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SIMULTANEOUS INTERVAL ESTIMATION IN THE GENERAL
MULTIVARIATE ANALYSIS OF VARIANCE MODEL

By PETER M. HoOPER

The University of Alberta

Let M € M (m, p) be the matrix of means of interest in the GMANOVA
problem. Our main results characterize all confidence sets for M in a given
class (invariant plus a weak additional restriction) that are exact for the
families of parametric functions a’Mb for all a € R™, b € R” and tr N'M for
all N € M (m, p). The corresponding families of smallest exact simultaneous
confidence intervals are also given. Similar results are obtained for the
MANOVA problem under triangular group reduction.

1. Introduction. Wijsman (1979, 1980) developed a general method for constructing
smallest simultaneous confidence sets for parametric functions and applied this method to
the MANOVA problem, as well as to several other problems in multivariate analysis. The
notation, definitions, and results of Wijsman (1980) are assumed known. Our main purpose
is to extend Wijsman’s results to the general multivariate analysis of variance (GMA-
NOVA) model of Potthoff and Roy (1964). Along with others, the confidence set deter-
mined by Roy’s maximum root criterion is found to be exact for the families of parametric
functions considered. A class of functions used in our characterizations is described in
Section 2. Some new results on the MANOVA problem are given in Section 4.

2. Upper and lower self-reproducing functions. In this section we define a class
of pairs of indicator functions used in characterizing exact confidence sets and correspond-
ing smallest exact simultaneous confidence intervals. Let R" U {x} be the one point
compactification of R".

DEFINITION 2.1.  If /and u are functions mapping R" U {} into {0, 1} then ¢ is lower
self-reproducing, u is upper self-reproducing, and ¢and u are related, provided

(2.1a) /(x) = max{u(y) :x’y=1} and
(2.1b) u(x) =min{/(y) : x’y= 1}
for all x € R" U {oo}.

In the above definition we adopt the convention r.c0 = r/0 = r + o = o for all r € R,
so that £(0) = u(w) and u(0) = ¢(«). Definition 2.1 is extended to include functions of
matrices A € M(m, n) by treating these as functions of the (mn) column vector vec A.
Note that (vec A)’ vec B = tr A’B. ,

We observe immediately from (2.1) that ¢(u, respectively) is increasing (decreasing)
along rays emanating from the origin. Note also that if (£ u) satisfies (2.1) then so does
(4, w1), where 4 =1 — u and u; = 1 — £ Thus ¢is lower self-reproducing if and only if 1
— ¢is upper self-reproducing.

LEMMA 2.1.  The following are equivalent: (i) u is upper self-reproducing; (ii) for some
&:R" U {o} — {0, 1}, u(x) = min{g(y):x’y = 1} for all x € R" U {»}; (iii) u(x) =
min,y=1Max,.=1u(z) for all x € R" U {x}.
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Proor. That (1) = (ii) is immediate. That (ii) = (iii) follows from the fact that we
have ¥ = min max u for arbitrary u and g = max min g for arbitrary g. To see that (iii)
=> (i), define /by (2.1a) and observe that (2.1b) holds. O

REMARK 2.1. For x & {0, =}, let #(x) denote the set of closed half-spaces not
containing 0 determined by a hyperplane passing through x. Lemma 2.1 shows that u is
upper self-reproducing if and only if #(0) = max{u(z):z € R" U {}} and

(2.2) u(x) = minge , ymax,gu(z) forall x & {0, o}.

THEOREM 2.1. Let u be the indicator function of C, where 0 € C C R". If u is upper
self-reproducing then C is convex. If C is convex and either open, closed, or strictly
convex then u is upper self-reproducing.

Proor. Suppose (4 u) satisfies (2.1) and u(x) = u(z) = 1. Then we have ¢(y) = 0
implies max{x’y, z’y} < 1, which implies (ax + (1 — a)z)’y < 1 for 0 = a = 1. So we have
ulax + (1 —a)z) = 1.

