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ON THE ESTIMATION OF THE PARAMETERS OF MARKOV
PROBABILITY MODELS USING MACRO DATA

BY ADRIAAN P. VAN DER PLas
University of Amsterdam

In this paper we consider the problem of estimating the parameters of a
Markov model using so-called macro data. It will be shown that the stochastic
process of the macro data is a Markov chain, which uniquely determines the
probability structure of the underlying Markov model. A conditional least
squares estimator exists under very weak conditions and this estimator is
strongly consistent as time tends to infinity. Moreover this estimator is shown
to be asymptotically normal under some additional assumptions.

1. Introduction. For the description of e.g. social mobility, voting change and
changes in the sizes of firms, so-called Markov models are used frequently. These models
consist of a fixed number K of independently distributed Markov chains with a Markov
matrix P depending on a vector of parameters 6.

In this paper, we consider the problem of making statistical inferences about 6 in the
case where very limited information is available. T'o be more specific, the samples observed
are the so-called macro data, i.e. the number of Markov chains in each state for consecutive
instants. '

In Section 2 we show that the discrete-time stochastic process of these macro data is a
Markov chain, with which it is possible to identify the probability structure of the process
consisting of the underlying Markov chains. However the likelihood function based on
these macro data will have an unattractive form if K > 1. Therefore we propose to use the
method of least squares.

Miller (1952) proposed the method of least squares in the case where the chains take
values in a finite space and where 6 = P. Then, for a fixed and sufficiently large sample T'
of the macro data, Madansky (1959) proved that this estimator for the transition proba-
bilities is consistent for the number of chains K — o under the assumption that the initial
distribution is not invariant. The reader is referred to Lee et al (1970) for these types of
“linear” estimators. We should note that the asymptotic behavior concerning the consis-
tency of these estimators for T'— o, K fixed, was considered numerically only.

We consider the case where the state space S may be infinite and where the Markov
matrix P = P(f) depends on a finite dimensional parameter §. Then under very weak
conditions we show that there exists a conditional least squares estimator for 8, which is
a.s. consistent (Theorem 3.2) and under additional, more technical assumptions this
estimator turns out to be asymptotically normal (Theorem 3.5) for T'— oo, K fixed.

We are indebted to Jennrich (1969), who gave the first rigorous account of the method
of non-linear least squares estimation in a regression model. In another context, Klimko
and Nelson (1978) considered a non-linear least squares estimator for more general
discrete-time stochastic processes. However, they assume rather strong conditions in order
to prove the existence and a.s. consistency of the estimator.

2. The model. Suppose that a stochastic system may be described by K independent,
irreducible and ergodic Markov chains X = {Xx(¢); £ =0, 1, - .-}, each with a countable,
possibly finite, state space S, each with Markov matrix P = (p,s),ses and each starting
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with the invariant distribution 7 = (7,),es, i.e. the unique probability measure satisfying
7 = 7P (see, e.g., Feller, 1968).

If we set X(¢t) = (X1(2), X2(t), - -+, Xk(¢)) for t =0, 1, - - -, the system is described by a
discrete time stochastic process X = {X(£); t=0, 1, - - - } on the state space S¥. This process
X is a Markov chain with Markov matrix P = (P.y)x yesx, where p., = [[ k=1 p, 5, and with
initial distribution 7 = (#,).esx, where 7, = [[ 5= 7y, for x = (x1, X2, + -+, x¢) and y = (1,
Y2, +++, ¥k). From the assumptions on the Markov chains X; it follows that the chain X is
also irreducible and ergodic. Hence we have the following result.

THEOREM 2.1. The Markov chain X is irreducible and ergodic; the initial distribution
7 is invariant. 0

Next, we define the macro data N(t) = (Ny(t))ses by Ns(t) = #{k|X:(t) = s} for s€ S,
t=0,1,2, -..; # denotes the number of elements in the set. Let R = {n|n = (n;)ses,
ns€{0,1, -+, K}, Yses s = K} and note that N(¢) takes values in R for each ¢. Now we
are in a position to formulate the following theorem regarding the stochastic process of the
macro data N = {N(¢); t =0, 1, 2, ...} and its relation to the process X.

