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A nonparametric estimate 8* is presented for the slope of a regression
line Y = BoX + V subject to the truncation Y =< y,. This model is relevant to
a cosmological controversy which concerns Hubble’s Law in Astronomy. The
estimate B* corresponds to the zero-crossing of a random function S, (f),
which for each B is a Mann-Whitney type of statistic designed to measure
heterogeneity among the calculated residuals Y — SX. The asymptotic distri-
bution of B* is derived making extensive use of U-statistics to show that
S, (Bo) is asymptotically normal and then showing that S,(8) behaves like
S, (Bo) plus a deterministic term which is locally linear. Results on asymptotic
efficiency are compared with finite sample size results by simulation.

1. Introduction. We consider nonparametric estimates for the truncated regression
model described as follows. Let Y = BoX + V where V is independent of X and B is
positive. We observe (X, Y) only if Y < y,. On the basis of n independent observations
(X,,Y,),i=1, ..., nitis desired to estimate B, and the distribution of V.

This problem is relevant to a current controversy in cosmology involving Hubble’s Law
and L. E. Segal’s Chronometric Theory which predict different values for the slope By of
the straight line relating magnitude (negative log of luminosity) and log of velocity as
measured by red shift, for distant celestial objects. It is generally agreed that the residual
V, which represents intrinsic luminosity, is independent of red shift. However it is not
agreed that the distribution of V, which is of interest in itself, is of any special form, nor
even that it has finite second moments. Hence nonparametric methods are sought to
estimate the slope B, and the distribution of V. The problem is complicated by the
truncation due to the fact that objects of high magnitude are not visible, and hence
unobserved.

We present a nonparametric Mann-Whitney type of estimate 8* of the slope 8. This is
a generalization, to the truncated case, of an estimate based on Kendall’s tau, introduced
by Theil (1950) and studied by Sen (1968). It may be described as follows. If the residuals
V.(B) = Y, — BX, are calculated for B larger than the true value B, then the calculated
residuals for small X, will tend to be larger than for large X,. The Theil procedure selects
the estimate of B to balance the number of V,(B) greater than V,(f) for X, < X, with the
number of such V,(B) less than V,(B). In a modified version of this procedure considered
by Adichie (1967) and Sievers (1978), the above comparisons between V,(8) and V,(B) for
X, < X, are weighted by X, — X, (see also Lehmann, 1975, page 291). To adapt this modified
version of the Theil procedure to the truncated case, observe that it is impossible for V, ()
to exceed V,(B) if V.(B) > yo — BX,, and so we call V,(B) and V,(B) comparable only if
V.(B) = yo — BX,. Our estimate 8* corresponds to the zero-crossing of S, (8) where S, (8)
is the sum of the weights + (X, — X,) applied to all comparable pairs, with the sign
depending on whether V,(8) = V,(B) or not.
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A nonparametric maximum likelihood estimate of the distribution of the residual V'is
also evaluated.

2. Asymptotic distribution of the estimate B*. To state Theorem 1, which
describes the asymptotic distribution of the estimate of 8 under regularity conditions,
requires some notation. Our description of the sample observations and all our arguments
are conditional on the X-values x; < ... < x,, and their respective frequencies n;, - - -, n,
among those observations (from a possibly larger set of data) which escaped truncation.
Let (x,, Yn), A =1, -+, n; be the n; > 0 observations corresponding to X = x, where x; <
X3 < --» <xpand Y n;=n. For >0, let

w(i, B) =yo— Bx,, w.=yo— Pox.=w(, Bo), F.=Fw),
Vh(i, ,3) =Y — ,sz, and Vipi= Y — Boxi = Vh(i» ,30)-

Then the calculated residuals V, (i, B) and V. (j, B) are comparable if i < j and V, (i, B)
=w(j, B). If Vi(i, B) and Vi (J, B) are comparable, let

& (i, J, B) = (5 — x) for VoG, B)Y=Vi(j, )
and

(i, J, B) = —(x — x) for Vi(i, B) > Vi (j, B).
If V, (i, B) and V. (j, B) are not comparable, then gx: (i, j, B) = 0. Let

(2.1) Sn (B) = 2i<j ZZ;I Zl=1 8hk (l) j’ B)

We estimate B in terms of the zero crossings of S, (8) which is a left-continuous function
of B with ordinary (jump) discontinuities. We say that 8 is a zero crossing of S, if the right
and left-hand limits S.(8+) and S,(B8—) do not both have the same sign, i.e., if
S, (B+)S.(B—) = 0. Generally, there may be several zero crossings of S, (8). Theorem 1
states that for B close to Bo all zero crossings are very close to one another and are
essentially equal. In fact it states that there exists a random variable 8* so that all zero
crossings in some neighborhood of B, are within o, (n ") of 8* and thatvn (8* — Bo) has
a limiting normal distribution.