Conversely, suppose C is convex and either open, closed, or strictly convex. We show
that u satisfies (2.2). Since we have ¥ < min max u for u arbitrary, it suffices to establish
(2.2) when u(x) = 0; i.e., for x & C, x # o, we must show that there exists H € J#(x) with
H N C empty. This follows, with a small argument, from the fact that 0 € C and from the
Separating Hyperplane Theorem; see, e.g., Ferguson (1967). O

ExAMPLE 2.1. Put B = {y € R”:||y|| =1} and let A € M (n, p). If u is the indicator
function of the n-dimensional ellipsoid AB? = {Ay:y € B”} then u is upper self-
reproducing with related £ the indicator function of {x € R":x’AA’x = 1}. We note that
if AA’ is nonsingular then AB” = {x € R": x'(AA") 'x < 1}.

ExAMPLE 2.2. Partition x € R" as x’ = (x1, -+, x}), where x, € R™and } n, = n. If
u is the indicator function of {x € R":||x.|| =< ¢, i =1, ..., k} then u is upper self-
reproducing with related ¢ the indicator function of {x € R":Y ¢ | x.|| = 1}.

3. GMANOVA. Following Marden (1980) and Hooper (1982), we consider the GMA -
NOVA model in a partially reduced canonical form:

[X: : Xo] ~ Noxipray[M: 0], [, ® Z), S~ Wpiylv, Z)

with [X;:X:] and S independent; i.e., the m rows of [X; : X;] are independent multivariate
normal with common covariance matrix £ and S has a Wishart distribution with mean
v3. We assume that X is positive definite and that we have v = p + ¢. Put X = (X}, X», S).

Consider the group G = M(m, p) X &/ X O(m), where &/ C GL(p + q) consists of all
lower block triangular matrices A = (A,,) with A;; € GL(p), A2: € GL(q), and A;» = 0. The
group actions are [X; : X,] — I"[X:: X,]A + [F:0], S— A’SA, M — I"MA,, + F, £ — A’ZA
for (F, A, I') € G. Partition S = (S,;) with S;;p X p and S::¢ X ¢. A maximal invariant
function of (X, M) under M (m, p) X </ is

(T, To) = (X1.2S11"2X".2, X282 X5)
where
Xi2=(In+ To)"*(Xi — M — X,8% S21), Sii.o =S — 81282 Sar.

The action of O(m) on (T, Ty) is T1 — I'T\I', T, — I"ToI". A maximal invariant is
(5T T2, A(T)), where A (T) is the vector of ordered eigenvalues of T, and the columns of
T, € O(m) are the eigenvectors of T5; i.e., I'sToI", = diag(A (T%)). Put

(3.1) W =TI, + To) "X, — M — X>85 S»1) S1i/4.
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Since the group G acts transitively on the parameter space, the maximal invariant
(WW’, X\(T2)) is an invariant pivotal quantity; see Wijsman (1980, Lemma 3.1). From
Lemmas 3.1 and 3.3 of Kariya (1978), we have Xi.2 ~ Nuyxp(0, In @ 211.2), S11.2 ~ Wp(r — g,
Si.2) and Xi.s, Sii.2, and T, are independent. Now I'; is a random orthogonal matrix
depending only on T5, so I', X ., has the same distribution as X;., and is independent of 7.
Consequently WW’ is independent of T with the same distribution as T'.. The density of
WW’ for m < p is given in Theorem 4.2 of Olkin and Rubin (1964).

Our results will be given in terms of indicator functions ¢ = ¢(X, M) of confidence sets.
We write C,(X, ) = {M:¢(X, M) = 1}. A set estimator ¢ is invariant under G if and only
if
(3.2) (X, M) = F(WW’', A(T3))

for some function F. We restrict attention to invariant set estimators. In addition we
require that set estimators ¢ for M be star-shaped, meaning that the sets C, (X, -) are star-
shaped about X; — X»S5'Sy,, the usual point estimate for M; i.e., M € Cy(X, -) implies a M
+ (1 — a)(X: — X285%'S21) € Cy(X, -) for all 0 = a < 1. If ¢ satisfies (3.2) then ¢ is star-
shaped if and only if F(aWW’, \) is decreasing in @ = 0 for each fixed value of
(WW’, X). The star-shaped restriction allows a much simpler characterization of exact set
estimators. A characterization without this restriction is derived in Lemma 4.4.1 of
Wijsman (1980) for the MANOVA problem under triangular group reduction. A corre-
sponding result for the GMANOVA problem is given in Hooper (1981). A complete class
theorem of Marden (1980) implies that invariant set estimators which are not star-shaped
are inadmissible within the class of invariant set estimators.

