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MULTIVARIATE TESTS WITH INCOMPLETE DATA

By MoRRis EaToN' AND TAKEAKI KARIYA®

Unaversity of Minnesota and Hitotsubashi University

In the context of a normal model, testing problems with missing data are
considered. Tests on means are treated when independent extra data on the
first p, variates of p variates is available in addition to complete data. For
testing that the mean of the first p, variates is zero, the LRT is UMP invariant,
but for testing that the whole mean is zero, no LMPI (locally most powerful
invariant) test exists. Second, tests for independence are treated in similar
‘situations, and an LMPI test for each situation is derived. In some situations
it is found that the LRT for independence ignores the extra data.

1. Introduction. Because of their common occurrence in practice, there has been a
continuing interest in inference problems where there is missing or extra data. The causes
for the data to be missing or extra will not be discussed explicitly in this paper, but will be
implicit in our assumptions concerning the likelihood function of the data (see Section 2).
For an illuminating discussion of such issues, the reader is referred to Rubin (1963). With
the likelihood assumed in (2.3) and (2.4), it is equivalent to think of certain parts of the
data as additional or the “complementary” parts of these data are missing.

The problems treated in this paper concern data on p coordinates which are partitioned
into two groups of p; and p. coordinates—so p; + p» = p and 1 < p; <p, 1, 2. It is assumed
that we have n p-dimensional observation vectors and m, p,-dimensional observation
vectors, i = 1, 2. All n + m; + m. vectors are assumed to be independent. Thus, there are
n “complete” observations, m; “extra” observations on the first p; coordinates, and m;
“extra” observations on the last p, coordinates. When m; (or equivalently m,) is zero, then
the data is in triangularly partitioned form. Under the assumption of multivariate nor-
mality, Bhargava (1962) derived maximum likelihood estimators (MLE’s) and likelihood
ratio tests (LRT’s) for a number of problems when the data has a general triangular form.
This triangular form permits the explicit calculation of MLE’s and LRT’s along with the
relevant distribution theory. Morrison and Bhoj (1973) discuss the power of the LRT for
testing a mean vector is zero when m; = 0.

Ordinarily, likelihood methods are proposed for problems with missing data—especially
when the normal distribution is involved. However, in some situations, the likelihood
equations cannot be solved explicitly. The article by Hartley and Hocking (1971) provides
a good overview of the subject and an extensive bibliography. The recent work of Little
(1976) is concerned solely with the normal distribution but general patterns of missing
data are allowed. Little compares a variety of estimators both asymptotically and numer-
ically.

To illustrate the possible difficulties involved in missing data problems, consider the
following case: p; =p: = 1, the “complete” data is a sample of n from a bivariate normal

U1
(

distribution with unknown mean vector p = and unknown covariance matrix, and

the two extra samples are from univariate normal populations with means and variance of
the marginal distributions of the bivariate normal. Suppose the problem is to test that u,
= up. If n = 0, this is the Behrens-Fisher problem. When n > 0, the problem should be no
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easier than the Behrens-Fisher problem and the work thus far justifies this belief. A
comparison of several different proposals to solve this problem is given in Ekbohm (1976).
The purpose of the present paper is to discuss the existence or nonexistence of tests
with certain optimum properties. In Section 1, we set notation and derive a canonical form
for the data under consideration. It is assumed that n p-dimensional normal (u, Z) vectors
are available and m, p,-dimensional normal (u., 2,.), i = 1, 2, are available where pu =
,u1> > = 2 2
2/’ o1 2o
below). All parameters are assumed unknown.

In Section 3, it is assumed that m, = 0 so no “extra” data is available on the last p.-
coordinates. For the problem of testing u; = 0 versus p; # 0, the LRT is shown to be
uniformly most powerful invariant. However, for testing u = 0 versus pu # 0, a locally most
powerful invariant test does not exist. A few comments concerning the LRT of . = 0 are
given.

In Section 4, we consider the problem of testing X2 = 0 when both m, and m are non-
negative. In this case we derive a locally most powerful invariant test. When m; = 0 and
mz > 0 (or m; > 0 and m. = 0), this test is different from the LRT. (When m; > 0 and
m > 0, the LRT is not known explicitly). In fact, the LRT does not utilize the “extra” data
at all and is identical to the LRT when m; = m. = 0. This point is discussed and we
propose a possible test statistic for testing Z5; = 0 which utilizes the additional information.
Two examples are presented in Section 5.