Now let H, (x) be the sample cdf of X, f and F be the density and continuous cdf of V'
=Y — BoX, w(x) = yo — Box, and
(2.2) oL = EJ’ J J’ (x —x')(x—x") —Fa— dH, (x) dH,(x') dH,(x")

. n 3 FF,F” n n -n
where F, F’, F”, and F are abbreviations for F[w(x)], Flw(x)], Flw(x"”)] and min(F, F’,
F”) respectively. Denote the mean and variance of H, by u(H,) and ¢*(H,) and let y(H,)

=[[[|x—«'|dH.(x")]? dH.(x). Then y(H,) = y*(H,) = [ [ |x — x’'|* dH, (x’) dH, (x).
In view of the conditional nature of our arguments, as mentioned above, H, is a fixed

sequence.
Finally,
X —x e
a,,(,Bo + t) = J;<£_ﬁv_- {2 J;m F(U - t(x - x)) dF(U)
(2.3)

—FFw(x) —tx' — x))} dH, (x) dH, (x’)
and consequently

, B @ - x)? wlx’) o
an(Bo+t) = J;Q,—FFT—{z J_m f(w—tx' —x)) dF(v)

(2.4)
—Ffwx) -t - x))} dH, (x) dH, (x').
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Compare ay, (8) with u.(8) = ES,(8) given in Section 5 to see that a,(8) = n "%, (8). Note
that ¢, and a,(8) depend, implicitly, on B, through w(x) = yo — Box. We may now state

THEOREM 1. Under the regularity conditions (i) to (v) below, there is a random
variable B* such that

(2.5) L[Vn(B* = Bo)/1a] = N(0, 1)
where
(2.6) Tn = On/an (Bo)

and each zero crossing of S,(B) in (Bo — to, Bo + to) is within o,(n""?) of B* and there is
at least one such zero crossing with probability approaching one. The conditions are (i)
v*(H,) = O(1), (ii) o, is bounded away from 0 and o, (iii) ay(Bo) is bounded away from
0, (iv) ax(Bo + t) is bounded away from 0 for | t| < t, and t bounded away from 0, and (v)
f()/F(yo— Box) and f(v)/F(yo — Box) are bounded on {(x, v):v < yo — Box, 0 < H,(x)
<1}.

Another estimate is determined by a variation of S,(8) where gx: is = 1 in place of
+ (x, — x,). This variation, called the unweighted sum, leads to a similar theorem with
B* replaced by its analogue 8**. In that theorem, condition (i) is replaced by ¢*(H,) =
O(1), the integral in o2 has the term (x — x”)(x — x”) replaced by its sign, the first factor
(x’ — x) in &, (Bo + t) is removed, and (x’ — x)? is replaced by (x’ — x) in a}, (8o + ).

In the nontruncated case the asymptotic variances are relatively easy to calculate. One
consequence, relevant to Table 3.1 of the efficiency computations in Section 3, where our
examples were selected so that H, is approximately uniform, is a result pointed out by Sen
(1968). That is, the weighted and unweighted estimates have equal efficiency in the
nontruncated case when H,, is uniform.

3. Information and efficiency. To compute the efficiency of the estimates of f,
we require the Fisher information matrix for estimating § = (u, o, 8) of the model Y =
Bx + u + oV, Y = y, where #(V) = F before truncation. The information matrix at § =
(0, 1, Bo) is

'70 - eg I, — epé; x(IO - e(?))
J(x) =|I, — ever L — ¢} x(I; — eer)] ,

x(h—e}) x(Ii—ee) x*(I— ed)

(Y ey
I’_J {f(v) } Fay @ /=0L2

where

w = Yo — Box, e = f(w)/F(w), and e;= wey, — 1, I, and e; depending on x through w(x). If
the average information based on all the observations, Jo=n"'Y J(x,) = [ J(x)dH, (x)
— Jo, then % [J— (,8n Bo)] = N(0, 6%) where B,, 1s the maximum likelihood estimate of
B, and o3 is the lower right diagonal element of J5".

