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CHOOSING BETWEEN EXPERIMENTS: APPLICATIONS TO FINITE
POPULATION SAMPLING'

By GLEN MEEDEN AND MALAY GHOSH

ITowa State University

Suppose that a statistician is faced with a decision problem involving an
unknown parameter. Before making his decision he can carry out one of two
possible experiments. Assume that he may choose at random which of the
two experiments he will observe. For this problem a decision procedure for
the statistician is a triple consisting of the randomizing probability measure
he uses to choose between the experiments, the decision function he uses if he
observes the first experiment and the decision function he uses if he observes
the second experiment. The main theorem of this paper identifies the set of
such admissible triples when the parameter space, and the sample spaces of
the two experiments are finite. This result is then used*to find some uniformly
admissible procedures for some problems in finite population sampling.

1. Introduction. Suppose that 6, the true but unknown state of nature, is known to
belong to some finite set ® and the statistician is faced with the decision problem specified
by the decision space D and the loss function L (8, d), d € D. Before making his decision,
however, the statistician may choose to observe one of two possible experiments. For each
experiment the family of possible distributions over a finite set of possible outcomes is
indexed by the parameter 6. The statistician may even choose the experiment at random
from these two. Suppose he observes the first experiment with probability y and the
second with probability 1 — y where y € [0, 1]. Suppose that if the first experiment is
chosen, he uses the decision function §, while if the second experiment is chosen he uses
the decision function ¢. The problem for the statistician is how to choose the triple (y, 8,
¢). In this paper we study the admissibility of such triples.

Blackwell (1951, 1953) discussed the problem of comparing two experiments. He
introduced the notion of one experiment being more informative than another and gave
necessary and sufficient conditions for this notion to be true. Now if one experiment is
more informative than another then it is clear that the statistician need only consider the
more informative one. However, the more typical case is where neither experiment is more
informative than the other. It is for this situation that the admissibility of the triples
(1, 8, ¢) are of interest.

A naive first thought might be that if § is admissible for the first experiment and ¢ is
admissible for the second experiment then any choice of y € [0, 1] yields an admissible
triple. It can be easily shown that this is not true however. For example, in the trivial
situation where the first experiment just consists in using § alone and the second just
consists in using ¢ alone with (4, §) = 1 for all # € © and r (0, ¢) = 2 for all § € O, any
triple (y, 8, ¢) with 0 < y < 1 is inadmissible. It is useful to think about how a Bayesian
would approach the problem. Suppose A, a probability distribution over ® which assigns
positive mass to every member of 0, is the statistician’s prior distribution. The statistician
can then find his Bayes rule and overall Bayes risk for each experiment. He would then
observe the experiment with the smaller overall Bayes risk. The only time he would

Received February 1981; revised June 1982.

! Research supported by the NSF Grant Number MCS-8005485.

AMS 1970 subject classifications. 62C15, 62D05, 62C10.

Key words and phrases. Choosing between experiments, admissibility, Bayes, orthogonal priors,
finite population sampling, uniform admissibility, ratio estimator, Horvitz-Thompson estimator, Basu

estimator, choice of designs.
296

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. BIKOIRS ®

I3

yo 22

WWw.jstor.org



CHOOSING BETWEEN EXPERIMENTS 297

randomly choose between the two experiments is when the Bayes risks were equal. Hence,
the Bayesian would randomize only in the cases where he is indifferent between the two
possible choices. It can be shown that for such a Bayesian, his resulting triple will always
be admissible. This Bayesian idea of how to choose between the two experiments is well
known and has often been used and discussed in the literature. It does not answer, in
general, the admissibility question posed here. Because of the close relationship between
admissibility and Bayesness, this idea is suggestive, however. In what follows, an extension
of the Bayesian idea yields the answer to the question of admissibility for the triples (y,
8, ¢).