The missing data patterns considered in this paper are among the most simple, but our
results indicate the variety of possible answers one can obtain when: (i) comparing LRT’S
to optimum (in some sense) tests when they both exist and (ii) trying to settle questions
concerning the existence of optimum tests. Invariance considerations play a central role in
this paper, and we often employ the method of averaging over groups to obtain the density
function of a maximal invariant. Of course, we have only been able to employ this technique
when the group under consideration acts transitively on the null hypothesis. The repre-
sentation result we have used is due to Wijsman (1967) though an alternative representa-
tion result obtained by Andersson (1982) is available. Some of the details are only sketched
as they are similar to those in Schwartz (1967) or Kariya (1978). The proof of Theorem 3.2
is omitted as it is similar to that outlined for Theorem 4.1.

with p,:p, X 1, Z,:p. X p,, i, j =1, 2 and p, + p: = p (see (2.1)

2. Notation and a canonical form. The extra (or missing) data problems to be
considered here are among the simplest but illustrate the mathematical problems encoun-
tered when dealing with such models. Consider a multivariate normal population of
dimension p with a mean vector u (a column vector) and a p X p nonsingular covariance
matrix . Write p = p; + p» where 1 < p, < p for { = 1, 2 and partition s and Z as

[ _(Zu 2
2.1) k= (Hz) ’ z= <221 222)
with u, being p, X 1 and X, being p, X p, for i, j = 1, 2. It is assumed that we have
“complete” observations z, - - -, zy which are i.i.d. N, (u, Z) and “marginal” observations
Zu, + -+, 2w, L =1, 2 which are i.i.d. N, (u, Z,) for i = 1, 2. In terms of data matrices, the
complete sample yields Z:N x p with rows z}, i = 1, - .-, N, while the marginal samples
yield Z.:M, X p,withrows z;,,i=1,2,j=1, ..., M,. Then

(2.2) Z(Z)=N(ewp', Iv®E) and £(Z) = Nlempl, Iy, ®Z.), i=12,

where ey, is the vector of ones in R*. Here, the notation “.#(-)” means the distribution of
“.” and ® denotes the Kronecker product.

It is convenient to transform the data Z, Z; and Z; into what will be called the canonical
form. Let I' be an N X N orthogonal matrix with first row e/ VN . Then the transpose of
the first row of the matrix I'Z has a N( JN i, =) distribution and is independent of the
remaining (N — 1) rows which are i.i.d. N(0, Z). Let Y € R” be the transpose of the first
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row of I'Z multiplied by 1/vN and let V: (N — 1) X P be the remaining (N — 1) rows of
I'Z. Then Y and V are independent with

(2.3) ZL(Y)=N(u, cZ) and £ (V)=N(0,1.9Z),

where ¢ = 1/N and n = N — 1. Transforming Z, in a similar manner leads to X, € R” and
V.: (M, — 1) X p, which are independent and satisfy

(2.4) LX) =N, cZ,) and L(V,)=N(0O, I, ®=Z,), i=1,2,

where ¢, = 1/M, and m, = M, — 1. In summary, the complete and partial data Z, Z, and Z,
can be relabeled to yield mutually independent Y, X, X, and V, V,, V;, with the given
distributions. Observations which are represented in the forms (2.3) and (2.4) will be said
to be in canonical form, where ¢, ¢; and ¢, are known positive constants. For some of the
problems treated below, the data is assumed to be in canonical form. However, to motivate
the examples in Section 5, it is necessary to describe the original problem before trans-
forming it to the forms (2.3) and (2.4).

In some cases, parts of the data in (2.4) will be missing. For example, if there is no
marginal sample on the last p,-coordinate, then both X, and V; are missing in (2.4) and m,
= 0. In fact, this will be the case considered in the next section where we take up the
problem of testing hypotheses about u. The full generality of (2.4) is used in Section 4 for
testing that 2, = 0.

Throughout this paper, n = max(p:, p2) is assumed and, except in Section 5, the
notation

P D2
_[Yi\p: o Su Sl2>p1 ' T .
(2.5) Y_<Y2>p2’ VV=S= Su Sw)py’ Vii=W,, i=12,
and k' = ¢! + c¢i, is used. Further G¢, denotes the group of p X p nonsingular real

matrices.