Comparing o3 with 72 of Equation (2.6) one may compute the asymptotic efficiences of
B* and B**. In Table 3.1 we tabulate these results for various values of o and y, for the
case where H, is uniformly distributed at 10 equally spaced points between 0 and 1, and
where the residuals V have the standard normal and Cauchy distributions.

When y, is close to 0.75 in the Cauchy case the efficiency is very low. This is due to the
fact that a;,(B80) changes from negative to positive values. If we did not have truncation,
S,.(B) would be monotonic decreasing and this shift would not occur. As long as a
increases in magnitude, even though it has the “wrong” sign, the efficiency goes up, as for
example when yo = 0.5. It should be remarked that under severe truncation, as in the cases
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TaBLE 3.1
Asymptotic Standard Deviation of ,é and Relative Efficiencies of 8* and B** for fhe model Y =
Box +p+ oV, Y =y, (1, Bo) = (0, 1). e* = efficiency of B*; e** = efficiency of B**; § = m.le. of Bo,
o} = asymptotic variance of ¥n (8 — Bo). All computations carried out on the assumption that the

observed x values are uniformly distributed at x =0,1/9, ---, 8/9, 1.
£ (V) = Standard Normal £ (V) = Standard Cauchy
a Yo

ao e* e** a0 e* e**
0.2 2.00 0.627 0.955 0.955 0.867 0.684 0.679
1.25 0.668 0.932 0.946 0.869 0.679 0.673
0.75 1.125 0.915 0.898 1.316 0.012 0.074
0.50 1.841 0.877 0.835 1.682 0.086 0.018
0.5 2.00 1.607 0.941 0.947 2.136 0.698 0.695
1.25 1.994 0.866 0.882 2.398 0.468 0.503
0.75 2.817 0.847 0.839 3.601 0.006 0.004
0.50 3.523 0.849 0.819 4.074 0.243 0.134
1.5 2.00 6.067 0.856 0.862 7.167 0.475 0.492
1.25 6.994 0.816 0.818 9.385 0.151 0.185
0.75 7.785 0.792 0.789 12.767 0.006 0.000
0.50 8.234 0.782 0.776 14.574 0.146 0.097

where yo = 0.5 and oy is small, there is a loss by truncation of vast amounts of (x, Y) points
because of our choice of a uniform H, for Table 3.1.

The asymptotic results of Table 3.1 were compared with finite sample size results by
simulation. One hundred trials with sample sizes of n = 100 and n = 30 were observed for
almost each set of parameters of Table 3.1. For a couple of cases n = 900 was taken. The
astronomical catalogs have approximately 1200 galaxies but it is not clear which, if any, of
them should be excluded. When asymptotic theory predicted standard deviations of 8*
comparable to By, many of the trials gave poor results. These cases were usually accom-
panied by a diagnostic signal. That was that S, (8) was very ragged or had no zero crossings
for any reasonable candidate for 8. However, after censoring these bad trials, the remaining
values of B* fit the asymptotic distribution well.

Some of the results of this simulation appear in Table 3.2. There are partial lists of the
average bias B* — B, and standard deviation sg. of the estimates to be compared with
asymptotic theory. We list under “out” the number of trials in which zero crossings were
difficult to obtain or 8* was an extreme outlier. In the presence of such outliers, 3* — 8
and sp- are not meaningful and are usually not presented.

4. Maximum likelihood estimate of distribution of residual. Let v; > v, > ---
> v, be r distinct specified values at which it is desired to estimate F. For a given value of
X =x, w(x) =y — Box is the largest possible value of V. We assume that v, is less than w;
= maxi<,<,W(X,). Clearly it is not possible to estimate F'(v;) in this truncated problem but
it should be possible to estimate F(v;)/F(w,) for i =1, 2, - .., r. In this section we shall
describe the maximum-likelihood estimates of these ratios, assuming B is known.

