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IMPROVING SOME MULTIPLE COMPARISON PROCEDURES

By ALEXANDER FELZENBAUM, SERGIU HART AND YOSEF HOCHBERG

Tel Aviv University

Genizi and Hochberg (1978) recommended using Contrast Set Preserving
(CSP) procedures in the class of T' (@) procedures for multiple comparisons in
general unbalanced designs based on partial results. They did not, however,
propose a general method for selecting a specific CSP procedure, or for
replacing a given non-CSP procedure with a better CSP one. In this work we
identify a certain orthogonal transformation of non-CSP procedures into CSP
ones and give a sufficient condition for the uniform dominance (shorter
confidence intervals for all contrasts) of the latter over the former. Two
important implications of the given condition are: (i) Applying the given
transformation to Spjstvoll and Stoline’s (1973) T'’-procedure in any unbal-
anced ANOVA gives a uniformly improved procedure. (ii) In any arbitrary
design, our transformation gives uniform improvement if the original proce-

dure is “nearly CSP.”

1. Introduction. Consider an arbitrary experimental design that produced a vector
of estimates @ for the vector of means 8 = (8, ---, 6,)’, and an estimator s? of the
experimental variance ¢2. We assume that 0 has a multivariate normal distribution with
mean vector # and variance matrix o°B and that »s?/¢” is independently distributed as a
Chi squared with » d.f.

If the variances of the pairwise comparisons 6; — @ are not all equal, then we call the
design—and the matrix B—unbalanced. Tukey’s T-method of multiple comparisons can
be used only in balanced designs, c.f. Genizi and Hochberg (1978).

For the unbalanced one-way layout, Spjgtvoll and Stoline (1973) proposed their 7''-
method. The T'’-procedure was extended to any design by Hochberg (1975). From that
extension one actually obtains an infinite family of Generalized T (GT) procedures for any
given design. Thus, corresponding to any matrix Q satisfying QQ’ = B we have a GT
procedure given by the simultaneous probability statement:

(1.1) Pr{| ¢'(0 — 0)| = sGEM(Q'¢), V¢ E E*) =1 — q,

where G5 is the upper ath quantile of the Studentized Augmented Range distribution
(recently tabulated by Stoline, 1978) and M (x) is the larger of the sum of positive elements
and the sum of absolute values of the negative elements in the vector x; that is

M(x) = M(xy, -+, x) = max(Yr 7, Y x7),

where for a scalar £ we define £* = max(£, 0) and £~ = max(—¢, 0).

We denote a:specific GT procedure as in (1.1) by 7'(Q). Note that Spjgtvoll and
Stoline’s T'’-procedure is a T' (D) procedure, where D is the diagonal matrix whose (i, {)th
element is the positive square root of the reciprocal of the ith treatment’s sample size in
a one-way layout.

Since the GT procedures in (1.1) are not invariant under Q’s, the problem of choosing
an optimal Q arises. Genizi and Hochberg (1978) recommend the use of Contrast Set
Preserving (CSP) T (Q) procedures, i.e. ¢’Q1 = 0 for any contrast vector ¢. This recom-
mendation was supported by the following:
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(i) The optimal T (@) procedure obtained by Genizi and Hochberg (1978) for the one-
way layout with only two different sample sizes is a CSP procedure.

(ii)) Uniform dominance of any CSP procedure over the 7'’ method was proved by Genizi
and Hochberg for 2 = 3 and a sufficiently high degree of imbalance.

(iii) If a given GT procedure is CSP and the contrasts are the only linear combinations
(of the means) which are of interest, then §§) in (1.1) can be replaced by the lower
value of ¢ the upper ath quantile of the Studentized Range Distribution.

In this paper we examine a certain orthogonal transformation of given non-CSP T'(Q)
procedures into other procedures which are CSP—say, T (QR). In Section 2 we describe
the transformation and give a simple condition which guarantees its dominance over the
original non-CSP procedure uniformly for all contrasts. In the one-way ANOVA, this
condition is easily seen to hold for the Spjgtvoll and Stoline T'’-procedure and thus, a
uniform improvement of 7'/ exists. In other cases a uniform improvement is also achieved
when the original 7' (Q) procedure is “nearly CSP.”