In Meeden and Ghosh (1981) the family of admissible decision rules was characterized
for certain decision problems with a finite sample space and a finite parameter space. It
was shown that a decision function is admissible if and only if it is “stepwise Bayes against
a full family of mutually orthogonal prior distributions” (see Brown, 1981, and Hsuan,
1979, for a precise meaning of this statement). In this paper we show that a triple (y, §,
¢) with 0 < y < 1 is admissible if and only if there exists a full family A, . . . , A" of priors,
such that for the first experiment, § is stepwise Bayes against the family, and for the second
experiment, ¢ is stepwise Bayes against the family and the Bayes risk of § against A’ is
equal to the Bayes risk of ¢ against A’ for all i = 1, .- - , n. In this case any new triple that
is formed by replacing y with any other number from [0, 1] is admissible as well. Suppose
now that § and ¢ are stepwise Bayes against a full family of priors for their respective
problems but the corresponding Bayes risks are not all equal. In this case there must exist
a positive integer j* < n, such that, the Bayes risk of § against A’ is equal to the Bayes risk
of ¢ against A*for i = 1, 2, .-+, j* — 1 and their Bayes risks against A’* are not equal. In
this case, if the Bayes risk of § against A’* is smaller (larger) than the Bayes risk of ¢
against A’*, then the triple (1, 8, —)((0, —, ¢)) is admissible. These facts are summarized in
Theorem 1. They can be easily generalized to the case where the statistician can choose,
at random if he wishes, from a finite set of experiments. These and related points are
discussed in Section 2.

In Section 3 these ideas are applied to finite population sampling. Suppose one is
interested in estimating the population total of a population consisting of N units with
squared error loss using a design p of fixed sample size n. Let W, be the set of all designs
of fixed sample size n. Given a design p € W,, and an estimator §, one is often interested in
knowing if § is admissible when p is the design which will be used. Even of greater interest
is deciding whether or not there exists a p’ € W, and a 8’ such that risk function of the
pair (p’, 8’) dominates the risk function of the pair (p, 8). If no such dominating pair exists
then the pair (p, d) is said to be uniformly admissible relative to W, . This notion was first
discussed in detail in Joshi (1966).

The problem of choosing a design and an estimator such that the pair is uniformly
admissible relative to W, is just a special case of the problem considered in this paper. In
finite population sampling, however, the usual convention is to assume that the parameter
space is N dimensional Euclidean space and the results of Section 2 are not directly
applicable. In Section 3 it is shown how admissibility and uniform admissibility questions
can sometimes be resolved by only considering finite subsets of the parameter space and
a sufficient condition for uniform admissibility is given. From this condition, the uniform
admissibility relative to W, of the usual estimator of the population total along with any
design from W, follows easily. This gives an alternate proof of a fact first proved in Joshi
(1966). Other uniform admissibility resuts of Godambe (1969), Ericson (1970) and Chau-
dhuri (1978) are simple consequences as well. Basu (1971) introduced an interesting
estimator which can be thought of as a psuedo-Bayesian alternative to the classical ratio
estimator and the Horvitz-Thompson estimator. First it is shown that Basu’s estimator is
admissible for any fixed design whatsoever. Then a subset of designs of W, is identified
with the property that when any one of them is used with Basu’s estimator, the pair is
uniformly admissible relative to W,. It is seen that this set usually contains just one design
which puts probability one on some sample.
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2. Admissibility in the choice of an experiment. Let ©, a finite set, denote the
parameter space which contains the true but unknown state of nature 4. Let D be the
decision space with generic element d. Let L(#, d) be the nonnegative loss function.
Assume that L(-, -) is such that for any prior distribution A on 0, YsL (6, d)A(0), as a
function of d, is uniquely minimized by a member of D. Let X be a random variable with
a family {f;: § € @} of possible probability functions. Let % be the sample space of X.
Assume that & is finite and for each x € % there exists a § € @ such that fy(x) > 0. Let Y
be a random variable with a family { py: § € ©} of possible probability functions. Let % be
the sample space of Y. Assume that % is finite and for each y € % there exists a § € © such
that ps(y) > 0. Finally let 8(¢) denote a typical decision function (possible randomized)
from Z(%) to D with risk function r.(6; 8)(r, (6; ¢)).

Now the statistician can choose to observe X with probability y and Y with probability
1 — y where y is any number contained in [0, 1]. If it turns out that X(Y) is actually
observed then he must use 8§(¢) to make his decision. Hence, for the statistician a decision
procedure for this problem is a triple (v, 8, ). For such a triple its risk function is

(2.1) r(6;7, 8, ) = yr(6; 8) + (1 — ), (6; ).