THEOREM 2.2.
(i) The stochastic process N is an irreducible and ergodic Markov chain with invariant
initial distribution p = (p.)ner, wWhere

2.1) on = K! [[ses [I¢/ns! for n = (n;) € R.
(ii) Let @ be the Markov matrix of the chain N. Then the mapping P — @ is one-to-one.

ProOOF. The proof of the first part of the theorem is similar to the proof in Kemeny
and Snell (1960, page 125 and page 130) for Markov chains with finite state space. Here
the Markovian character of the stochastic process N follows from the exchangeability of
the random variaBles (X;(¢), Xi(¢ + 1)), (Xa(¢), Xo(¢ + 1)), - - -, (Xk(¢), Xx(t + 1)) for t =0,
1,2, ---.

To prove the second part of the theorem consider m, n € R for which m, = K and n,
= K for some r, s € S. The transition m — n of the chain N occurs if and only if the
transition 7 — s occurs in each of the K chains Xz, k=1, 2, - -, K. Hence qmn. = (pr)%.0

REMARKS 2.3. The transition probabilities of the Markov matrix @ = (@mn)mnrecr are
given by

(2-2) qQmn = Z(mm) HrES mr! HsGS {prs}mm/mrs!y

where the sum is taken over all (m,s),ses, m- € {0, 1, - - -, K} such that },es m,s = n, and
Yses mys = m,. To see this, define the chain M(¢) = (M,s(t))ses, where

Mo(t) = #{k | Xp(t — 1) =r ANXp(t) =s} for t=1,2, ..,
and observe that
P{M(t) = m(t)|N(t — 1) = m} = [[res m,! [[ses {Prs}™/mnd!,
where m(t) = (ms)rsesfort=1,2, --..
3. On the least squares estimator. In the following, we assume that © is a compact
subspace of a p-dimensional Euclidean space and that § = (6, 6, - - -, 6,) € ©; ° indicates
the true parameter value.

Suppose that the Markov matrix P of the model described in Section 2 depends on the
parameter 8. Thus P = P(0) = (p»s(0)),ses. We want to make inferences about 6, but the
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only information with respect to 8 is a sample of so-called macro data Nr = (IN(0), N(1),

+, N(T')) of the chain N with Markov matrix @ = Q(9).

Now Theorem 2.2 (ii) shows that it is possible to estimate § by observing N, provided
that the mapping 8§ — P(6) is injective. However the formula (2.2) for the transition
probabilities of the Markov matrix @ of N as function of the Markov matrix P of X
indicates that the likelihood function for the sample N7 of N will be unattractive if K > 1.

Therefore we propose the method of least squares to estimate §. More precisely, an
estimator 67 based on a sample Nr, that minimizes the expression

(3.1) YELIN@E) — &{N@)| F(t - 1)} |2

is called a least squares estimator for 6. Here &(. | -) denotes the conditional expectation

under P(#), #(t — 1) denotes the o-algebra generated by N(0), N(1), ---, N(¢ — 1) and

| - | denotes the Euclidean norm associated with the inner product (n, m) = Y,cs nsm.
Finally we use the following notations for § € ©:

(3.2) P..(0) = (prs(0))ses foreach resS,
(3.3) Lr(0) = T™' %1 || N(t) — N(¢t — 1)P(6)||*> and
(3.4) L@) = &L,(6).

Now let us return to the formula (3.1). Since the process N is a Markov chain (Theorem
2.2), we find

E{N@) | F(t — 1)} = &{N(t)|N(t - 1)} = Nt — 1)P(0) as.
fort=1,2, ..., 0 € O. Thus, using the notation (3.3), we may rewrite (3.1) as
I || N(t) — N(t — 1)P(@) |2 = TLr(@8).

ASSUMPTIONS 3.1.
(i) P(6) # P(0’) for all 8 % 8’ (6, 9’ € ©).
(ii) The function p,(-) is continuous on © for each r, s € S.
(iii) The series Yses { prs(9)}? is uniformly convergent in 8 for each r € S.

THEOREM 3.2. Let N be the chain constructed in Section 2 with P = P(0), satisfying
Assumptions 3.1. Then

for each T there exists a stochastic vector 7 with values in © such that Lr(r)

B9 infreeLr(6)
and such that
(3.6) limr,.07=6° as.