Merge the distinct values of w(X,) and the v, and arrange them in decreasing order to
obtain w1 > we > --- > w,. We may regard each w, as yo — Box, for the value of x; of X
corresponding to which there exist n; = 0 observations on Y and V = Y— Bx;. Here n, =
0 if w, corresponds to one of the specified v values and there are no observations with X
=x; = (yo — w,)/Bo. Let

4.1) m=FWw)/Fw), 1sisk—1
4.2) 6= Fwis)/Fw) =T[_ m, 1=isk-16=1,

and N;(v) =#{X =x,, V=v},and M;(v) =¥ }-1 N,(v) = #{X =x, V=v}for 1 =i =<k,
where #A represents the number of observations for which the event A is satisfied.
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TABLE 3.2
Simulation of n. = 100 trials of estimation of B* for samples of size n for the model Y = Bx + oV,
Y= Yo, B =1

2£(V) = Normal #(V) = Cauchy
g Yo n — —
B*~-B Spe op out pB*-p sp* g out
0.2 2.00 100 0.001 0.063 0.064 —0.011 0.099 0.105
30 0.004 0.127 0.117 —0.044 0.234 0.191
1.25 900 — — 0.023 —0.005 0.036 0.035
100 0.002 0.070 0.069 0.004 0.133 0.106
30 0.005 0.122 0.126 — — 0.193 2
0.75 100 0.001 0.120 0.118 — — 1.202 6*
30 0.026 0.263 0.215 — —_ 2.195 8*
0.50 100 0.038 0.225 0.197 — — 0.573 11**
30 0.116 1.331 0.359 1 — —_— 1.046 15%*
0.5 2.00 100 0.004 0.174 0.166 —0.024 0.281 0.256
30 —0.070 0.297 0.303 0.123 0.642 0.467 8
1.25 900 — — 0.071 —0.004 0.132 0.117
100 0.009 0.220 0.214 — — 0.351 12
30 0.020 0.465 0.391 2 — — 0.640 20
0.75 100 -0.011 0.282 0.306 — — 4.592 15*
30 0.320 1.752 0.559 2 — — 8.383 11*
0.50 100 0.114 0.430 0.382 — — 0.827 17**
30 0.338 1.448 0.698 1 — —_ 1.510 15%*
1.5 2.00 100 0.085 0.699 0.656 9 — — 1.040 20
30 0.082 0.973 1.198 20 — — 1.899 29
1.25 900 — — 0.258 — — — 0.804 35
100 —0.060 0.741 0.774 10 —_ — 2.412 57
30 0.475 1.620 1.413 21 — —_ 4.404 —_
0.75 100 0.095 0.946 0.875 11 — —_ 16.762 15*
30 0.480 1.718 1.597 20 — — 30.603 18*
0.50 100 0.118 0.892 0.931 12 — — 3.813 15**
30 0.339 1.460 1.700 17 — — 6.962 16**

* in out column represents n. = 25 trials, ** in out column represents n. = 30 trials, — means not
computed. The x are distributed evenly among 0,1/9,2/9, - - -, 1; o is derived from asymptotic theory;
B* — B and sg- are based on samples of n. = 100 trials. Out represents the number of outliers related
to poor convergence. In most examples the presence of these outliers rendered 8* — 8 and sg-
meaningless.

The likelihood function based on the N;(w),) is

L= Hk—ll 'n'f”"w'“}(l — ,m)M:(wJ—M,(wln).
=

Hence the maximum likelihood estimates are given by

A Ml(wl+1) .

. = 1=i1=k-—-1
(4.3) T M) i<k
and

A M (wj+1) .

. ;=1 ———, 1l=i=sk-1.
“d M)

The information matrix I(7) corresponding to the vector 7 = (71, ---, 1) is the

diagonal matrix whose ith diagonal element is
E{Mz(wz+l) + M, (w,) — M, (w,+1) }

'7712 (1 - 771)2

L.(m)

1 F(w,)

L l=si=sk-1.
Yi=1ny F(w) , l

= 211

77;(1 _77; j 1 WL(I_WL)
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The relationship between the 6, and the 7; suggests that we introduce & = log m, and
4.5) p=logf=3%-1¢§, O0=<i<k-1

The asymptotic variance of 7, is given by I;' (#) and hence that of él = log #, is simply
(1 — m)/ma,, where

a, = Zjl:=l njF(wl)/F(wj) = 2;=1 njai—l/ej—l~
Hence the asymptotic variance of g, is simply Y j=1(1 — =) /ma;.

