r = 1. Let a(x) exp{fuvi(x) + vv2(x) + c(6, v)} be a
density w.r.t. the Lebesgue measure on the real line and Xj, - - - , X, be i.i.d. r.v.’s from this
density. Set U = Y -1 v1(X;), T = ¥}-1 v2(X;). Bar-Lev and Reiser (1982) prove that
log b(6, T) is of the form specified by (2.6) if » can be represented as —¢’(n), where n =
E[v:(X1)] and ¢’(n) = dp(n)/dn for some function ¢(n). Under this representation of »,
one obtains g(T') = nep (T/n) and H(0) = nM () — M (nf). The normal, gamma and inverse
Gaussian distributions were shown to admit such a representation. However, the following
two examples show that this condition for the structure of » is only sufficient but not
necessary for log b(d, T') to be of the form (2.6).

ExaMPLE 1: Let X and Y be independent r.v.’s with densities (w.r.t. Lebesgue measure
on (0, )), _
Axian) = x97%e /T (), [(y:a0) =y 'e™/T (az),
respectively.
(i) Set W = (U =1log X, T = log(Y/X)); 0 = a1 + az, v = az(0 > 0 > » > 0); the
density of W’ (w.r.t. Lebesgue measure on R?) is of the form (1.1) with c(f, ») =
—log I'(@ — v) — log T"(v).



CHARACTERIZATIONS IN EXPONENTIAL MODELS 751

(i) f7(t:0, v) = exp{pt + c(6, v) — O log(l + €*) + log ' ()}, —wo<t<o logb(d,t) =
—0log(1 + €’) +log T'(8); g(t) = —log(1 + e'); H(O) =log T'(4).

(ili) Z=U - g(T) =log X + log(1 + e”) = log(X + Y) is independent of T' = log(Y/X).

(iv) @%(s) =T(0 + is)/T'(6).0

ExaMPLE 2. Let X and Y be independent r.v.’s having exponential distributions with
expectations 1/a and 1/, respectively.
i W=U=X,T=Y—-X);0=—(a+B),v=—LO0>r>0);cv)=1loglr—0) +
log(—v»).
(i) f7(2:0, v) = exp{vt + c(, v) — OtI_w(t) — log(—0)}; log b(9, t) = —log(—0) —
Otl w0 (2); g(8) = —tl(—w0) (¢), H(F) = —log(—0).
(iii) Z=U—-g(T) =X+ TI(—0,(T) = min(X, Y) and T = Y — X are independent.
(iv) ¢%(s) = exp{—log[—(8 + is)] — log(—0)} = (a + B)/(a + B — is), i.e,, Z has an
exponential distribution with expectation 1/(a + 8).0

ExaMPLE 3. (k =2, r = 1). Consider the linear regression model treated by Lehmann
(1959, Chapter 5.7, pages 180-181). Let Y7, - .-, Y, be independent where Y; is distributed
as N(a + Bx;,0%).

(i) W = (Ul, U,,T) where U, = } 71 Yzz, U, =Y xiYi, T= Z'i'=1 Yi; 0, = —1/(202),
= B/Oz, V= a/02; 0(01, 02, l/) = nv2/(401) + V02 =1 x,/(201)
+ 02 =1 x,/(401) + (n/2) lOg( 201)
(i) T~ N(na + B Yi-1 x;, no?),
f7(t:0,, 6;, v) = exp{vt + c(01, 0, v) + 01t2/n + 65t Y11 xi/n
— [03/(461)] 2,_1 (x; — %)% — [(n — 1)/2] log(—26:) — log(27n)/?};
g(t) = (&(t), &), &) =+t/n, gz(t) =ty xi/m;
H(6,, 6;) = —[0%/(46,)] 2, 1 (i — %,)2%— [(n —-1)/2] log( 26,) — log(2';rn)1/2
(iii) Z" = (Z1, Z;), where Z, = U, — g1(T) = 37, (Y; — Y,)? and Z; = U, — g:(T)
=301 (i — %)Y — Y',,), is independent of T=Y11Y.
(iv) @%(s) = exp{H (61 + is1, 0, + iss) — H(6y, 65)).0

For the discrete case it has been conjectured that, unless U and T are stochastically
independent, there does not exist a statistic of the form Z = U — g(T') which is ancillary
for » in the presence of 6 (i.e., whose distribution depends on 6 only). The following
example of a discrete distribution, suggested to the author by Professor Lawrence D.
Brown, demonstrates that this conjecture is not valid. (Professor Brown has suggested a
general method for constructing further examples of this type. This will not be discussed

here.)