Theorem 1, the main result of this paper, essentially characterizes the class of admissible
triples. Before stating the theorem, we need to introduce some more notations.
If A is a prior distribution over ® then

(2.2) R(y,8,; M) = yR: (8 N) + (1 — y)R, (95 A)
is the Bayes risk of the triple (v, 8, ¢) against'A where R, (8; A) (R, (¢; A)) is the Bayes risk
of 8(¢) against A. Let

g(x;N) =Yofs(x)A0) and q(y; ) = Yepe(¥)A(B)

be the marginal probability functions of X and_ Y respectively under the prior A. For the
prior A let ®(A) = {6, A\(§) > 0}. Two priors A’ and N (i # j) are said to be orthogonal if
B(\Y) N O) is empty.

Let A' ..., A" be a set of priors on ©. Let

AL = {x: glx;A\") >0}
and
A= {x:x& Uz} AL and g(x;N) >0}

forj=2, ..., n. Note that some of the A’’s may be empty and that the set associated with
a particular prior depends on the other priors in the sequence and its place in the sequence;
A}, --., A} are defined in an analogous way.

A decision rule & for the X problem is said to be stepwise Bayes (see Hsuan, 1979)
against A, .-« ,A"if 8(x) = 8 (x) forall x € Aifori=1, -.- , n where §} is Bayes against
Ai. A decision rule ¢ for the Y problem is defined to be stepwise Bayes in a similar way.

THEOREM 1. (a) Let A%, - -+, A" be a set of mutually orthogonal priors.
(aI) IfAY, -+, A" are such that

(i) AL U AJis nonempty forj=1, -+, n
(2.3) and
() Ui (ALUAN) =xU ¥

(2.4) and if § and ¢ are decision rules which are stepwise Bayes against \*, - -+ , \" for
the X and Y problems respectively, and if for some 1 < j* < n it is the case that

RGN =Ry N) for j=1, -0, j*—1
(2.5) and
R.(8 \*) < R, (¢; M%)
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then (1, 8, —) is admissible.
(a.Il) If neither r.(6; 8) < ry(6; ¢) for all 8 with strict inequality for at least one 8 nor vice
versa, and if (2.3) and (2.4) are true and if

(2.6) R.(&GN)=Ry(&N) for j=1,---,n

then (y, 8, ¢) is admissible for any y € [0, 1].

(b) Conversely

(b.I) If (1, 8, —) is admissible then there exists a set of mutually orthogonal priors such
that (2.3) and (2.4) are true and

(2.7) R.(&EN)=R/($N) for j=1,---,n

(b.II) If (v, 8, ¢) is admissible where 0 < y < 1 then there exists a set of mutually
orthogonal priors such that (2.3), (2.4) and (2.6) are true and (y', 8, ¢) is admissible as
well where 0 <y’ = 1.

Proor. Before proving part (a) we prove the following lemma.

LEMMA. Let ', --., A" be a set of priors and let (v, 8, ¢) be a triple for which (2.4)
and (2.6) are true. If (yo, 8o, ¢0) is a triple which is at least as good as (v, 8, ¢) then (2.4)
and hence (2.6) is true for (yo, o, ¢o) as well.

ProoF. The proof of the lemma is by induction. The case n = 1 follows from (2.2),
(2.4) and the uniqueness assumption on the loss function. We now prove the inductive
step. Assume we have the priors A’, - .. , A”. Now by induction

So(x) =8(x) for x€EULI A, and ¢o(y) =¢(y) for y€ U}’=1A§.

If AP U A" is empty then the inductive step is true trivially, so we assume this set is
nonempty. Consider the restricted problem where § € ®(A"*") and the set of possible
decision rules is all the rules which agree with (v, 8, ¢) on (U7-; A%) U (U, A%). For this
problem (yo, 8, ¢o) is Bayes against A"** and hence (2.4) holds for A', ..., A"*! and the
lemma is proved.

We now prove (a.I) of the theorem. Suppose (yo, 8o, ¢o) is at least as good as (1, §, —).
Then by the lemma 8 (x) = 8(x) for x €U/=1" and ¢o(y) = ¢(y) for y EUT' A and

R.(8, N'*) = yoR: (80, A") + (1 — yo) R, (¢o, \")
= yoR.(8, \) + (1 — y0)R, (¢, V) = R. (8, \").