3. Tests on means. Throughout this section, we consider data Y, X;, Vand V; in the
canonical form (2.3) and (2.4) where X, and V; are not present. As remarked earlier, this
means that no “extra” data was available on the last p. coordinates of our basic sample. Of
course, it is assumed that Y, X;, V and V, are mutually independent and

ZL(Y) =N, cZ), £(V)=N(0,1.8%),
(3.1)
LX) =N, aiZu), L(V1) =N, I,,® ).

Based on the data (3.1), we now want to discuss the problem of testing H,:u, = 0 versus
H;:p: 5 0. This testing problem is invariant under a group of transformations acting on
the sample space. In particular, consider the group G whose elements are g = (4, a) with
A € G/, and a € R? where ‘

A21 A22
The action of g = (4, a) on (Y, X1, V, V1) and (u, Z) is
(3.3) g(Y,X,,V, Vi) = (AY + a, Au X1, VA, ViIAL1) and g(u, =) = (Ap + a, AZA’),

(3.2) A=<A” 0 ), A.€EGY, i=1,2 and a=<((l)>, a; € RP:,
2

respectively. The composition of two group elements is (4, a)(B, b) = (AB, Ab + a). It is
now a routine matter to check that the testing problem is invariant under the group G. A
maximal invariant in the parameter space is §; = wiZi'u:. In terms of §;, the null
hypothesis is Hy: 6; = 0 and the alternative is H, : 8; > 0. The next result will allow us to
derive a uniformly most powerful invariant (UMPI) test of H, versus H;.

THEOREM 3.1. Let 8 = piZ1'w1. The test of Hy: 8, = 0 versus H, : 8; > 0 which rejects
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for large values of

X\ v.Y: x.x\\'Y/y, X
(3.4) t= k(_}.’_l + _1> <Sll £ W 4t A 1) (__1_ +_1)
¢ G c C1 c C1

is UMPL. Here, S;; and Wi, are given in (2.5) and k™' = ¢! + ¢7%.

Proor. We only sketch the proof. Starting with the sufficient statistic (Y, X, S, Wu),
act with translations g = (I, @) and a = (0, a3)’ and then let G act with transformations of
the form g = (A, 0) where A is given by (3.2) with A;; = I. It is easy to see that this
produces a maximal invariant Y;, Xi, Si;, Wi1). An equivalent maximal invariant is (u, v,
Si1, Wi1), where u = ¢7'Y, + ¢7'X; and v = (¢ + ¢1) "Y4(Y: — Xi). Note that u and v are
independent, and v is N (0, Z;). Now a sufficient statistic based on (u, v, Si1, Wi1) is (&, Si:
+ Wi + v’) = (u, R), say, and the action of Gis u — A ,u and R — A;; RA ;. Under this
action, a maximal invariant here is a constant times Hotelling’s 77 or r = u’R "'u. Hence
it suffices to point out that r and ¢ in (3.4) are in 1-1 correspondence. Since the distribution
of r has a monotone likelihood ratio, the test based on r or ¢ is UMPI. Noting that the
sufficiency and invariance reductions used here commute, Theorem 3.1 is proved.

It is not difficult to show that the likelihood ratio test (LRT) of Hy:pu = 0 versus
H, :u, # 0 is equivalent to the test which rejects for large values of ¢. Standard arguments
show that the statistic ¢ has a central Beta distribution under H, and a non-central Beta
distribution under H,. See Bhargava (1962) for details.

We now turn to the problem of testing Hj: u = 0 versus the alternative H, : u 5 0. In this
case, the situation is substantially different from the first case considered. Again, we take
the data of the problem to be given by (3.1). This testing problem is invariant under the
group Gy, a sub-group of G, defined by

G={g=A,a|gEqG a=0}.
The action on the sample space and parameter space are as before with a = 0. A direct

calculation shows that a maximal invariant parameter is § = gl where
2

& = ,ui El_ll,ul, 8 = (,uz - 22121_11,1141)' 2521.1(,1142 - 22121_11,111).

In terms of §, the problem is to test that § = 0 versus 8 # 0. For this problem, it will be
shown that there is no UMPI (under G,) test of H, versus H;.

THEOREM 3.2. Let P; denote the probability measure of a maximal invariant at
the parameter value 8. Then the Radon-Nikodym derivative dP;/dP, is given by
R(t1, ta, t3| 8) = H(8)F(t:182) Fa(t28:/c) F5(t38,/k), where

H(8) = exp[—(82/2¢) — (8:/2k)] with k'=c¢ '+ ¢,
b = Y’1T1_11 Y] /C, '

tr= (Yo T T1' Y1) T 1 (Yo — Tor Tl Y1) /c,

Y ' AN X
t3=k<——'+§> (W“ + Ty +£z(—l> <ﬁ+——l).

