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NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION
OF SPATIAL PATTERNS'

By TuoMas W. SAGER

University of Texas at Austin

Let X be an absolutely continuous random variable in R* with distribution
function F(x) and density f(x). Let X,, --., X, be independent random
variables distributed according to F. Mapping the spatial distribution of X
normally entails drawing a map of the isopleths, or level curves, of f. In this

- paper, it is shown how to map the isopleths of f nonparametrically according
to the criterion of maximum likelihood. The procedure involves specification
of a class & of sets whose boundaries constitute admissible isopleths and then
maximizing the likelihood []%: g(x.) over all g whose isopleths are boundaries
of P-sets. The only restrictions on £ are that it be a o-lattice and an F-
uniformity class. The computation of the estimate is normally straightforward
and easy. Extension is made to the important case where ¥ may be data-
dependent up to locational and/or rotational translations. Strong consistency
of the estimator is shown in the most general case.

1. Introduction. Let F(x) be the distribution function of an absolutely continuous
random variable X on R* k=1, 2, 3,- - -, with density f(x). Let Xj, - - -, X,, be independent
random variables distributed according to F. It is often of interest, particularly when & =
2, to map the distribution of X by drawing a series of isopleths (level curves) of f. A well-
constructed map will convey at a glance the pattern of geographic variation in concentra-
tions of the phenomenon X under study. But few maps are drawn from complete knowledge
of the true density f and would be needlessly detailed for many purposes, if they were.
Instead, the pattern of geographic variation is sampled. We may distinguish two different
sampling schemes at opposite ends of a spectrum of possibilities. On the one hand, the
data may consist of a fixed and small number of direct samples fi, -, f. of the density
taken with error at corresponding fixed sampling points xi, - - +, X,. This kind of problem
is called the interpolation problem because the goal is to estimate f at nonsampling points.
An example is the monitoring of oxidant pollution from 30-odd fixed site monitoring
stations in the Bay Area counties of California. The pollutant values f, rather than the
monitoring sites X, exhibit sampling variation. The theoretical framework of this paper
does not apply to the interpolation problem. On the other hand, the data may consist of a
large number of observations xi, - - -, X, on random geographic coordinates X. In this case,
the x-data are the geographic locations where random phenomena were observed to occur.
The geographic distribution of people stricken with lung cancer is an example of this kind
of problem, which we call the density estimation problem and which is the subject of this
paper. In the applications, f need not be restricted to densities but may encompass other
kinds of surfaces which can be suitably normalized to densities. Figures 1 and 2 show
estimates of a bivariate density computed by the methods of this paper.

In the old days, after the data had been collected, the statistician or cartographer would
prepare a map by hand-drawing a few isopleths. More recently, the statistician-cartogra-
pher might use one of the available computer graphics packages to draw his map. However,
few of these packages have paid much attention to traditional statistical criteria and many
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use ad hoc fitting methods with unknown statistical properties. Without theoretical
analysis of the methods, only tentative judgments can be rendered on their adequacy even
though they may produce nice-looking maps in many instances.

However, in recent years more statisticians have turned their attention to redressing
the situation. Working in the interface between theory and applications and well-qualified
in each, these statisticians are starting to provide effective and efficient mapping techniques
which are also firmly rooted in theory. Much of the serious effort to automate cartography
is found in the earth sciences, geology, and geography. Davis and Cullagh (1975) collect a
series of papers with extensive bibliographies where one may find early papers on
theoretical aspects of spatial analysis. Mathéron (1973) provides a theoretical foundation
for Kriging, a technique used in oil exploration and gold mining. Much of this literature
treats what we have called the interpolation problem. Turning to the density estimation
problem, we find a number of instances of effective and theoretically rooted techniques.
Boneva, Kendall, and Stefanov (1971) and a long series of papers by Wahba on spline
techniques, Tarter and Kronmal (1976) on Fourier series methods, and Silverman (1978)
on kernel estimates are examples of contributions to their respective density estimation
methods in which practical exigencies and theory blend felicitously. Tapia and Thompson
(1978) perform the same service for maximum penalized likelihood estimation and, in
addition, provide the most recent and most thorough review yet in print of density
estimation methods.