By assumption (2.5) the last inequality is strict (a contradiction) unless yo = 1. This implies
that the triple (1, 8, —) dominates (1, §, —) which is not possible by Theorem 1 of Meeden
and Ghosh (1981). This proves (a.I).

To prove (a.Il), note that if (yo, 8o, ¢o) is at least as good as (v, 8, ¢), then by the lemma
80 = 8 and ¢o = ¢. Since the risk function of 8 does not dominate the risk function of ¢ and
vice versa, yo = vy and (v, 8, ¢) is admissible.

To prove (b.IT) we first prove by induction that there exists a set of mutually orthogonal
priors satisfying (ii) of (2.3), (2.4) and (2.6). Since (v, 8, ¢) is admissible then there exists a
prior A! (see page 86 of Ferguson, 1967) such that (y, 8, ¢) is Bayes against A, i.e., (2.4)
holds for A'; (2.6) must be satisfied for A' as well. If the Bayes risks are unequal, for
example, if R, (8, A') < R, (¢, \'), then (1, 8, —) has smaller Bayes risk against A' than (v,
8, ¢) which is a contradiction.

Suppose now we have n mutually orthogonal priors A’, - - . , A", such that (2.4) and (2.6)
are satisfied but (ii) of (2.3) is not. Consider now the restricted problem for § € U7, 0(\’)
and = & — U’ A and % = % — U, A, as the sample spaces with the corresponding
probability functions rescaled if necessary. Note that for § € UT®(A’) neither r. (6, 6)
dominates r, (6, ¢) nor vice versa. Therefore, if (y, 8, ¢) is inadmissible for the restricted
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problem with 6 & U7_,©(N), it is inadmissible for the original problem as well, which is a
contradiction. Hence, by page 86 of Ferguson (1967) the triple (y, 8, ¢) is Bayes against
some prior A"*" for this restricted problem, i.e., (y, 8, ¢) and A?, - .. , A" satisfy (2.4) and
(2.6). Since ©, 2 and % are all finite, there must exist a finite set of mutually orthogonal
priors sqch that (ii) o_f (2.3), (2.4) and (2.6) are satisfied. After removing from this set all
priors A’ such that A% U AJ is empty, the remaining set satisfies (i) of (2.3) as well and
(b.II) is proved.

The proof of (b.I) is similar to that of (b.IT), and is omitted.

To see that in part (a.I) the assumption that neither 7, (8; §) dominates ry(6; ¢) nor vice
versa is needed, we consider a simple example.

Suppose that = % = {0, 1} and © = {0, %, 1}. Let £,(0) = po(0) = %, £:(0) = p,(0) =
% and f1,2(0) = p1/2(1) = %. Let A be the prior which puts mass % on 0 and 1. Let 8(¢)
denote the unique Bayes estimator of § with squared error loss for the X(Y) problem.
Then it is easy to check that r.(6; §) = r,(6; ¢) for § = 0 and 1 while r,(%; §) > ry(%; ¢). So
even though R, (; \) = R,(¢; A) the triple (1, §, —) is not admissible.

In the theorem we have assumed that the parameter space is identical for the two
problems. This is the most realistic assumption although it is possible to think of examples
where the parameter spaces for the two problems would not be equal. The theorem
remains true in the more general situation as well. To see this, let ©, and ©, be the
parameter spaces for the X and Y problems respectively and assume that ©, # ©,. Let ©
=0, U 0O, and consider 2" = %' U {a} as a new sample space for the X problem. Let the
probability function for the %’ sample space be given by

fox) €0, x #a,
(%) = 0 0Z0,,x =aq,
folx) = 0 e 0,,x’ #a,
1 00, x' =a.

Welet %' = #U (b} and in a similar way define p;(y’) for § € ©. Since the loss function
is defined on ® X D we see that the assumptions of Theorem 1 are satisfied with the
augmented sample spaces 2’ and %'.