C C; Ci c C1

Here v'v + 1/c YY' = T is partitioned as T = (T,) with T, :p, X p,, Fi(x) = exp(x/2c),
Fy(x) = F(x:ps, (n — p1 + 1)/2), F3(x) = F(x:p1, (n + m, + 2)/2) where

r<,~+%)
L2 T(/2) LB +))

Flx:a, B) =270 @) F(l) I'(j+a/2) TU(B)

2
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PrRoOF. A proof of this is similar to the proof of Theorem 4.1 which is outlined in
Appendix II.
Expanding R (¢4, t», t3| 8) about 8; = 8, = 0, the linear approximation to R (¢, &, £3] 8) is

R(ty, b2, 851 8) = 1 + wib1 + w282 + o(ty, s, t3, ),

1 1 1 1
where u, = ; <h1t3 it 5) and Uz = E (dltg + 6 — 5)
+ + 2 el +1
with h= nTmiTe ond d = e
2p1 2p2

The remainder term is uniform in ¢, ¢, and ¢; since 0 < ¢; < 1 for { = 1, 2, 3. This implies
that if ¢ is an invariant level a test of Hy versus Hi, then the power function of ¢, for small
é, is

&5 = a + Eop{u1d1 + w262} + 0(9),

where the error term o(8) is uniform in 8. Now consider testing Ho:8: = 8, = 0 versus
H;:8; = y8; > 0 where y is a known positive constant. An easy application of the
Generalized Neyman-Pearson Lemma shows that the level « test which rejects for large
values of yu, + us is a LMPI test of H, versus H,. Since this test depends on v, there can
be no LMPI test of H, versus H;.

We now turn to a brief discussion of the likelihood ratio test of Hy:8 = 0 versus
H;:8 5 0. A direct calculation shows that the LRT of H{" : u; = 0 rejects H" if A\F/™*7+?
= 1 — ¢t is too small where ¢ is defined by (3.4). Furthermore, the LRT of H{® : > = 0,
w1 = 0 versus H{® : u 5 0, u; = 0 rejects for small values of

| So2 — S21 ST/ Siz |
Y, Y} Y. Y v, vi\ " .Y\
S22 + - 2 e <S‘21 + - I) <S]] + "—1__—l> (82[ + 2 1)
C C C C

where the S,’s are given in (2.5). Now, the LRT of Hy:8 = 0 versus H,: 8 # 0 rejects for
small values of A;Az. In addition, under Hy, A; and A, are independent, A¥™*"*? has a
Beta distribution and A3/”"*" has a Beta distribution. (See Morrison and Bhoj, 1973). But,
this does not yield the exact null distribution of A;A; under H, expressed in terms of a
tabled distribution. It should be mentioned that this type of decomposition of likelihood
ratio statistics for testing normal means occurs in other contexts. For example, see Hogg
(1961) for univariate normal example, Eaton (1972) for the MANOVA case, and Kariya
(1974) for the application of these ideas to the multivariate linear growth curve model.

)\g/(nﬂ) =

’

4. Testing for independence. In this section, we consider the problem of testing for
independence based on data in canonical form. The canonical form will be of the type
described by (2.1), but for simplicity our main discussion will be concerned with the
following data: Consider three independent random matrices V:n X p, Vi:m; X p; and
Vy:my X pe with p, + p. = p satisfying

(4.1) L(V)=N(@O,1,®Z) and AV,)=N(,1,®3,), 1=12

Here, the unknown covariance matrix £ has been partitioned into Z,:p, X p, for i, j = 1,
2. The data (4.1) arises from the data described in Section 2 by assuming that the mean
vector u is known. The problem is to test Hy: X, = 0 versus the alternative H;: 3, # 0.
After describing our results for this problem, we will state some corresponding results for
this testing problem when the data is given by (2.3) and (2.4) (and some minor variations
of (2.3) and (2.4)).

The testing problem is invariant under the group G. whose elements g are
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(4.2) e=a=(4" 9)itha,eqs, i=12
0 Ap !
The action of g on (v, vi, v2) and X is respectively
(4.3) g(V, Vi, Vo) = (VA’, ViA%, V,AL) and g(Z) = AZA'.
A maximal invariant parameter is the vector § = (83, -+, 8%2) with ¢ = min(p, p»),
where 83 = ... = 8% are the g-largest eigenvalues of ;%' 211 (81, -, 8, are the

canonical correlations). The main result of this section is that there exists a LMPI test of
the H, versus H,. To describe this result, let D! be all the level a G.-invariant test
functions.