Wijsman (1979, 1980) considered the following families of parametric functions: {a’M:
a€ R™), {(Mb:b€ R”), and {tr NM:N € M'(m, p)}, where M"(m, p) is the set of m X
p matrices of rank at most . Writing N = ab’ shows that {tr NM:N € M'(m, p)} =
{a’Mb:a € R™, b€ R?”}. Simultaneous confidence regions for the vector-valued functions
a’M and Mb seem to be of interest primarily for their application in related simultaneous
testing problems. Our results presented here concern the families of real-valued functions
tr N’M, which are more directly useful for estimation. Results for {a’M} and {Mb} are
given in Hooper (1981), where the following implications are established for invariant star-
shaped set estimators: ¢ is exact for {a’Mb} if and only if ¢ is exact for {a’M}; if ¢ is exact
for {a’Mb} then ¢ is exact for {Mb}; if ¢ is exact for {a’Mb} then ¢ is exact for {tr N'M:
N € M’(m, p)} for all r = 1. The last statement is a consequence of the following general
result.

LEMMA 3.1. Let Y have distribution Py, let y = y(8) be a parameter of interest, and
let {{,:i € I} be a family of functions of v. If we have I, C I, and ¢ = $(Y, y) is exact for
(¢, :1 € I} then ¢ is exact for {{,:i € I,}.

Proor. For an arbitrary index set I, let { = {(Y, ¢, i) be a simultaneous set estimator
for {{,:i€I};ie,foreachi €I, {{:{(Y,, i) =1} is a confidence set for ,(y). The T and
T ! operations relative to {y,:i € I} are defined as follows:

(3.3) ¢=To if (V.4 0) = max{e(Y, v) () =¥},
o=T7"¢ if ¢(Y,y) =min{¢(Y, d(y), i) :i€I}.

Theorem 2.3 of Wijsman (1980) shows that ¢ is exact for {¢,:i € I} if and only if ¢ is self-
reproducing relative to 7 and T7; i.e., ¢ = T 'T¢. Let T, and T, denote, respectively,
the T'and T ! operations relative to {y,:i € I}, j = 1, 2. We must show that ¢ = T';'T}¢.
By assumption ¢ = T7'T\¢, so

(Y, vo) = mineymax{¢(Y, y) : du(y) = $u(yo)}
= min,el_,max{q)(Y, Y) . ‘PL(Y) = \Pl(‘YO)}:
which gives ¢ = T';'T»¢. But ¢ < T';'T»¢ holds for ¢ arbitrary. [
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The following lemma concerns the usual partial ordering of nonnegative definite
symmetric matrices: 2, < 3, if £, — X, is nonnegative definite. The proof is not difficult
and is omitted.

LemMaA 32. Given A € M(m, r) and B € M(m, p) with r < p, the following are
equivalent: (i) AA’ = BB’; (ii) A = BSQ for some @ € M(p, r) with QQ < I,; (iil) A lies
in the convex hull of {BR:Q € M(p,r):QQ =1,}; (iv) AB"C BB".

THEOREM 3.1. Fix 1 <r < min(m, p). If ¢ is an invariant star-shaped set estimator
for M then. ¢ is exact for {tr N'M:N € M"(m, p)} if and only if

(3.4) ¢(X, M) = min{u(B,\(T:)) : BE M(m, r), BB’< WW'}

where, for each A, the function u(-, \) defined on M (m, r) is upper self-reproducing and
right invariant under O(r). The simultaneous set estimator { that is smallest exact with
respect to ¢ is given by:

(3.5) $X, tr N'M, N) = ¢({tr N'(X; — M — X,8% S21)} A, A (T2))

for any A € M(m, r) satisfying AA’ = T%(I,, + T2)" "’ NS11.oN'(In + Ts)/’T's, where £(-, \)
is the lower self-reproducing function related to u(-, \).