Theorem 1 can be generalized to the situation where the statistician can choose his
experiment from a set of % possible experiments where k£ = 2. Let X; denote the random
variable for the ith experiment. Let y = {yi, - - - , yx} where y;(= 0) denotes the probability
that the statistician selects the ith experiment. Note that Y% y; = 1. We shall call y a
design. If §; denotes a decision function defined on the sample space of X; then (y, 8)
denotes a typical decision strategy for the statistician where § = (81, -- - , 8). Theorem 1
can be generalized in the obvious way to characterize admissible decision strategies
(v, 8). For example, suppose A', - -, A" is a set of mutually orthogonal prior distributions
with 87 the unique stepwise Bayes decision rule for the ith problem. We assume that it is
not the case that for some i # j that r. (6, §#) dominates r: (6, 87). If this were so we would
Just remove the “inadmissible” experiments from consideration. This guarantees that the
first assumption of (a.Il) is satisfied in the general case. The set of designs y* such that
(y*, 8*) is admissible can be found as follows. Let

O\ <o, A") = (& R(8F; A') = min,—y... . R(8%; \1))

and define ®;(\', .-, A"), --., ®,(A', ..., \") inductively as follows. If ®,_, (A, - .,
A") contains just one integer let ®,(A", -+, A"), ..., ®, (A}, ..., \") all be empty and if
@, (A", .-+, A\") contains more than one integer let

QA - e, A") = (& R(8F; N) = infreo, ,R(85 M)}

If there exists an ¢’ such that @, (A', ..., A") contains just one integer, say i, then the
only design 6* such that (y*, 8*) is admissible is the design that puts probability one on .
The only other possibility is that @,(A', .-, A") contains several integers. In this case
(y*, 8*) is admissible if and only if y* assigns probability one to the set ®,(A', ---,A"). In
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either case let ®(\’, . - . , A") be the class of designs such that (y*, §*) is admissible if and
only if y* € ®(\Y, ..., A").

Note that in the case where U7-10()\;) = O, an “inadmissible” experiment will be
automatically eliminated from consideration since it cannot belong to ®,(A*, --., A"). In
particular, in part (a.II) of Theorem 1, the assumption that neither r. (6, 8) nor r,(0, ¢)
dominates the other is superfluous when U?-;©(\;) = © by (2.6). This alternative version
of (a.IT) will be used in the proof of Theorem 2 and in the next section as well.

As a final generalization of Theorem 1, we note that part (a.II) of Theorem 1 can be
extended to the case where © is no longer assumed to be finite. This is possible because
some admissibility questions can be reduced to considering only finite subsets of the
parameter space by using the following principle. Suppose © denotes the parameter space
for a general decision problem with a, denoting a typical decision function with risk
function r (6, a). Suppose a* is a decision function with the property that for every
6o € O there is a subset ¥(6,) with 6, € ¥(6,) C O such that

ifr@ a)=r@, a*) forall € ¥(@)
then a’'=a*a.e. (Py) forall € ¥(6,).

(2.8)

Not only does this mean that a* is admissible for the problem having parameter space
¥(6,), but it is admissible for the problem with the whole parameter space ®. We now use
this principle to prove Theorem 2.

THEOREM 2. Let %, %, and © be arbitrary. Assume for each 0 € O, fy(x) > 0 for only
finitely many x € & and ps(y) > 0 for only finitely many y € %. Let (v, 8, ¢) be a triple
with the property that for every 6, € © there exists a finite family of mutually orthogonal
probability measures N, + - - , N (which may depend on 6o) with finite support on © with
the properties (i) 6 € Og, = U7=1 O(A},), (ii) 8 and ¢ are decision rules which are stepwise
Bayes against Ay, -+, A§, for the X and Y problems respectively when the parameter
space is restricted to ©g,.

If
(2.9) R.(8; M) = R, (¢; M) for j=1,...,n,

then (v, 8, ¢) is admissible for any y € [0, 1].

Proor. If (y, §, ¢) is not admissible then there exists a triple (y’, §’, ¢’) such that
(2.10) r@y,8,¢)=r@;v,6,¢) forall 40O

with strict inequality at some 6, say 6. For 6 let Aj, -+ -, A}, and @y be as given in the
assumptions of the theorem. Just as in the proof of Theorem 1, we have that

Pp{6(X) = 8'(X)} = P{¢(Y) = ¢'(Y)} = 1for § € O,

Now, since @gou’i‘=1®(7\50), from (2.9) and (2.10) it follows that y = y’ as well and hence, by
the principle given in (2.8), Theorem 2 is proved.

Note that Theorem 2 can be easily extended to the case where we are choosing between
n experiments instead of just two. In particular, this extended version will be used in the
next section to find uniformly admissible strategies in finite population sampling.