ExampLE 4. (k=1,r=1). Let W = (U, T) have a probability function
%T(u, t:0, v) = exp{Ou + vt + c(0, )}, c(@,») = —log{(1 + €’)(1 + €°**)}

w.r.t. a counting measure on the set {(x, t):(u, t) = (0, 0), (1, 0), (1, 1), (2, 1)}.
(i) f7(¢:0, v) = exp{pt + c(8, v) + 0t + log(1 + €°)} o1, (£);
log b0, t) = 0t + log(1 + e%); g(t) =t, H(@) = log(1l + €°).
(i) Z= U — T and T are independent r.v.’s; @Z(s) = [1 + exp(8 + is)]/[1 + exp(6)]. O

CaskE 11 log b(6, t) is of the form given by (2.12).

ExaMPLE 5. (k =3, r = 2). Let {(X;, Y:)'}?-1 be a random sample from a blvarlate
normal distribution with unknown parameters E (X;) = ¢, E(Y;) = 9, V(X;) = 0% V(Y:)
= 7% and |p| # 1, whose exponential representation is given by Lehmann (1959, Section
5.11).

@ W=U,T) U =(U,U,Usy); T"=(T1, T) where U =} -1 X; Y;,
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U2 = ?=1 Y,2, U3 = 2?_1 Yi, T1 = ?=1 Xi, T2 = ?=1 X?, 0' = (01, 02, 03),

v’ = (v, 1) where ) = p/[o7(1 — p?)], 6, = —[272(1 — p?)]7,

05 = {n/7* = &/(07)}/(1 = p?), 1 = {£/0® — mp/(07)}/(1 — p?),

vy = —[20%(1 — p?)]7L

Expressions for ¢ (6, ») and H(6) will not be given for sake of brevity.

(ii) fT"2(ty, t2:0, v) = exp{rits + va2ts + c (0, v) — [6105/20,1T: — [63/(46:)1T>
+ H(0) + a(ty, &)} e/n,0) (t2) o0 (t1),

where a (¢, t;) = log{[nt: — t3]"9/2/(nty)*2/%}.
(iii) Applying Theorem 2.2 for j = 3, we obtain g (0, ¢, t,) = —(6,/26,)t; and r(8®, t., t2)

=[—60%/(462)1t: + a(t, t;). Thus, Vs = Us —g(0°,t1,t) =71 Yi+ (6:/202) Yi=1 X;

=¥"1-: Y, — (p7/6) Y1 X; and T are independent. O

Case III. log b(6, ¢) is of the form given by (i) of Theorem 2.3.

EXAMPLE 6. (k =1, r =1). Let Y be exponentially distributed with expectation 1/«
and let X, independent of Y, belong to a one-parameter exponential family with density,
w.r.t. the Lebesgue measure on (0, ») of the form A (x) exp{yx + d(y)}. We assume that
the natural parameter space of the latter density is a nonempty interval of R.

i W=U=X,T=Y—-X); 0=y—a,v=—a; c(f,v)=1log(—r) +d(@ — ).
(i) f7(¢:6, v) = exp{vt + c(8, v) + [6-0 — d(0)] 10, (¢) + [log 2 h(x)e®dx]l—wo) (t)).
(iii) By applying Theorem 2.3 we obtain that for ¢ > 0, g(¢) = 0 and thus Z = U — g(T)
=X and T = Y — X are conditionally independent given 7'> 0 (Y > X). 0O
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