THEOREM 4.1. Let 1 = 27 8% For ¢ € D', the power function of ¢ at 8, say =(¢, 3),
has the form
(4.4) 7($, 8) = a+ B($) 7+ 0(5, ¢),
where lim,_.osup,0 (8, ¢) = 0, B(¢) = &u(Yepn) and in the notation of (1.5),
(n + m)(n + my)

Yy = tr(Si + Wip) 'S12(See + Waz)7'Soy
Dip2

(4.5)

. + m,
+n-3%, (n m )tr(S,, + W) 'S

1

The level « test which rejects for Yy > k is a LMPI level « test.

Proor. The representation (4.4) is established in the Appendix. That rejecting for
Yy > k gives a LMPI test follows immediately from (4.4) by maximizing B(¢$) and applying
the generalized Neyman-Pearson Lemma.

In the discussion below, the situation treated by Theorem 4.1 for the data (4.1) will be
called Case (0). We now turn to a brief discussion of some other cases of interest.

Cast (i). This refers to Case (0) when m; = 0 so that the data matrix Vi is not
available. A direct analogue of Theorem 4.1 shows that the test which rejects for large
values of

+ m + m.
(4.6) Ui E(n—mz-)'{l‘tr S11'812(So2 + Way) 'Sy — nTme
DP2p1 D2

is a LMPI test for testing Hy: ;> = 0 versus Hy: Z» # 0.

tr(Se + Wan) 'Sas

Cask (ii). In this case we consider the data given in (2.1). Let
. (Ul) _ <(c +,c[):iZ(Y1 - X[)>
U, (¢ + c2) H(Y, — X»)
and set b2 = ¢/(c + ¢1)(c + ¢2). Define the statistic y» by
_(n+m1+1)(n+mg+1)

& pip2
tr(Sy + Wi + U U;)'S12(Ses + War + Us U3) 'Sy
(4.7) =+ bztr(SH + Wi + U, Ull)_lU[ U5(Sae + Wa + U Ulz)'leU]
LS+ W+ ULUD (S + UL
P
n+m+1

— -——Q——tr(Sgg + W + U, U{g)_l(Sgg =+ sz_) U’g)
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Rejecting Hy: 212 = 0 for large values of y» is a LMPI test.

CASE (ili). Again consider the data as given in (2.1) but assume that the mean of X, is
unrelated to the mean of Y, i = 1, 2. In this case, the LMPI test of Hy: 2,2 = 0 rejects for
large values of y, given by (4.5).

For the remainder of this section, we will be concerned only with the data given by
(4.1), and the problem of testing Hy: Z;> = 0 versus H, : 2,2 # 0. When both m, and m; are
positive, we have been unable to calculate the likelihood ratio test (LRT) of H, versus H;.
However, in Case (i) when m, = 0, the likelihood ratio is not difficult to derive.

ProrosiTION 4.1.  With the data of Case (i), the LRT of H, versus H, rejects for small
values of -

(4.8) A=|I—-Si'S128% Sx |
Proor. This is a routine calculation and is omitted.

It is rather surprising that the LRT ignores the data V, in testing H,. Of course, when
m; = m; = 0, rejecting for small A values gives the LRT. However, when ms is very large,
the value of Zj, is essentially known but the likelihood ratio criterion ignores this
information. Indeed, if =, is known, the LRT, based on S alone, for testing Hy: =5 = 0 is
also that given in Proposition 4.1.

It is not clear what to do in practice for testing H, versus H;. One possibility is to ignore
the two ancillary statistics tr(S, + W.)™'S,, i = 1, 2, in (4.5) and reject H, for large values
of

\;l =tr(Si + Wi1) 'S12(Sez + W) 'S,

The null distribution of y and 1 is not known. Letting n and m, tend to o« with m,/n —
B, i =1, 2, it is not too hard to show that ny, converges in distribution to a random
variable with a scaled Chi squared distribution. In particular,

nfr —a(1+ B)(1 + B2 X2 e

When n is large, this provides one possible method of testing H, versus H;.