ProoF. To prove the first part of the theorem it is sufficient to show that Lr(.) is
continuous on O, since © is compact. Then we may choose a measurable 0y, see e. g. in
Jennrich (1969).

The mapping § — P..(d) € #*(S) is continuous on © by Assumptions 3.1(ii)-(iii). For
each realization of the chain X(¢),¢ =0, 1, 2, -

(3.7)  there exists a finite subset S(¢) C S, such that Y s¢) N;s(t) = 0 for eacht.

Hence N(t — 1)P(0) is a finite sum and the mapping
(3.8) 68— N(¢) — N(t — 1)P(0) € ¢*(S) is continuouson ® for ¢=1,2, ---.

Thus, Lz(-) is continuous on ©.
To prove the second part, we first observe that L(#) has a unique minimum at 6 = °,
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since
L(6) = L(8°) + & || N(0O){P(9) — P(6°)} ||
= L(6°) + Yres | K{P:.(6) — P,.(8°)} || 2P{N0) = K}
> L(6°) forall 65 6°

where the equality sign follows using & {N(1) — N(0)P(8°) | #(0)} = 0 a.s. and the strict
inequality is implied by Assumption 3.1(i). Therefore

0 < L(r) — L(6°) = L(0r) — Lr(6r) + Lr(f7) — L(6°)
=< L(@r) — Lr(@r) + Lr(6°) — L(8°)
<2 supee|L(0) — Lr(8)| as.,

and since the last expression tends to 0 a.s. if 7' — o by Lemma 4.1, we conclude that
limz_,.. L(87) = L(6°) a.s. Therefore (3.6) is true, since L(-) is tontinuous on a compact set
© and has unique minimum at § = §°.0

In order to establish the asymptotic normality of the least squares estimator 6 for §°
we make the following additional assumptions, which are of a local character.

AssumPTIONS 3.3. There exists a convex compact subset ®° with a neighborhood
©®’ C O such that '
(i) 6°is an interior point of @°;
(i) the function p,(-) is twice continuously differentiable on @’ for each r,seS,
(iii) the series Yses | 9prs(6)/06; | is uniformly convergent for € ©° for each r € Si=1,2,

e, p;
(iv) the series Y.cs |°p,s(0)/86:96;| is uniformly convergent for § € ° for each r € S, i, j
= 1) 2) e D

(v) the p X p matrix A = A(6°) = (a;;(8°)) 2j=1 defined by

0 0
ay(@") = 26 (OO NOPE)N ¢ 19 p
36; a6

is non-singular, hence positive definite.

LEMMA 3.4. Let N be the chain constructed in Section 2 with P = P(6), satisfying
Assumptions 3.1 and 3.3. Then for T — « we have

(3.9) E(;ﬁ;# a.s. converges uniformly for 6 € @°
(3.10) %-—» A as.
(3.11) Tl/z%a—o)-—)g N0, 2), where
==3(0) = é”{aL;;?o) . ﬂ;‘;ﬂ} is defined by
"L;g’o) =2 <N(1) - N(O)P(0°),%(fj(m> for i=1,2 ..., p.

Proor. Foreachr€Sandi=1,2, ..., pthe mapping

- aP,.(9)

0 € £(8) C £%S) is continuous on ©°

9
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by Assumption 3.3(ii), (iii). So, using (3.7), we have for ¢t = 1, 2, - - ., that the mapping

. aN(t — 1)P(6)

= € ¢%(S) is continuous on @° foreach i=1,2, ..., p.
i

3.12) @

Analogously we have that for ¢ = 1, 2, - .. the mapping

32N(t — 1)P(9)

36:20, € ¢%S) is continuous on ®° fori, j=1,2, ---, p

(3.13) 60—
by Assumptions 3.3(ii), (iv).
Combining (3.8), (3.12) and (3.13) it is seen that the following functions are continuous
on 0%
L7 ()
40;

= 2T YL Fi(t, -),

where
Fi(¢, 0) = <N(t) — N(t — 1)P(8), aN(t — 1)P(8)/96; >
fori=1,2,+--, p,0 €O and

&°Lr(-)
36,90,

=2T7' YL {(A45 — By)(, -)},

where

ON(t — 1)P(6) oN(t— 1)P(0
Aij<t,o)=< (t a0‘) ) aN a0) ( )>’
i j
aN(t — 1)P(9)