Before collecting any data, the statistician often has in mind a family of curves from
which he would be willing to select his isopleths. We assume that to be the case in this
paper. However, instead of focusing our attention on the curves, we shall concentrate
equivalently on the sets bounded by those curves. Let .# denote this class of sets. Since an
isopleth is a level curve {x, f(x) = ¢} which locally divides the region {f > ¢} from the
region { f < c}, we call sets of the form {x; f(x) = ¢} modal regions of f. Restricting the
statistician’s choice of modal regions [isopleths] to % [boundaries of #-sets] means that
any estimate g of f should satisfy {x; g(x) = ¢} € & for all c. We say that g is %-
measurable if and only if this condition is satisfied. The fitting criterion we propose is
maximum likelihood: Given .# and observations X; = x, .-, X, = X,, we say that an
#-measurable function f, is an #-maximum likelihood estimate (&-mle) if and only if

= f,,(x,-) = max {[[: g(x:); g is #-measurable} < o,

< plays the same role in this conceptualization of maximum likelihood estimation as the
more usual specification of a (parameterized) family of densities # over which [, g(x.),
£ € % is to be maximized. Sager (1979) considers a different but somewhat related criterion
for fitting convex isopleths.

In this paper we shall study the statistical properties of fn under two restrictions on %,
The first is that . be a complete o-lattice of Borel or Lebesgue sets and the second is that
& be an F-uniformity class. The first restriction enables us to use the tools of isotonic
regression and the second facilitates consistency arguments.

DEFINITION 1. £ is a complete o-lattice if and only if ¥ contains the empty set and
the whole space and is closed under arbitrary union and intersection. (We also require
measurability for the members of %)

DEFINITION 2. A class &/ of measurable sets is a P-uniformity class if and only if
Supp —plim sup,.«Supae. | Pn(A) — P(A) | = 0, where the first sup is over all measures P,
converging weakly to P.

The framework presented here lends itself readily to nonparametric maximum like-
lihood estimation of a unimodal univariate density (see Examples 4.1 and 4.2). The
univariate mle for the latter problem was obtained and consistency shown by Robertson
(1967) in the case of known mode and by Wegman (1969) in the case of unknown mode.
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F1G. 1. Estimated density, using elliptical contours, for a sample of n = 100 independent N (0, 1)
pairs. Estimated values on the 16 contours: .510, .289, .288, .128, .110, .090, .078, .077, .077, .072, .061,
.054, .038, .009, .005, .002.
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Additionally, Robertson (1967) provided a theoretical representation for the mle with
respect to a o-lattice measurable density in general measure spaces. However, he did not
provide consistency arguments except in two special cases, nor did he consider the problem
of an unknown mode (ie., data-dependent .#). This paper addresses these issues,
strengthens and generalizes Robertson’s and Wegman’s results.

In practice, the class of isopleth shapes available to the cartographer-statistician is more
likely to be limited by the requirement that .# be a o-lattice than by the F-uniformity
stricture. Topsge (1970) presents very powerful methods for ascertaining when a given
class is an F-uniformity class. The interested reader is referred to Topsge’s article for
details and examples. As noted in Section 3, the full power of F-uniformity is not required,
but for absolutely continuous F, not much is gained by relaxing this restriction.

2. The general framework. Let (2, %, p) be a totally finite measure space and let
% be a complete o-lattice of subsets of Q. Let w1, - -, w, be a fixed set of points in . Let
(%) be the smallest o-lattice containing % for any class of sets . In the usual application
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F1G. 2. Estimated density, using sigma-lattice of Example 4.4, for a sample of n = 100 independent
N (0, 1) pairs. Note: the same sample was used in Figure 1. Level sets have been consolidated into
four.

of the general framework, @ will become R*, p will denote Lebesgue measure, and wi,
-+ +, wp, will be realizations xi, - - -, X, of X, - -+, X,.. Figure 1 illustrates the setting in the
plane. There, the o-lattice is the class of ellipses centered and oriented by estimated values
(see Example 4.5). The solution shown maximizes the likelihood of the data over the class
of all densities with elliptical contours. The general .#-mle may be obtained as a solution
to the following maximization problem:

(2.1) PROBLEM. Maximize []/=; g(w.) subject to g =0, [ g du = 1, and g being ¥-
measurable.