Proor. The result is obtained by applying Theorem 2.3 of Wijsman (1980). Referring
to (3.1), we observe that, given the data X, a confidence statement about M is equivalent
to one about W. More precisely we define the correspondence: ¢(X, W) = (X, M),
{X, tr N'W, N) UX, tr N'M, N), N = I'(I,, + TZ)I/WS{{22 Observe that { = T4 if and
only if { = T¢, ¢ T-'§if and onlyif p = T7Y¢, and so ¢ is self-reproducing if and only if
¢ is self-reproducing. It is convenient to work with ¢ and { rather than with ¢ and {. Note
from (3.2) and (3.3) that the T'and 7 ~' operations involve only the first argument of F.
For notational convenience we suppress the second argument, A (7%), as well as the tildes.
Finally it is useful to work with functions of W instead of WW’. So we have o(X, W) =
F(W) where F is right invariant under O(p) and, by the star-shaped condition, F is
decreasing along rays (where this is understood to mean along rays emanating from the
origin).

We begin by assuming that ¢ = T 'T¢ and derive necessary conditions on the form of
¢ and { = T'¢. Applying the T operation (3.3) to ¢(X, W) = F(W) yields

$X, ¢, N) =max(F(W) :tr NW =1y} =max{F(W) :y " 'tr NW= 1}

since F is decreasing along rays. Observe that {(X, +y, NT) = ¢(X, ¢, N) for allT" € O( D)
since tr(NT)’W = tr N'WTI" and F is right invariant under O (p). For each N € M"(m, p)
there exists A € M(m, r) such that NN’ = AA’, or equivalently, N = [A:0]T" for some
I'e O(p). Thus ‘

(3.6) X, tr N'W, N) = ¢({tr NW)}'A)
for any A € M (m, r) satisfying AA’ = NN’, where ¢ is defined by
(3.7) /(A) =max{F(W) :tr[A: 0)W=1}, A#0.

If N = 0 then {tr N'W}'A = o so 0 never appears as the argument of #in (3.6). We define
¢(0) = 0. Note that ¢is right invariant under O(r) and increasing along rays.

Since ¢ was assumed to be self-reproducing, applying the 7'~! operation (3.3) to (3.6)
produces

F(W) = min{¢({tr T"[A : 0YW}™'4) : A € M(m, r), T € O(p))
= min{/({tr AWR)'A): A € M(m, r), ¥Q = I,)
=min{/(A) : tr AWQ =1, 2Q = I,).
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The second equality follows by writing IV = [©2:£2;] and the third from /increasing along
rays. Thus F(W) = min{u(WQ) : ¥’Q = I,} where u is defined on M (m, r) by

(3.8) u(B) =min{/(A) : tr A’'B = 1}.

Note that u is right invariant under O (r) (since /is) and, by Lemma 2.1, u is upper self-
reproducing. Theorem 2.1 shows that {B:u(B) = 1} is convex. An application of Lemma
3.2 then shows that

(3.9) F(W)=min{u(B) : B€ M(m,r), BB’ WW"}

and that AA’ < BB’ implies u(A) = u(B). Note that F([B:0]) = u(B) for B€ M(m,r). To
show that /is related to u, we refer to (3.7):

(3.10) {(A) =max{F([B: W\)):trAAB=1, Wi eM(@m,p —r)}
=max{F(B:0]):tr A’B= 1} = max{u(B) : tr A’B = 1}.

The second equality follows from (3.9); i.e., we have F([B: W;]) = F([B:0]). This
establishes the necessity of the stated conditions.

Conversely, suppose ¢(X, W) = F(W) and { are defined by (3.9) and (3.6) where u is
upper self-reproducing and right invariant under O(r) and ¢is the lower self-reproducing
function related to u. Then { = T'¢ follows from (3.10) and ¢ = T ~'{ from the fact that
T !¢ was computed to be the right-hand side of (3.9) with u defined by (3.8). O

The following two corollaries are obtained by applying Lemma 3.2 and Theorem 3.1
with r = 1.

COROLLARY 3.1. If ¢ is an invariant star-shaped set estimator for M then ¢ is exact
for {a’'Mb:a € R™, b€ R”} if and only if

¢(X, M) = min{u(x, \(T%)) : x € WB*}

where, for each \, the function u(-, \) defined on R™ is upper self-reproducing and
symmetric under reflection through the origin. The simultaneous set estimator { that is
smallest exact with respect to ¢ is given by:

(X, a’Mb, (a, b)) = £({a’(Xi — M — X585 S21)b) " {0'S11.20) T Iy + T2)"?a, A (T3))
where £(-, A) is the lower self-reproducing function related to u(-, \).