Now, consider the special case when p, = 1 and m; = 0. The problem of testing for
independence is similar in structure to a mean testing problem discussed by Giri (1968).
Even though the maximal invariant parameter is one dimensional, a uniformly most
powerful invariant test does not exist and the LRT is not the locally best test (Theorem
4.1). As in the problem treated by Giri (1968), a natural maximal invariant in the sample
space is two dimensional say (£, &), and & is an ancillary statistic. The LRT rejects for
large values of ¢ while the locally best test involves both £; and £&. The details of this are
given in Eaton and Kariya (1974). A related reference is Marden (1978).

Finally, consider the special case of p; = p, = 1 so p = 2 and the data is given by (4.1).
A minimal sufficient statistic is (S, Wy, W) where S= V'Vand W, = V|V, i=1,2.
In this case, the problem is to test that p = 0 where p is the bivariate correlation coefficient.
The testing problem is invariant under scale changes and a maximal invariant statistic is
T = (t1, ty, t3) where

ti=5%/S11S, tr= Wi /Su, t;= Wi/Ss.

When m; = 0 (so Wi, is not present and #; is not present), the LRT rejects for large values
of t; while the LMPI test involves both ¢ and #. Since #; is ancillary, it may be most
reasonable to condition on ¢; and test p = 0 conditionally. But, when both m; and m, are
positive there is a complication. The statistics ¢, and ¢; are marginally ancillary but (¢, ¢5)
is not an ancillary statistic. It is not clear how to condition in this case, but rejecting for
large ¢, is not appropriate.

5. Examples. In this section, we present two problems which are special cases of the
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problems discussed in Section 4. The notation used in these two examples is independent
of the notation used earlier.

ExaMPLE 5.1. In this example, we consider the problem of testing independence in a
model of covariate discriminant analysis. Suppose Xi, ..., Xu are ii.d. N,(p, ) and
Yy, .-+, Yy are iid. N,(», 2) and write the dimension parameter p as p = p; + p..
Partitioning the data and parameters, we have

_ X _ ij I Ot _[(»n _ PP
X1_<X"2)>’ YI—(Y}Z)>’ “—(,U'? P v v )’ z= o1 2o J°

Of course, X, and Y|, . and », are p, X 1 and 2.4 is pa X pg, a, B = 1, 2. It is assumed
that 2 = .. Discrimination problems in this situation have been considered by Cochran
and Bliss (1948), Rao (1949), Cochran (1964), Rao (1966) and Memon and Okamoto (1970).
A survey of this situation is given in Kshirsargar (1972, page 200-203). When X is known
and 2, # 0, Cochran and Bliss (1948) constructed a discriminant function based on all the
data which is more efficient than the usual discriminant function based on X, i =
1, ..-,Mand Y, j=1, ..., N. When X is unknown, Cochran and Bliss (1948) proposed
a discriminant function in which X is replaced by an estimate. However, when 2, is close
to zero, this discriminant function does not seem to be better than the usual one based on
XPand Y, i=1,-..,M, j=1, ..., N.Of course, when X ; = 0, it seems most reasonable
to base discrimination solely on the basis of X" and Y{",i=1,...,Mandj=1, -.-, N.
This motivates the problem of testing 3, = 0 in this situation.

After a reduction by invariance, we will show that testing 2,2, = 0 is a special case of the
problem described in Section 4. As demonstrated in Section 2, the data Xj, ---, Xy is
equivalent (via a linear transformation) to (U;, Vi) where U;:p X 1 and Vi:(M — 1) X p
are independent and

L) = N(u,%E), L(Vi) = N(0, Iy ®Z).

Similarly Y, - - -, Y is equivalent to (Us,V>) which are independent and
1
L(U,) = N(v, N2>’ L(Vy) = N(O, Iy-1®Z).

The problem of testing =1 = 0 is obviously invariant under translations of U, and U,

given by
U, — U + (") Us— Us + (b)
c C

with @, b € R” and ¢ € R”. A maximal invariant is W» = k(U — U¥), k = (1/M +
1

1/N)~Y2. After this reduction by invariance, the data is W, and V = 52 where

L(W3) = N(0, Z2), L(V)=N(O, In+n-QZ)

and the problem is to test =, = 0. In this form, the results of Theorem 4.1 are applicable
(with m; = 0 and W, = 0), so a locally most powerful invariant test exists and is given in
Theorem 4.1. It is interesting to note that the LRT based on all the data of Ho:X2 =0
versus H;:3 s # 0 is the same as the LRT based only on the data matrix V. In other words,
the LRT described in Proposition 4.1 ignores the extra information that y, = v,. However,
the LRT would not ignore the information that p = .