B;(t, 0) = <N(t) — N(t - 1)P@), 5090,
10U

fori,j=1,2, ---, p, § € O°. Furthermore, note that for £=1, 2, - . ., the random variables
| Fi(t, 9) |, |A;(t, 8) | and | By(t, ) | are bounded for § € % i, j= 1,2, .-+, p. So (3.9)
follows by applying Lemma 4.1 from the appendix andsince &, {B;;(¢,0) | #(t — 1)} =0 a.s.
for0e®’i,j=1,2:--,p(t=1,2, --.) the formula (3.10) is an immediate consequence
of the Ergodic theorem (see, e.g., Doob, 1953, page 465). To prove the asymptotic normality
of T"*(8Lr(8°)/86), we apply Lemma 4.3. Let T=1,2, --- and ¢t = 1, 2, ..., T. Define
(T, &) = (Du(T, t), Do(T, 2), - -+, Dp(T, 1))’ by

Di(T, t) = T"Y?F(t, 6°) for i=1,2, ---,p.
Note that
E{D(T, &) | F(t— 1)} = TT?6{Fi(t,0°) | F(t— 1)} =0 as.

Since the random variables F;(¢, 8°) are bounded for i = 1, 2, ---, p the conditions (4.5)
and (4.6) are certainly satisfied. Condition (4.7) follows from the Ergodic theorem, where
limT_m 2:7;1 Di(T, t)Dj(T, t) = limT_,m T.—1 Z;T=1 Fi(t, 00)1'}“‘, 00)

= &{Fi(1,60°)F;(1,60°%)
1 {aL1(0°) aLl(a")}
E{———— . ———¢ as,

4

a6; a6,
so (3.11) is true. [

THEOREM 3.5. Let N be the chain constructed in Section 2 with P = P(0), .gatisfying
Assumptions 3.1 and 3.3. Then, for any sequence of least squares estimators {07; T =1,
2, - - -} we have
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(3.14) TV*0r — 6°) >4 N(0,2) for T — o, where
(3.15) Q= Q(8°) = A7 A is a positive definite p X p matrix.

PRroOF. Si~nce Gr— 6° a.s. for T — (Theorem 3.2) there exists a.s. a stochastic index
Ty such that 87 € @° for T' = T,. Thus, using the Taylor expansion around the interior
point ° € 8° C ®’ we find

BLT(0°)}' + {62LT(0%)

— /2
0=T { a0 006’

}T‘”«ir -6°, T=z=T,

where 6% is a stochastic p X 1 vector taking values in @° and satisfying || 6% — 6°| <
|| r — 6°|| (see, e.g., Jennrich, 1969, Lemma 3). Note that 8% and 67 are tail equivalent. So,
using Lemma 3.4 we have that

O’Lr(6%) _ - 8L r(6°)
3600’ =" 5000’

limz.,e

=A as.

Now, since §° is an interior point of @°, the theorem follows immediately from Assumption
3.3(v) and Lemma 3.4.0

As a result of Theorem 3.5 we have

THEOREM 3.6. Let N be the chain constructed in Section 2 with P = P(0), satisfying

Assumptions 3.1 and 3.3. Any sequence of least squares estimators {57; T=12---}
satisfies
(3.16) 2T{L1(8°) = L1(8)} > X 21 Aix*G) for T—

where Ay, As, « -+, N, are the positive eigenvalues of QA and where x*(1), x*2), - -+, x*(p)
are i.id. x}-distributed.

PRrROOF. A proof may be patterned after Klimko and Nelson (1978).0
We conclude this section with some remarks.

REMARKS 3.7.

(i) Since we are dealing with asymptotic results, the lemmas and theorems in Section 3
still hold if the underlying irreducible and ergodic Markov chains Xi, X, - - ., Xk start
with arbitrary initial distributions a;, a2, - - -, ax.

(i) In Assumptions 3.1 and 3.3 we may replace #in 3.1(i), (iii) and 3.3(iii) by 6°.

4. Appendix. In this appendix we give some definitions and two lemmas that are
used in the text. The first lemma, concerning a result on a.s. convergence of random
functions, is a generalization of Theorem 2 in Jennrich (1969) (Jennrich gives no proof).
The second lemma is a result on a central limit theorem for vector martingales: we use a
multivariate version of Theorem (2.3) in McLeish (1973) given by Heymans and Magnus
(1979).