In Section 3 we give the details for constructing the transformed 7. (QR) procedure and
exemplify it with the one-way ANOVA design and the T'’-procedure. Appendix I includes
an example which shows that there are cases where our transformation does not give a
uniform improvement. In Appendix II we show that for any %2 and any design the
transformation always improves on an original non-CSP procedure for a certain one
dimensional linear subspace of contrasts.

2. The T(QR) procedure and a sufficient condition for its uniform dominance
over T(Q). Consider a given T (Q) procedure in an arbitrary design, QQ’ = B. The
k — 1 dimensional contrast subspace C has the vector e = (1~/k)1 as its normal and the
k — 1 dimensional subspace Q(C) = {Q'c:c € C} has the vector a = Q'1/||Q'1|| as its
normal. Consider the set of vectors Y = C N Q(C).

PROPOSITION 1. If a # e then Y is a linear subspace of dimension k — 2.

Proor. Yisclearly alinear subspace. If a % e then any vector x in the two-dimensional
subspace spanned by a and e is orthogonal to all y € Y. Hence Y is at most of dimension
k — 2 (since its orthogonal complement is at least of dimension 2). Also, any y which is
orthogonal to both a and e is in Y. Since the space of all such vectors is of dimension
k — 2 it follows that Y is of dimension at least k — 2.

We now consider a rotation of E* that takes Q(C) into C pivoting around Y as axis.
This rotation is defined by a linear transformation R’z (where z € E* and R’ is a square
matrix of real elements). We want this transformation to satisfy:

2.1) Ry=y forall y€Y, and Ra=e

PROPOSITION 2. The transformation (2.1) can always be obtained by an orthogonal
matrix R.

Proor. Letyi, y2, +-+, Yr—2 be an orthogonal basis of Y. Let d be a vector of unit
length proportional to the projection of a into C and let u be the unit vector in Q(C)
orthogonal to a and to yi, ¥y, *++, Ye—2 The matrix A = [y, -, Yr-2 a, u] is one
orthogonal basis of E* and the matrix B = [yy, - - , Y22, €, d] is another orthogonal basis
of E*. Thus, the matrix R’ which transforms A to B (R’A = B) is orthogonal and will
satisfy (2.1). If R’ is orthogonal so is R.

The vector a can be expressed as

2.2) a=\Ae—rd,

where A = a’e, —» = a’d and A? + »* = 1. Consider any x € Q(C). Projecting x on e, d and
Y gives
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(2.3) x = (x'e)e + (x'd)d +y,
where y is the projection of x on Y. Since a'x = 0 it follows from (2.2) and (2.3) that A (x'e)
= p(x’d) and hence (2.3) can be written as

(2.4) x =vy(ve + Ad) + Yy,

where y = (x'e)/».

ProOPOSITION 3. The transformation described by (2.1) will take any x as in (2.4) into

(2.5) Rx=yd+Yy.

PrOOF. The vector ve + Ad (of unit length) is obviously the vector u (introduced in
the proof of Proposition 2). This so because y is the projection of x on Y and x € Q(C).
We saw that under R’ the vector u is transformed to d (and any y € Y is unchanged).

In the following we will show that under a certain condition (Theorem 1) and if » > 0

then
(2.6) M(R'x) = M(x), forall x€Q(C) st. x'e>0.

Choosing v > 0 is no loss in generality since we can always define (2.2) in terms of d or
—d. If (2.6) holds then since M (z) = M (—z) for any z it will imply M (R’x) < M (x) for any
x € Q(C). Thus, without loss in generality we now take » > 0 and y > 0.

The condition of uniform improvement in T (QR) over T(Q) is equivalent to M (y +
y(ve + Ad)) = M(y + yd), and after dividing by y and denoting y/y also by y it becomes

2.7) M(y +ve+Ad) = M(y + d), Vyey.

THEOREM 1. A sufficient condition for (2.7) is
kd ?nax -1

(28) A= Wﬁ’ dmax = maXISisk{di}-

Proor. Giveny € Y, let p be the number of positive coordinates of the contrast vector
y+d,andlet P={i|l1<i<k,y.+di>0}. Thus, |P|=pand 1 < p < k — 1. Since the
M-norm of a vector always majorizes any partial sum of its coordinates, we have

M(y +ve + Ad) = Yiep (yi + ve; + Ad) = Yiep(y, + di) + {?V/-I; - (1=A) Yeer di}
k

=M(y +d) + AP),

where A(P) is the expression in the square brackets. Now, (2.7) will be satisfied whenever
A(P) = 0 for all P as above; since
. —
_ALP_)Z_I.}_—(]_—)\)dmax= 1 A
p JE k

(recall that » = 0). From this we get the sufficient condition (2.8).