COROLLARY 3.2. Let ¢ be a set estimator for M of the form ¢ (X, M) = F(WW’, A(T%))
and suppose that F(WW’, \) < F(xx’, A) for all x € WB?. Let C(\) be the convex hull
of the closure of {x € R™: F(xx’, \) = 1}. The smallest closed confidence set containing
C,(X, ) that is exact for {a’'Mb:a € R™, b € R*} is given by {M: WB? C C(A)}.

The following corollary describes the class of exact confidence sets based on the
eigenvalues of T and T.. The proof is given in Hooper (1981). An equivalent characteri-
zation, using symmetric gauge functions, follows easily from Wijsman (1979, Theorem 4.2)
by observing the similarity between A (T}) and the pivotal quantity arising in the MANOVA
problem under full invariance reduction. Let R§. denote the closed ordered positive cone:
Ris={xE€R*:x,=-.- = x,=0}. Let d(W) € Rj., s = min(m, p), denote the vector of
ordered singular values of W;i.e., d(W) = {(A;(WW")}2 = {A(T1)}V% For x = (x1, -+,
x,)’ € R® and r < s define x” = (x1, ---, x,)’. Let G, be the group of sign changes and
permutations of the coordinates x; of x € R".

COROLLARY 3.3. Fix 1 <r < s. If ¢ is a star-shaped set estimator for M of the form
¢ (X, M) = F(A(T)), \(T2)) then ¢ is exact for {tr N'M: N € M"(m, p)} if and only if

o(X, M) = u(d(W)', A(T%))
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where, for each A, the function u(-, \) defined on R" is upper self-reproducing and
invariant under G,. The simultaneous set estimator ¢ that is smallest exact with respect
to ¢ is given by

UX, tr N'M, N) = ¢({tr N'(X; — M — X282 Sx1)} " d((In + Tp)/*’NSit%), A (T2))

where £(-, \) is the lower self-reproducing function related to u(-, \).

REMARK 3.1. If in the above corollary C, (X, -) is closed then ¢ is exact if and only if
(3.11) Ci(X, -) ={M:d(W) € C(A(T2))}

where, for each A, the set C(A\) C Rj. is closed, convex, and monotone with respect to
weak submajorization; see Marshall and Olkin (1979) for several equivalent definitions of
weak submajorization. The above statement is proved by observing that the symmetric
extension of C C R§. to R" is convex if and only if C is convex and monotone with respect
to weak submajorization.

When r = 1 the set (3.11) must take the form

(3.12) {M : X\i(Th) = c(A(T2))}.

The following family of simultaneous confidence intervals is smallest exact with respect to
(3.12):

(3.13) {@a’Mb : (a'(X; — M — X28% S21)b)* < a’(I, + T2)ab'Si1.2bc(A (T2))}

for all a € R™, b € R”. Roy’s maximum root criterion is (3.12) with ¢(A) constant. The
simultaneous confidence intervals (3.13) with ¢(\) constant were derived by Khatri (1966).

ExaMmpLE 3.1. Define T = (X, — M, X,) S™'(X; — M, X,)’ and consider the confidence
set

(3.14) {M : \(T) < c}.

Marden (1980) proved that (3.14) is admissible within the class of invariant confidence
sets. Some algebraic manipulation shows that T = (I, + T2)"*T\(I,, + T5)"/? + T: and that
(3.14) can be rewritten as

(3.15) (M : WW'’ < (I, + Do) "(cl,, — D2)(I, + D;)™""%)

where D, = diag(A1(Ts), -+, An(T2)). Corollary 3.2 shows that (3.15) is exact for
{a’Mb}. We observe that (3.15) is the empty set when A(T:) > c.