3. Uniform admissibility in finite population sampling. Consider a finite popu-
lation % with units labeled 1, 2, ..., N. Let y; be the value of a single characteristic
attached to the unit i. The vector y = (y1, -- -, yn) is the unknown state of nature and is
assumed to belong to ® = #". A subset of s of {1, 2, --., N} is called a sample. Let n(s)
denote the number of elements belonging to s. Let S denote the set of all possible samples.
A design is a function p defined on S such that p(s) € [0, 1] for all s € S and Y ses p(s) =
1. Giveny€®ands= {i, --+,in} where 1 = i1 <ip < -+« <ip < N, let y(s) = (y;,
-+, ¥i ). Suppose one wishes to estimate y( y), some real valued function of the parameter,
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with squared error loss. Let e(s, y) denote an estimator y(y) where e(s, y) depends on y
only through y(s). If the design p is used in conjunction with the estimator e then their risk
function is

3.1 r(y; p, e) = Ysle(s, y) —y(M)Tp(s) =3 15 (3; e(s. +))p(s).

An estimator e is said to be admissible for the design p if there does not exist any other
estimator e’ with r(y; p, e’) < r(y; p, e) for all y € @ with strict inequality for some
y € ©. The pair (p, e) is said to be uniformly admissible relative to W a class of possible
designs, if p € W and there does not exist any other pair (p’, e’), with p’ € W, satisfying
r(y,p’,e’) =r(y,p, e) for all y € ® with strict inequality for some y € ©.

Now it is easy to see from (3.1) that the problem of choosing a uniformly admissible
pair (p, e) is of the type considered in the previous section. Let W,, denote the set of all
designs of fixed sample size n. Using a design p € W, is equivalent to saying that there are
() possible experiments that the statistician can observe. That is, he must decide which
sample of size n he wants to observe and he can make this choice by choosing at random,
in any way that he desires, from among the (§') samples.

Since the parameter space is not finite, Theorem 2 and its extension to choosing among
any finite number of experiments will be used. In fact, the following theorem is a
restatement of Theorem 2 in the framework of finite population sampling, and its proof
will be omitted.

THEOREM 3. Let e(s, y) be an estimator of y(y) such that for every y, € O there exists
a finite family of mutually orthogonal probability measures Ay, ++-, A, (which may
depend on yo) with finite support on © with the properties (i) yo € 0, = Ul @(}\fvo) and
(ii) for each sample s, e(s, -) is the unique stepwise Bayes estimator of y(y) against Ay,
-+, Ay, when the parameter space is restricted to O, If p is a design belonging to W,
such that p € ®(\}, - -+, N;,) when the parameter space is restricted to ©,, for every yo,
then (p, e(s, y)) is uniformly admissible for the original problem.

COROLLARY 3.1. Let e(s, y) be the estimator of y(y) and suppose for every y, € ©
there exists a prior Ay, (which may depend on y,) with finite support ®(, ) such that yo
€ O(A,,) and when the parameter space is restricted to O(\,,), e(s, -) is the unique Bayes
estimator of y(y) for every sample s. If ¥ ,con,y T(Y; D, €A, (6) as a function of p, is
constant over W, then for any design p € W,,, (p, e) is uniformly admissible relative to
Wh.

Proor. For every yo € ® we have by the assumptions of the corollary and the
extension of Theorem 1 that ®(A,) = W, and the corollary follows from Theorem 2.

In Godambe (1969) an estimator e*, of the population total was proposed. Let V, be the
class of designs with average sample size n. It was shown that (p, e*) is uniformly
admissible relative to V, for any p € V,. In the course of the proof of his result, it was
shown that for every y, € © there exists a A, which satisfies the conditions of the corollary.
In addition, he demonstrated that ¥ ,con,, 7(¥; p, €*)A*(y) as a function of p is constant
over V,. Since W, C V,, we have from the corollary that (p, e*) is uniformly admissible
relative to W, for every p € W,,. Although our result is not as general as Godambe’s, it
seems to throw further insight into the question of uniform admissibility.

In Ericson (1970) another estimator, say e’, of the population total was proposed.
Following Godambe it was shown that (p, e’) is uniformly admissible relative to V, for
every p € V,. As before the weaker result with W, replacing V, follows from our corollary
and some facts demonstrated in Ericson (1970).