Our second example concerns the growth curve model.

ExaMpPLE 5.2. Consider a data matrix Y: N X p such that
L(Y) = N(X|BX;, IN®Q)

where X, is N X r of rank r, X> is ¢ X p of rank ¢, and both are known (see Potthoff and
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Roy, 1964). Also, B:r X g is a matrix of unknown parameters and {2 is a p X p positive
definite matrix. The estimation of B is of concern here and of course the structure of Q
affects the estimation. Let Z, be a (p — q) X p matrix of rank p — q such that X,Z5 = 0. If
© has the form

(5.1) Q=X Xo + Z4Z,

where Y;:q X g is positive definite and y.:(p — q) X p — q is positive definite, then the
least squares (acting as if @ = I,) estimator of B is also the Gauss-Markov and maximum
likelihood estimator of B. This claim and its converse follow from results in Eaton (1970),
or a modification of a result due to Rao (1967). The covariance structure (5.1) is known as
Rao’s covariance structure (Rao, 1967) and has been discussed in Geisser (1970). Further
Lee and Geisser (1972) derived the LRT for testing that { has the form (5.1) versus
arbitrary alternatives. We will show that, after a reduction by invariance, testing £ has the
form (5.1) is a special case of testing for independence with additional information. First,
a transformation to a canonical form will simplify certain calculations. Let Z;: N X
(N — r) and satisfy Z1 X, = 0. Then, let

Iy = [X(X1X0) "% ZU(Z1 Z)7'?), T = [X3( X X5)7V%, Z5( 2, Z5) ],
so I'y is N X N and orthogonal and I'; is p X p and orthogonal. Now, let
W=T1YT: 2=T%00 p=(XiX)"B(X:X5)"
and partition W and X as

q P—q q P—gq

W11 W12 r 211 E12 q
W=< ) , 2=< > :

W21 ng N-r 221 222 pP—q

With this relabeling, we have

- Y
L (W)=N ((0 0), (IN®E)).

The null hypothesis that € has the form (5.1) becomes Hyp:Z;» = 0 when expressed in
terms of X. This testing problem is invariant under the translations W;; —» Wy + a,
a:r X q and a maximal invariant under this group of translations is { Ws, (Wai, Wa)}.
Clearly W, is independent of ( Wy, W),

L(Wi2) =N, ,®Z5) and ZL((Wa, W) = N(0, In,®Z).

Based on this data, testing H, is a special case of the problem treated in Case (i) following
Theorem 4.1. Also, the result described in Proposition 4.1 shows that the LRT based on
{Wis, (Wa, Wa)} ignores Wi, and the LRT is different from the locally best test.
Furthermore, this LRT is the same as the LRT based on all the data W which Lee and
Geisser (1972) derived.

APPENDIX: PROOFS OF THEOREMS 3.2 AND 4.1.

Our attention is restricted to the proof of Theorem 4.1 since Theorem 3.2 is proved
similarly. To prove Theorem 4.1, we apply Wijsman’s (1967) representation theorem
concerning the density function of a maximal invariant. Let = %, X %1 X %> denote the
sample space of the data given by (4.1) where %, is the linear space of n, X p, real matrices
(i =0, 1, 2). Here the notation

no=n, ni=m;, ng=my and Zgp=2

is used, and we shall write x = (xo, x1, x2) € & for X = (V, V1, V3) € &. The Lebesque
measure on 2 will be denoted by dx = dxodx,dx; and from (4.1), the density of x is given
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by
(A.1) F(x|Z) = [[Eo(V2m) /2| S, " %exp(—4 tr .25 x)).

The group G; defined in Section 4 acts on x € 2 by gx = (x0A’, x1 A1, x2A%) as in (4.3)
A0

0 A is given by (4.2) with A, € G¢p,. A left invariant measure on G,
2

where g=A =
is
(A.2) v(dg) = ni(dA\)r(dAs), with »(dA,) =|AA]|™P%dA, i=1,2.

To establish Theorem 4.1, we will use the following well known argument. For any
invariant test function ¢, the power function of ¢ at a maximal invariant parameter point
8 is

(A.3) (@, §) = f ¢ dPs = J ¢(dPs/dP,) dPy

where P; is the probability measure of a maximal invariant under 8. The ratio dPs/dP, is
obtained by the following lemma, which is an expression of Theorem 4 in Wijsman (1967)

in the present problem. Assume p; = p, without loss of generality.