5. Proof of Theorem 1, first part. The proof has two main parts. The first consists
of a U-statistic type of decomposition to obtain

(5.1) S, (B) = un(B) + S»(B) + R.(B)

where p,.(B) = ES,(8) and S, (B) may be expressed as a sum of independent terms with
mean 0, i.e.,

(5.2) S.(B) = ¥y Yy Tr G, B).

We apply the Central Limit Theorem to S, (Bo) and show that the remainder, R,(Bo), is
relatively small, and hence S, (8) is approximately normally distributed with mean 0.
The second part consists of showing that for 8 close to Bo,

(5.3) Dn(B) = {Sn(B) — 1 (B)} = {Sn(Bo) — pn(Bo)}

is negligible uniformly in 8. Consequently S, (8) behaves like S, (8o) plus a deterministic
term which is locally linear. Thus the zero crossing of S,(8) can be approximated by 8%,
a linear function of the approximately normal S, (8o).

The first part requires some notation and lemmas. For i < j, let u(i, j, B) =
Egne(i, j, B), 8% (i, J, B) = w1, J, B) — u(, J, B),

(54) gh(l’.bﬁ) =E{g2k(l,])ﬁ)|th),
(5.5) Ui, j, B) = E{g% (i, ], B)| Vi),

and Rux(i, j, B) = &4 (i, j, B) — UnG, j, B) — Ux(i, j, B). Then (5.1) and (5.2) hold with
tn(B) = ESn(B) = X<y nunyu(i, J, B),

(5.6) Th(i, B) = j<i %y Un(J, i, B) + i m Un G/, B)

and R,(B) = Y, Xhc1 X1 Rue(i, J, B). Lemma 1 lists some of the U-statistic properties.
We abbreviate by omitting some of the arguments in g, U, U, etc. The proof is moderately
routine and is omitted.

LEMMA 1. EU, = EU, = ERy = 0,

Var g = Var U, + Var U, + Var Rur, VarS,(B) = Var g,,(ﬁ) + Var R, (B),
Var Rn (B) = Zl<j n.n, Var th (lv jy B)’ Var gn (ﬁ) = Zi n, Var Th (l; B)

To apply the Central Limit Theorem, we require bounds on the moments of S,.(B) and
R, (B). The Minkowski Inequality (Ash, 1972), states that {E |YZ; |} =Y [E|Z.|"]" for
r =1, and implies

Var Tx(i, B) < 4[Y,n;|x, — xi|]2, E|Tx(, :8)|3 =8[y,m|y —x |]3
Furthermore, using Lemma 1,
Var R,(8) <16 Y.<, m.n,(x, — x,)> = 16n Y7 n,(x; — ¥)°

where ¥ = n”' Yn,x,, and n = Y n,. Representing these sums in terms of integrals with
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respect to the empirical distribution function H, of X, we have
LEMMA 2.
Var S,(B) = 4n3J’ [ J |2 — x| dH,L(x’)T dH, (x),
Var S,(B) < 4n® J'J (x" — x)? dH, (x') dH, (x) = 8n°0*(H,),
ny Y E| Ta(i, B) | < 8n'y(H,), Var R,.(B8) < 16n¢*(H,).

We derive the asymptogic normality of S,(80) by showing that p.(8o) = 0, applying the
Lyapounov conditions to S, (8o), and showing that R,(/80) is negligible.
First, let 8 = Bo + t. We have

61w p = {2 f "Flo -t — 1)) dF @) — Pl — tx — x»m},

—o0

hence 1 (z, j, Bo) = 0, pn(Bo) = 0 and u.(B) = n’a,(B). .
To study S.(Bo) we obtain second and third moments of Tx(i, 80) and of Ux and Up.
We have

N 2R (F - 2F (Vi) i Ve,
gh(ly J> BO) = J
0 otherwise
Uil fo) =~ (2F (Vi) = ),

Var Un(i, J, Bo) = (%, — x:)°F,/3F,,
Var Ui, j, Bo) = (x, = x)°F}/3F.
If i <j < 4 then
Cov{Un(i, j, Bo) Un(i, 4 Bo)} = (%, — %) (x, — x,)F;/3F.F},
Cov{Un(i, 4 Bo) Ui, 4 Bo)} = (x— x.)(x, — %) F3/3F;F,
Cov{U.(, J, B Ur(j, 4 Bo)} = (% — %) (x, — x)F2/3F.F,.