- (1 - >\) dmax

CoroLLARY 1. Ifa =0 (e.g., as in the T'-procedure) then (2.8) always holds.

ProOOF. Assume that a, = )\/s/.i; —vd;=0fori=1, .-, k. Then dnax = }\/(V\/; ),
hence, since A2 + »% = 1, A2 = kd 2./ (kd%ax + 1), which implies (2.8) (note that A =0, since
v = 0 and d, being a contrast has at least one non-positive coordinate).

COROLLARY 2. If\ = (k —2)/k (i.e., the original T (Q) procedure is “near CSP”) then
the transformed procedure gives uniform improvement.
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ProoF. For any normalized contrast d, d%.x < (B — 1)/k. Substitution in (2.8) proves
this corollary.

We note that the inequality used in proving Theorem 1 (M (x) = Y.epx;) is a very crude
one and, moreover, the fact that y is constrained to a certain £ — 2 dimensional subspace,
did not play any role at all. Nevertheless, even with this crude lower bound we see that a
uniform improvement is often obtained. However, this is not always the case as suggested
by a referee who provided the counterexample in Appendix I.

REMARK. Another way of viewing R is as follows. For a vector z not proportional to
e, define

Izl -
F=e——(z — Z1),
z—21]
where Z = Y'¥ z;/k. The vector z — Z1 is the projection of z on C and since [z] = || z* || we

may regard z* as the “orthogonal rotation of z into C.” We can now describe the rotation
R’x as the direct sum of the identity on Y and the *-transformation on Y*.

3. Details for using the transformed procedure and the uniform improvement
of the T’-method. By (2.5) R'Q'c =y + yd and by (2.4) Qc =y + y(ve + Ad).
We get

(3.1) R'Qc=Qc— y(ve + Ad) + yd = Q'c + B(e + a),

with 8 = —y(1 — A\)/». Using the fact that (3.1) is a contrast, we find
—-c'Q1

(32) [ p—

%&"”*+Ya)’

where a = (a;, -+, az)’.
On letting 6 = 1/(k"? + ¥ a;) we see that (3.1) can be expressed by the linear
transformation

(3.3) R'Qc=LQ, ceC,
where
(3.4) L=1-4(e+ a)l.

To exemplify the use of the new method and the level of improvement it achieves, we
now consider its application to the 7'’-method. Let n; be the sample size for treatment i in
a one way layout, i = 1, - -., k. The T’-method is based on @ = diag(n7'?, ..., n;?.
Corollary 1 implies that 7'’ can be uniformly improved.

The normal a here is

(3 )"
&S n) 7+ 3 0

1 ’
a=W(n}/Z’ oo nb?, and 8=
and R'Q’c can easily be computed from (3.1).

ExampLE. Consider 2 = 3 and (ny, ns, ns) = (1, 4, 9) then
Vi4

—ec

Va2 + 6

For ¢ = (1, —1, 0)’ we have ¢'Q = (1, —%, 0) and the transformed vector c’QR = (0.8734,
— 0.6667, — 0.2067). Thus, M(Q'c) =1 > M(R'Q’c) = 0.8734.

In Table 1 we give the percentage of M(R'Q’c;;) versus that of the T’-method for all
pairwise comparisons in some unbalanced designs. Table 1 shows that the improvement

a=— (1,23 and B=-— Q1.
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TABLE 1
Relative length of confidence intervals in using the new method