LEMMA. The ratio dP5s/dP, is given by

(A4) rs(x) = f f(gxlE(S))xo(g)u(dg)/J f(gx|Z(0))x0(g)v(dg),
G, G,
where
— 2 s (n+m,)/2 - 1 A
(A5) XO(g) - =1 IAzAz' ¢ > 2(8) = (A/ 12)

and Aispr X powith A, =6, fori=1, ---,poand A,, =0 for i # J.

Theorem 4 in Wijsman (1967) states the conditions for which (A.4) holds. But checking
the conditions is included in the proof of Lemma 5.1 in Kariya (1978) and so it is omitted
here.

To evaluate rs(x) in (A.4), let xox0 = S = (S,,) and x;x, = W, (i = 1, 2) be as before (see
2.5)) and let

Tll T12
T =
(TZI T22>

(A.6) )

_[(Su+ W)~ 0 S (Su + Wy)™2 0

B 0 (Sez + W)™ V? 0 (Sez + Wa)™'2 )
Note that 0 < T' < I, in the sense of positive definiteness. Let &}, , denote expectation with
respect to the distribution on G¢ given by

P(dg) = c(a, k)| 88" |""exp(—'% tr gg")v/(dg),

with v,(dg) = |g’g| */*dg, where a > 0, and c(«, k) is a normalizing constant. A bit of
algebra and a change of variable show that

(A.7) rs(x) = | Z(8)| & & (exp[—% tr TA'(Z7'(8) —1,} A)),

pu,n+mi” p;ntm:

where &), ., 1s expectation on A,, i = 1, 2. Define y:p X p by

_s-iysy_7 _ [ — AN) T -1 —L—-AN)AN _ (vu v
Y= 2 (8) Ip - <_(12 — A/A)—IA/ . (IZ _ A/A)fl _12 - Yo ye2 ’
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where v, is p. X p,, i = 1, 2. Then we have

tr TA'{Z7'(8) —=L,} A = tr TuAlyuA, + 2 tr T2 Abyn A, + tr TopAbynAs.
We now make the following claim: For § small, r == §7, and all T satisfying 0 < T < I,

exp(— %tr T, A v.A) =1 = Ytr T, A'ANA, + R(T.,, A, A), 1=1,2,
(A.8) exp(— tr Ti2Aby21 A1) =1+ tr T2 ASAA; + Y(tr TisASA Ay)?
+ R3(Ti2, Ay, Az, A),
where the error terms R;, R; and Rj; satisfy
{|R,(T,l, A, D) | =H(A)n(1), i=12,
| R3(Thz, Ay, A, A)| = H3 (A1) Hi(A2) n3(7).

Further, the inequalities in (A.9) hold for all T, 0 < T < I,,, the functions H, are integrable
(A1, Az) and lim,_o n,(7)/7 = 0, i = 1, 2, 3. The arguments leading to (A.8) and (A.9) are
similar to those in Schwartz (1967) and Kariya (1978) and are omitted. The following
identities are used in the evaluation of (A.7):

(A.9)

n+m,

Epyonom, tr TWAANA, = (tr To)r, i=1,2,

(AIO) éﬂpl,n+m| gpz,n+m2 tr leA ,zA/Al = 0,

n+mn+m

gpl'n+mlé‘)p2,n+m2 (tr leA /zA/Al)Z = (tI' T12T/12)’T.

P D2

These identities are proved in a similar manner as in Kariya (1978) (see equation (5.10)
there). Note that | Z(8)|* =1 + (n/2) 7 + 0(8) where lim;_00(8)/r = 0. Substituting this
and the expressions in (A.8) and (A.7) leads to the expression

(A.11) rs(x) =1+ %yor + o(T, §),

where o is defined in (4.5). The remainder term is uniformly bounded in T, 0 < T' < I,
and satisfies lims_, o supo<7< 1,0(T, 8)/7=0. The identities in (A.10) and the results expressed
in (A.9) are used to establish (A.11).

Now, let ¢ be any level « invariant test of Hy:8 = 0 versus H; :8 5 0. Substituting (A.11)
into (A.3) yields

d 1 1
(0,0 = | 92 dPy= | | 1+=vor+ o(T, 8) | dPo = a += (&g o) + o(g, §)

dP, 2 2

with
8
lima_A)Supq,,O(q)’ ) = 0.
T
This proves Theorem 4.1.
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