Combining these terms we may compute the variance of Tx(i, fo) and from that the
variance of S, (o).

(5.8) Var S,.(Bo) = n’o;.
Lemma 2 bounds the sum of the third moments of T(i, B0). Hence we may apply the
Lyapounov version of the Central Limit Theorem (Cramér, 1951) to obtain:
LEMMA 3. If o, is bounded away from 0, and y(H,) = O(1), then
ZL[8x(Bo)/n*?0,] > N(0, 1).

From Lemma 2 it follows that for any specified 8, R.(8) = O,(n) as long as ¢*(H,) =
O(1). Thus, we have:

LeEmMaA 4. If o®(H,) = O(1) and o, is bounded away from 0 and «, and y(H,) = O(1),
then

Z[8n(Bo)/n*?0,] > N(0, 1).
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The same derivation could be used to determine the asymptotic normality of S.(8) for
B# Bo or even for a sequence of 8, — Bo. Then the result could be applied to determine the
Pitman efficiency of the test statistic S.(8o) for testing 8 = Bo.

A variation of S,(f) is the unweighted statistic where the (x; — x;) weights are omitted
in the comparisons to be summed. The same derivations apply to give analogues of
Lemmas 3 and 4 where o, is replaced by an integral which differs from (2.2) in two related
respects. First, the quadratic terms (x — x’)(x — x”) is replaced by its sign. Second, the
region of integration is restricted to A = {(x, x’, x”) : x # x" and x # x”}. The set of points
thus excluded may be important if H, is such that some value of x has a substantial
proportion of the observations (as is the case in our example of Section 3).

Lemma 4 may be used to construct an asymptotic confidence interval for 8, using the
set of B for which |S.(8)/n*?0,(8)] = K. The construction of this interval requires
knowledge of F which can be estimated. We have not seriously addressed the problem of
the simultaneous estimation of F and 8. Note, however, that our proposed point estimate
of B does not involve knowledge of F.

6. Proof of Theorem 1, second part. The second part of the proof of Theorem 1
consists of showing that D,(8) = {S.(B) — p(B)} — {Sa(Bo) — pn(Bo)} is uniformly
negligible for B close to Bo. If we can neglect D,(8), then

will vanish near

(6.1) B* = Bo — Su(Bo)/1r(Bo)

if Sn(B0)/tn(Bo) = n 2 {(n"%28,(B0)/ 0.} {0/ an(Bo)} is small. Moreover, Lemma 4 implies
that £[n'2(8* — Bo)/7.] = N(0, 1) with 7, = 0,/an(B0), if 0, and a,(Bo) are well behaved.

What constitutes negligibility on the part of D,(8)? It can be neglected if it is small
compared to S,(Bo) = O,(n*?) or if it is small compared to (8 — Bo)pn(Bo) = O (n*(8 — Bo)).
But neither of these bounds applies for the entire interval B, + . However, Lemma 5
states conditions under which D.(8)= o,(n"*? uniformly for |8 — Bo| = n™® and
D.(B)/|B — Bo| = 0,(n?) uniformly for n™* < |8 — By| =< t, where 0 < a < b. With this
Lemma stated below, Theorem 1 can be established using a reasonably routine analysis
where o, and O, are used with properties analogous to those of 0 and O (Chernoff, 1956;
Pratt, 1959).

LEMMA 5. If | Su(B1) — Sn(B5)| = Wa(By, B2) for Bo—to=Pri=Bi=Pr<=Ba=Po+ &
where EW, (B, B2) = Ki| B2 — ,31|n2, Var W,(B1, B2) = Kz | B2 — B1| n®, and Var D,(B8) =
K;| B — Bo|n® for | B — Bo| < to, then for a > Y and 0 < b < %,

(6.2) suposiq=n— | Du(Bo + )| = 0,(n*?)
and
(6.3) SUPn-t=ji=t, | ¢ "Dn(Bo + 8| = 0,(n?).