Types of pairwise MR Q cy)
k @ % K 9 K comparisons (i, j) 100 M(Qc)
1 1 4 1,3) 83.2
1 1 .6 (1, 3) 87.9
1 1 8 1, 3) 93.6
1 4 4 (1,2) 84.9
3 1 6 4 (1,2) (1,3) (2, 3) 89.4 84.1 89.1
1 6 .6 1,2) 88.7
1 8 4 (1,2) (1,38) (2,3) 94.5 83.5 85.0
1 8 .6 (1,2) (1, 3) (2, 3) 94.1 88.2 91.8
1 8 8 (1,2) 93.8
1 1 1 4 (1, 4) 86.9
1 1 1 7 (1, 4y 92,9
1 1 4 4 (1, 8) 88.1
1 1 7 4 (1, 3) (1, 4) (3,4) 93.7 87.3 89.5
4 1 1 7 N (1, 3) 93.2
1 4 4 4 (1, 2) 88.9
1 7 4 4 (1,2) (1,3) (2,3) 94.2 88.4 90.5
1 N N 4 (1,2) (1,4) (2,4) 93.9 87.7 89.8
1 7 N 7 (1, 2) 934
1 1 1 1 4 (1, 5) 89.3
1 1 1 1 7 (1, 5) 94.2
1 1 1 4 4 (1, 4) 90.1
1 1 1 N 4 (1, 4) (1, 5) (4, 5) 94.8 89.6 91.3
1 1 1 7 7 (1, 4) 94.4
1 1 4 4 4 (1, 3) 90.7
5 1 1 N 4 4 (1,3) (1,4) (3,4) 95.2 90.3 92.1
1 1 N N 4 (1, 3) (1, 5) (3, 5) 94.9 89.9 91.5
1 1 N 7 7 (1, 3) 94.6
1 4 4 4 4 (1,2) 91.2
1 N 4 4 4 (1,2) (1,3) (2,3) 95.5 90.9 92.6
1 7 N 4 4 (1,2) (1,4) (2,4) 95.3 90.5 92.2
1 N N N 4 (1, 2) (1, 5) (3, 5) 95.0 90.1 91.8
1 N 7 NG N (1,2) 94.8

increases with the degree of imbalance. If imbalance would be measured by average ¢./q;
rather than by max(g:)/min(g;), then the improvement would be practically uninfluenced
by % when controlling for degree of imbalance. The percent improvement would be near
zero (for nearly balanced designs) and can go substantially higher than the numbers in
Table 1 for extremely unbalanced designs. For example, let (g1, g2, gs) = (1, 1, ¢); then
lim,_o{ M (R'Q’c2s)/M (Q’czs)} = 0.7288.

4. Discussion. The T’-method was first discussed by Tukey (1953, Chapter 29). He
called it the “transformation method” and compared it with another method which he
called the “approximation method.” The approximation method was published later by
Kramer (1956, 1957). Dunnett (1980) and Stoline (1981) refer to it as the Tukey-Kramer
(TK) method. Tukey recommended the approximation method for the one way layout.
For this design he and his student Kurtz (1956) found out that for 2 = 3 (and for other
cases with ratios of sample sizes tending to « or 0) the approximation method is on the
conservative side. His basic argument against the transformation method was that it does
not transform a simple comparison into a contrast. Regarding other designs (with possibly
correlated estimates) Tukey (1953, Chapter 29) did not recommend the approximation
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method (nor did he recommend the transformation method). He writes, “. . . we can copy

the approximation solution ... for ... general case. The properties ... here are ... less

clear.”

Since then the following results were established.

I. There exist transformations which take contrasts into contrasts and indeed some of

these CSP transformation procedures will do uniformly better than non-CSP ones.

II. Genizi and Hochberg (1978) proved that the minimum confidence interval length

achieved by any transformation method for a given pairwise comparison is that
obtained by the TK method.

ITII. For the one-way layout, simulation work by Dunnett (1980) and some analytic results

by Brown (1979) further supported the conservative nature of the TK procedure.

Note that the TK method is giving simultaneous confidence intervals for pairwise
comparisons only. The method can be extended to give confidence intervals for all
contrasts (cf. the extension of GT2 to all contrasts in Hochberg, 1974). If the TK procedure
is conservative for a certain design then, for some arbitrary contrasts, the exact 1 — «
transformation procedures will give shorter confidence intervals.

Based on the above we can summarize as follows:

1. If (i) interest is confined to pairwise comparisons only and (ii) the design is a one-way
layout and (iii) % is small or extreme imbalances prevail, then the TK method should be
preferred over any transformation method. However, it is not clear then that the TK
should be the recommended procedure. For example Spurrier (1981) gave a better
procedure for £ = 3 and large imbalanced designs.