ExamPLE 3.2. The confidence set determined by the locally most powerful invariant
test of Kariya (1978) may be expressed in the form

(3.16) (M : tr(I, + Do) '[co WW' (L, + WW')™' — ] < ¢},

where ¢y = (m + v — q)/p. Note that we have ¢, > 1. Corollary 3.2 is applied to construct
the smallest confidence set containing (3.16) that is exact for {a’Mb}. Using the formula
(In + xx)' =1, — (1 + x’x)"'xx’, x € R™, one may easily verify that (3.16) satisfies the
conditions on C,(X, -) in Corollary 3.2 and that

{x € R™ : tr(L, + Do) [coxx' (I, + xx’) ' — I,] < ¢}
(3.17)
={xeR™: I [am—c—Yranlai=<c+Trin),
where 7, = (1 + A(Tv))"', i =1, ..., m. We observe that, depending on A(T%), (3.17) is

either an ellipsoid, the empty set, or an unbounded set. The convex hull C(A(T:)) of (3.17)
equals (3.17) when con, — ¢ — ¥ m, = 0 for all i and otherwise equals R™.
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ExampLE 3.3. The following confidence set corresponds to a generalized Bayes test
derived by Marden (1980):

(3.18) (M:|Ln+To||Ln+ T\ | < ).

where again ¢y = (m + v — q)/p. Hooper (1982) proved that, for appropriate ¢ = c,, (3.18)
has smallest expected volume within the class of invariant level 1 — « confidence sets.
Corollary 3.3 shows that (3.18) is not exact for {tr N'M: N € M (m, p)}.

REMARK 3.2. We note that, for each of the confidence sets described in the above
three examples, the conditional probability of coverage given T varies substantially with
T.. In fact, (3.14) and (3.18) produce the empty set with positive probability. The
conditionality principle recommends that the conditional confidence level given the ancil-
lary T, is more relevant than the unconditional level. Remark 3.1 shows that Roy’s
maximum root criterion gives the only star-shaped confidence set based on the eigenvalues
of T and T, that is exact for {a’Mb} and has the same conditional coverage probability
for all values of T%.

4. MANOVA under triangular group. Consider the MANOVA model (GMA-
NOVA with ¢ = 0) and the subgroup G, = M(m, p) X </ X O(p), where o/, = {A:A’ €
LT (p)}. Following Wijsman (1980, Section 4.4) we write S = LL’ for L € LT (p) and put
Z = (X, — M)L"'. Then Z'Z is a maximal invariant function of (X, M) under G;. Note the
similarity between the pivotal quantities Z’'Z and WW’ defined at (3.1). As with W, given
the data X, there is a one-to-one correspondence between M and Z. By making use of this
correspondence, one can apply the proof of Theorem 3.1, with Z’ taking the place of W,
and obtain corresponding results.

ExaMPLE 4.1. Subbaiah and Mudholkar (1982) extended the step-down procedure of
J. Roy (1958) to include situations where the variables are arranged in blocks, with the
blocks ranked in order of importance, but with the variables in each block ranked equally.

Partition Z=[z,:25:---:2,]J withz, EM(m,p) and Y. p,=p.Set Z,=[2;: -+ :2,], Zo = 0.
The generalized step-down confidence set is )

(41) {M . }\I(Z:(Im + Zl—IZ:Al)ilzl) = Cyy i= 1: ttty k}

For x € R” we write x" = (x1, -+-, x}), x, ER". Putcf =ci, cf=c,(1 +cf + -+ + ¢cF))
fori=2, ...,k and d} = {c¢}}"*. Subbaiah and Mudholkar (1982) derived the following

family of simultaneous confidence intervals, effectively by applying the T operation to
(4.1):

4.2) (@Mb:|a'(X, — M)b| < | a| 3k [(L'b), || d¥)

for all a € R™, b € R”. We apply the obvious analogue of Corollary 3.2 to construct the
smallest confidence set containing (4.1) that ‘is exact for {a’Mb}. It will then follow that
this confidence set is equivalent to the family (4.2). Observe that M lies in (4.1) if and only
if

(4.3) zzl<cIn+2,.2Z,_), i=1,---,k
Now Z’Z satisfies (4.3) if and only if xx’ satisfies (4.3) for all x € Z’B". Defining
i={xER": | xP=c+T|x P i=1---, k),

we have that (4.1) equals (M :Z'B™ C Cp}. The convex hull of Cyis C = d}B"' X --. X d}
B?* and our desired confidence set is

(4.4) M:ZB"CC}y={M:A(zlz)<c}i=1,---,k}.

Example 2.2 and the analogue of Corollary 3.1 can be used to verify that the family (4.2)
is smallest exact with respect to (4.4).
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