Finally, in Chaudhuri (1978), in the spirit of Godambe, an estimator, e”, of the
population variance was suggested. It was shown that (p, e”) is uniformly admissible
relative to W, for any p € W,,. The proof can be simplified using our corollary.
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For the rest of this section, consider the following estimator of the population total

(3.2) e1(y, 8) = Yies yi + {n(8)} " {Ties (yi/mi)} (Tiggs mi)
proposed by Basu (1971).

We shall now find designs such that if they are used with Basu’s estimator, the resulting
pairs are uniformly admissible. In this argument, the admissibility of Basu’s estimator for

any fixed design will be demonstrated.
For a set of r distinct real numbers a;, az, +++, a, with 1 =r < N, let

(3.3) @m(aly ""ar)= {y:yi/mi=afforsomej= 1, ---,r,fora]li= 1, "’rN}’

where m = (my, ---, my). Note that @,(ai, -+, a,) is a subset of ® = R”" containing
finitely many points. Let

(34) Do, +++, r) = {y:y:;/m; = ajforsome j=1, ..., r,foralli=1, ..., N
and each a; appears at least once forj=1, ..., r}.

If y € %ulay, - - -, ar) we say that y is of order r for ay, - - -, a,. Similarly if y(s) is a sample
point with r < n(s), we say that y(s) is of order r for ay, - - -, a, if each y;/m; equals one of
the r values ay, - - -, ar, and if for each value a;, there exists at least one i,for which y;,/m;,
= 0. If y € Up(ats, -, @), let w,(j) be the number of (y;/m;)’s which are equal to Q.
Note for each j, w,(j) = 1 and Yj-.w,(j) = N. If y(s) is a sample point of order r for a;,
-+, arlet wy(j; s) be the number of observed (y;/m:)’s (i € s) which are equal to a;.

We now exhibit a family of mutually orthogonal prior distributions on #ay, ---, a)
against which Basu’s estimator is the unique stepwise Bayes for any design p.

The first prior A' puts mass 1/r on the r points y = (mia;j, maa;, -+, mya;) for j =1,
.-+, r. For such a point all the observed ratios in a sample s are a; and the Bayes estimator
is just Basu’s estimate in this case. B

The second prior A’ is defined over the set Up<y @m(ai, o). This set contains all
parameter vectors of order two for some «; and a;. If y is of order two for a; and a; with i

< i’ then
A2 (y) o< J P71 — p) 7" dp = T'(w, ()T (wy (")) /T(N).
0

Note that for a sample y(s) of order two for a; and a;, the marginal probability of y(s) is
given by

A*(y(s)) o< T(wy(i; 8))T(wy(i’; 5))/T(n(s)).
Now the sample points which have positive marginal probability under A* but not under

A! are just those of order two for some a; and ay with i < i’. Let y(s) be such a point and
suppose i* & s. Then

E{(y»/m»)| y(s)} = {aswy(i; ) + arw,(i’; 5)} /n(s).

It is easy to check that for such a sample s, the Bayes estimate of the population total for
A% at y(s) is
a; Y jest) My + o Y jeswy My + (Yirgs mas ) {oiwy (i 8) + azw, (75 s)}/n(s),

where s(i) = {j € s:y;/m; = o;}. This is égain Basu’s estimate.
The third prior is defined over the set U <jcry @m(a:, aj, ar), and is given by

1 1
}\3(}') o(J J plluy(i)_II)g)y(j)_l (1 -p _pz)wy(k)—l dpl dpz
0 0
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The sample points which have positive marginal probability under A* but not under A! and
A% are just those which are of order three for some a;, oj and ay. It is easy to show that for
such points, the Bayes estimate against A’ is Basu’s estimate. Continuing in this way, it
follows from Theorem 1 of Meeden and Ghosh (1981) that Basu’s estimator is admissible
when the parameter space is #(ay, - - -, a,), and hence is admissible when the parameter
space is Z" as well.

When all the m/’s are equal, Basu’s estimator is just the classical estimator and the
above argument is an alternative proof of the admissibility of the classical estimator to
that given in Joshi (1966). Recently Tsui (1982) has used Joshi’s (1966) technique to prove
the admissibility of estimators similar to e; when the parameter space is #".