2. In arbitrary designs, if the researcher has potential interest in contrasts other than
pairwise, then the procedures discussed here as well as Schaffe’s S-method can be used.
Both these procedures are exact 1 — a procedures. The transformation procedure will
generally give shorter confidence intervals for pairwise (and hence longer intervals for
some arbitrary contrasts).

Based on the apparent conservativeness of the TK in some one-way layouts, one might
be willing to use it and extend it to all contrasts. As noted above, if it is conservative, then
for some arbitrary contrasts it will give longer confidence intervals than the transformation
method.

Finally, when considering arbitrary designs, the TK cannot be safely used. Except for
the case 2 = 3 where the situation is equivalent to a one-way layout (Brown 1982) the
properties of the TK method for arbitrary correlated estimators are not clear yet. Thus,
the pursuit of optimal transformation procedures is still justified. We feel that the different
opinion expressed by Stoline (1981) is based on the assumptions that the TK procedure is
always conservative and that interest is confined to pairwise comparisons only. The first
assumption might be correct but has not been proved yet. The second assumption is often
contradicted by researchers who “snoop” at their data and dig out contrasts other than
pairwise.

APPENDIX I

An example where the rotation R does not reduce the M-norm. This example was
suggested by an anonymous referee. Let £ = 18, and let

1 11 1Y/
s =@1,-1,+.-,-1, =5,1, -+, 1)/V18,
d < 6’ b 673’ )3)7 y ( t )/
12 6 11 5

then |[d]| =1, e'd = ¢’y = d’y = 0. We have

M(y+d)=<£_l)+5<L+l>=1_6+§
vig 6 Jis 3/ VB8 2
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Next, let , A >0, »> + A =1, and x = y + ve + Ad. As A converges to zero, we obtain

Mx) = (11+v_§) +5(1+v+>\)_*£_
Jis 6 Vig 3 J18'
Therefore, for A small enough, M (x) < M(y + d), and (2.7) is not satisfied.

APPENDIX IT

The dominance of T (QR) over T (@) for a sub-class of contrasts. We will show here
that the *-transformation (see the Remark in Section 2) always reduces the M-norm. This
implies that (2.7) holds for y = 0 (i.e., forx € Y*).

THEOREM 2. M (x) > M (x*) for all x € C (recall that x = x* for x € C).

Proor. Without loss of generality, let x — X1 = (a1, +++ , ap, — B1, -+ - , — ), where
a0 =0,0< BP0 =By, Yimrai = Y% B’=1,and ¥ = £ > 0. Then
M —x%1)=1and

1 1
Ix = £1|° = ¥t af + X-1 Bf =~ + — = k/pq.
P q
Nowx=({+ay -+, E+ap, §— By, +++, &= By); let r be such that B, < { < B,+1 (we put
Bo =0 and B,+1 = x), then ‘
M) =(@+n{+3ia—Yiup
and
x| =k& + || x - %1
The inequality M (x) > M (x*) thus reduces to:

RE+ | x— &1 k&
=1t
Ix—x1] Ix—x1]

{M(x)}* >

and it suffices to prove that
{M(x)}?* > 1+ pgé”.

Casel. gé=1. ThenM(k)2p£+ 1 (since{ —Bij=0foralll<j=<r), and (p§+ 1)2
>pé+1=pgé?+1.

CasE2. qt=1 Herewehave M(x) = (p + ¢+ Y Biz= (p+né+(g—ré=
(p+ ¢ and [(p + @) ET >P¢I§2.d' q’¢* = pqé® + 1, completing our proof.

REMARK. Theorem 2 actually proves a Min-Max property of any CSP procedure, a
property that was conjectured by Genizi and Hochberg (1978). That is: the minimum (over
all Q matrices) of

max{M(Q'c):cEC, || Qc| =1}

is achieved only by a CSP Q, and any CSP type Q achieves that minimum. This follows
from the fact that if Q is not CSP, then M (Q'c) > M ((Q’c)*), thus, the maximal M-norm
on Q(C) is always larger than on C.

Acknowledgment. We are grateful to a referee whose counterexample (Appendix I)
brought about a revision of our earlier draft wherein we conjectured that the transformation
will always uniformly improve any non-CSP procedure.
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