Proor. For 0 = t; < ¢, divide the interval (8o — t1, Bo + t1) into 2r subintervals
(Bo + iti/r, Bo + (i + 1)t1/r) = (B, Bi+1), —r =i <r. Thenif B; < B = B.+1,

Dn(B) = Dn(B) + {pn(B) — pn(B)} + {Sa(B) — Sa(B)}
| Da(B)| = | DulB)| + EWo(Bs, Biv1) + WalBis Biv1).
Suppose d = Kin’t;/r. Then EW,(8,, B.+1) < d and by the Chebychev Inequality
P[W.(B, B:+1) = 2d] = Konti/rd?
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and

P[| D.(B)| = d] = Konty/d>
Hence
(6.4) P[supjy=, | Du(Bo + 8)| = 4d] = 4rKon’t, /d>.

In Equation (6.4) substitute ¢, = n™% r ~n, and d = n* **where a >0,¢ >0, a + ¢
> Y%, and a + 3¢ < 1. For a > Y, these inequalities may be achieved and (6.2) follows. Now
let t; = to,r ~ n%, d = n** where 0 < b < e < %. Then (6.4) implies (6.3). O

With Lemma 5, only two additional steps are required to establish Theorem 1. First, we
must demonstrate the existence of W, satisfying the conditions of Lemma 5. Second, the
informal argument of the first two paragraphs of this section should be formalized. We
shall omit this step which is long, but reasonably routine, and refer simply to the more
complete discussion in Bhattacharya, Chernoff and Yang (1980). All that remains is the
existence of W,, which is covererd in:

LEmMMA 6. If y*(H,) and the densities of Vi, (i.e., f/F,) are uniformly bounded, then
the conditions of Lemma 5 are satisfied.

ProoF. We recall that S.(8) = ¥ gu(i, j, B). Then as g increases from B} to B
&nre(i, J, B) might stay the same or decrease if V,(i, 8) remains comparable to Vi(j, 8). But
if Vi(i, B) fails to remain comparable to Vi(j, 8), gn(i, j, B) may increase from —(xj — x,)
to 0. Hence | gni(3, 7, B1) — gne(i, J, B3| < ghe(i, J, B1, B2), where

gl J, B, B2) = 2(x, — x:)(A + B)

and A and B are one or zero depending on whether or not —8x(x, — x,) < Vi — w; —
Bo(x; — x) = —B1(x; — x;) and on whether or not —fa(x, — xi)) < Vi, — Vi, —Bolx; — x,) <
—Bi(x, — x,) respectively. Also | Sn(B87) — Su(B85)| = W,(B1, B2) where

(6.5) Wa(B1, B2) = Zi</ g}.k(i, Js B, B2).

The g} terms may beAanalyzed precisely as were the g, terms in Section 5 giving rise to
&hk, Uh, Uk, R, pn, S, T'h and R}, terms to which Lemma 1 applies.
Since the densities of the Vj, are uniformly bounded, there is a constant K such that

Eg;l.k(i, J» B, B2) = 2(x, — x)°’K | B — B |
Var g}tk(l) j) Bl’ BZ) = 4(xj - xz)3K| ,82 - Bl Iy

and since Var gj, = Var U}, + Var U} + Var R}y, the terms on the right are bounded by
Var giz. Then, applying the Minkowski Inequality

Var Th= (3, n,-2 | x5 — x [V2K | B — B )/} 2
Moreover,
Var R, <4 Y., nn(x, — x)°K | B — B |,
EW,(B1, B2) = 2K | B2 — B1 | Yu<) (%, — x.)°nin; = 2Kn® | B2 — B1 | 0*(H.,)

and
Var Wn(,Bly ,82) = 2K(2n3 + n2)| ,82 - Bl I 'Y*(Hn)-

Hence we have established the bounds on the mean and variance of W,. Essentially the
same derivation yields the bound on the variance of D.(8). Finally noting that ¢(H,) <
{v*(H,.)/2}*?, we have completed our proof.
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