LEMMA 4.1. Let Y = {Y(¢);t=0, 1, ---} be a stationary and ergodic process with
values in a Euclidean space E. Let ©® be a. compact subspace of some Euclidean space.
Let F be a real valued measurable function on E X © such that F(y, 8) is a continuous
function of @ for all y € E.

Define ¢(y) = supseo | F(y, 8)| for all y and assume that & $(Y(0)) < o, then
(4.1) limr.T™* Y2 F(Y(¢), 0) = § F(Y(0), §)

a.s. uniformly for all § € ©.
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ProoF. First note that supscoF(y, 8) and infyeoF'(y, 8) are measurable functions of y,
since O is separable and F(y, -) is continuous. Let ¢ > 0 and ' € ©. Define

M,={0||0-0|<k}NO for k=1,2,--..
Since F(y, -) is continuous for each y and since
[ supsernF'(y, 8) — infocrr,F(y, 6)| < 2 supoers, | F(y, 0)| = 26(y)

we have, using the dominated convergence theorem, that there exists ko = ko(¢, §’) such
that

(4.2) | &{supoerm, F(Y(2), ) — infper, F(Y(2),0)}| <e

fork=Fko,t=1,2, - - .. Furthermore, from the Ergodic Theorem (see e.g. Doob, 1953, page
465) applied to {supsen, F( Y(¢), 0);¢=0,1, - - -}, it follows that there exists a.s. a stochastic
index T¢ = T4 (¢, 8’) such that

4.3) | T SL, supocsF(Y(2), 8) — & supecsn F(Y(0), 0)| <e

for T=Tg. If we set Ur(§) = T™! Z,T=1F(Y(t), ) — £ F(Y(0), ), we have from (4.2) and
(4.3) for all 8 € My, k = ko that

Ur@) = T YL supsers, F(Y(2), 8) — & infyenr, F(Y(0), 9)
=|T7 'YL supper, F(Y(t),.0) — & supser, F(Y(0), 0)|
+ | &{supser, F(Y(0), 8) — infyerr, F(Y(0), 8)}| < 2¢

for T = T . Similarly there exists a.s. a stochastic index T'¢ = T (¢, 8’) such that for all
0 € My, k= ko we have Ur(8) > —2¢ for T = T. So let Ty = max(T'¢, To); then for all
0 € My, k = ko we have

4.4) | Ur@)| <2¢ for T=To.

Let the collection of sets {8 |8 — 8’| < &'} for § “’E © be an open covering of © such
that (2.4) holds on

My=(0]16-6Y|<k)NO for T=T,
Since © is compact, there exists a finite number, say 8, 8@, ..., §® such that © =

Uj=1 M,,. Thus we see that there exists a.s. a stochastic index Tmax = max(T1, T, - -+, T.)
such that

Supgegl UT(0)| = maxj=1,2,A..nsupgeM,,l| Ur(o)l <2 for T= Tmax. O

DEFINITIONS 4.2. A sequence of random vectors {D(t); t =0, 1, - - -} with sup,&| D(¢?) ||
< o is called a sequence of vector martingale differences if £D(0) = 0 and &{D(t)| F(¢t—
1)} =0as.fort=1,2, --., where #(t — 1) = ¢{D(0), D(1), -+ -, D(¢ — 1)} is the o-algebra
generated by D(0), D(1), - --, D(¢t — 1). Let S(T) =Y Lo D(t), then {S(T'); T=0,1, .--.}is
a vector martingale.

LEMMA 4.3. Let {D(T, t); t = 0, 1, .--, T} be a sequence of vector martingale
differences for T =0, 1, .- ., satisfying
(4.5) Emax,1z,...7|| D(T, t)||? is uniformly bounded,
(4.6) maxi-12....r| D(T, t)|| =0 for T — o,
(4.7) SED(T, )D/(T, t) =, Z for T — o,
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where Z is a positive semidefinite matrix. Then

(4.8) S(T) =YL D(T, t) »4(0,Z) for T — o
Proor. See McLeish (1973), Heymans and Magnus (1979). O
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