It is possible to use the above sequence of priors to construct an admissible estimator
of the population variance (see Ghosh and Meeden, 1982). In addition, similar arguments
can be used to study the admissibility of ratio and Horvitz-Thompson estimators (see
Meeden and Ghosh, 1982).

We shall now use the above sequence of priors to study the uniform admissibility of
Basu’s estimator. Recall that W, is the class of designs of fixed sample size n. Let S, denote
the set of all samples of size n.

Let s denote a sample of size n. For the design, p, with p(s) = 1 and the estimator e let
rs(y; e(s)) denote the risk function of e and p given in equation (3.1). In particular, for
Basu’s estimator, e;, we have that

(3.5) rs(y, e1(8)) = (P (Ties 21) (Tigs M) — Tiges 2imi}? = (XY a;2:)%,
where z; = y;/m; (i=1,---,N),a;=n"" Tz mifor all i € s and @; = —m; for all i & s. Let
T'={s:5 €8, and r,(y, ei(s)) is not dominated by r.(y, ei(s’))

for any other s’ € S, for y € #.(au, « -+, ar)}.
Now typically I' is a proper subset of S,, and its actual composition depends on the vector

m = (my, ---, my). The next lemma identifies a subset of I" which will be useful later.

LEMMA. Let m = (my, ---, mn) be a vector of positive constants which are not all
equal. If

I'(max) = {s:s € S, and Yc; m; = maxyes, Yies M}

then I'(max) C T.

Proor. Let s, € I'(max) and suppose s; (#s;) € S,. To prove the lemma, it is enough
to exhibit a parameter point y* € %, (ay, - - -, a,) such that

(3.6) rs(¥*; ei(s1)) > 1o, (¥*; ex(s2)).

It is enough to consider a parameter point which is of order two for some a; and o;. For
notational convenience let @ = o; and b = aj and a,($) = {/: /& s and 2,= a} where s € S,,.
If y is a parameter point of order two for a and b, it is easily seen that

(3.7 rs(y, e(s)) = (a — b)*{n""wy(a, ) Tige Mi — Ficay@ mi}2.

Let y* be the parameter point satisfying y;/m; = a when i € s; and y;/m; = b when i
€& s1. Then considering separately the two cases where s; N s; is empty and nonempty, it
follows that (3.7) holds.

With this lemma we can identify some uniformly admissible designs for Basu’s estimator.

THEOREM 4. Let ay, - -+, a, be r distinct real numbers and let m = (my, -+, my) be
a vector of positive constants which are not all equal. Let p be a design which puts
Dpositive mass on samples belonging to I'(max). Then Basu’s estimator, e:, as given in
(3.2) and the design p is uniformly admissible relative to W, when the parameter is
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assumed to be in Fy(ai, -+, a). In addition, by Theorem 3, the pair is uniformly
admissible relative to W, when the parameter space is &".

Proor. We will use the extension of Theorem 1 to find the designs in W, which when
used with Basu’s estimator are uniformly admissible. These designs must concentrate their
mass on the sets belonging to I'. Since for any s € T', Basu’s estimator is stepwise Bayes
against the sequence of priors introduced earlier, we need to compute the Bayes risks of
Basu’s estimator against these priors for the sample s. Under each of these priors, the
ratios y;/m; are finitely exchangeable. Let Z; denote the random variable y;/m; under a
typical prior distribution in this sequence. If A’ denotes the /th prior in this sequence, then
the Bayes risk of the estimator e; for the sample s against A\’is given by

(3.8 Ri(ei(s); X)) = XF a})E(Z1) + (Tinj 0:0j)E(Z1Z2)

where the expectations are taken with respect to the marginal priors under N Equatlon
(3.8) follows from equation (3.5) and the fact that ¥V a; = Q. Since Yiy aiaj = =31 @
equation (3.8) becomes

3.9) Ry(ei(s); ) = ¥ a}\(EZ} — EZ\ Z,).

By the Schwarz inequality E(Z:Z,) < (EZ})/(EZ3)"* = EZ} and hence the minimization
of the Bayes risk in (3.9) amounts to the minimization of Y a? = n ™ (Tigs mi)® + Yz,
Since the m/’s are positive, by Theorem 1, the only designs which are admissible are those
which put all their mass on the set I'(max). This completes the proof of the theorem.
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