Calculation of the solution f,, to this problem may be simplified by essentially replacing
the class £ by the readily identifiable o-lattice o{L(w1), ---, L(w,)}, where L(w;) =
N{L; w, € L € &}. This o-lattice may then be iteratively modified and reduced by the
maximum upper sets algorithm (or minimum lower sets algorithm), which is the most
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general of the available isotonic regression algorithms (see Barlow, et al, 1972):
1. Enter #* = o{L(w1), -+, L(wn)}

2. Select L’ € #* such that F,,(L')/u(L’) = max,e »-Fn(L)/u(L)

3. Set fn(x) =F,.L")/u(L’) forallx € L’

4. Set £* =o{L(w) — L, -+, L(wa) — L'}

5. If £* is empty, exit; otherwise, return to step 2. 0

However, it is usually better to employ a specialized algorithm in a concrete problem in
order to speed computer execution time. For example, the pool-adjacent-violators algo-
rithm (see Barlow, et al, 1972) was used to produce Figure 1 because preliminary processing
can reduce the o-lattice to a linear order, for which the pool-adjacent-violators algorithm
is much more efficient than the minimum lower sets algorithm. The o-lattice for Figure 2
was not based on a linear order; a matrix-smoothing algorithm suggested by Professor
Richard Dykstra (personal communication) was adapted. Although computation times
will depend on the data and on the computer, a user could anticipate that estimates like
Figure 1 could be obtained in a few seconds (or less) and in a few minutes for Figure 2 on
a modern main-frame computer. Fortran programs for these algorithms are available from
the author.

SoLuTIiON. Let L(w,) = N{L; w; € L € #}. First consider the above problem with the
additional restriction that g be a simple function on & = {4, ---, A}, the maximal
disjoint base of nonempty sets for 6{L(w1), ---, L(w.)} of which every such disjoint base
is a refinement. Now a simple function on & is #-measurable if and only if it is isotonic
with respect to the quasi order < on & defined by

A sAieoVLE No(F)suchthat A, C L, also A, C L.
For if the simple g is #-measurable and A, < 4,, then
A, C{w; gw) =g(A)} € L No(¥) = g(A) =g(4)).
And if the simple g is isotonic, then observing that g = g(4;) on N{L € ¥ N o(¥); A, C
L}, we see that
{w; glw) = ¢} = U ga)=g {LE L No(¥F);AiCL}E L
Then when u(A4,) > 0 for all i, the modified problem may be posed as:

. F.(A)
minimize i ———— - u(A;)log g
Y ) " g &

subject tog; = 0, Y2, g;-u(4,) =1 and g <giffA;<A,.

(Here, F, denotes empirical measure.) By Example 1.10, page 45-46 of Barlow, et al (1972),
the solution to this modified problem is given by the isotonic regression of {F,.(A;)/nu(A;);
i =1, ..., n} with weights u(A4;), { = 1, ..., n with respect to the quasi order <. The
solution may be implemented by the minimum lower sets algorithm or other algorithms
mentioned above. To show that this also solves the general problem, let 4 be any #-
measurable function and let &, - .-, & be the rearranged values of wi, - - -, w, such that
h() <= h(&) < --- < h(&). If we define

c'h(gi) if w€E L(gl) - Uj"l=i+1 L(g])y i = 11 e, N — 1
h*(w) =4c-h) if we L)
0 otherwise

where c is a normalization constant, then A * IS Z-measurable, simple on & and

= 2 () = ¢ [TE1 Alwi) = [T Alw)
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since

1=c Y5 h&) (L&) — Umivs L&) + c-h(&) - w(L(£,))
scfh(w)du=c. 0
2

Note that the argument depends on 0 < u(4;) < «, Yi. Whenever w(A;) =0 and F,.(A;)
= 0, delete the set A, from the space § for the purposes of calculating the mle. The mle
may then be extended to A, without affecting the likelihood. The case w(A,) =0and F,(A;)
> 0 is discussed in Section 3. In case (2, %, ) is not totally finite (e.g., R*), restrict the
space to U, L(w,), as in Section 5 of Robertson (1967).

The solution given here, although based on ideas of Robertson (1967), is somewhat
more general in that it does not use his assumption (ii), page 484. In fact, % is freed from
any connection with any quasi order on £ (although such an order may always be defined
after being given £). This allows us to choose the o-lattice of shapes for our isopleths
without need for generating them from a more or less arbitrary ordering.

3. Existence and consistency of the MLE. Suppose f is a bivariate density and
the statistician believes that the isopleths of f are nested ellipses of a given eccentricity
with common center and major and minor axes. If the center and orientation of the axes
are known, the method of Section 2 may be used to calculate the mle. This knowledge may
often be available, particularly if the center is an identifiable source (like a factory
smokestack) which distributes a variable in a topographically channeled manner. However,
the knowledge is frequently not available. In the latter case, the statistician may still use
the method of Section 2 provided he is willing to estimate the center and orientation of the
nested ellipses (see Example 4.5 which also discusses estimating the eccentricity).

In general, the statistician may have in mind a basic class of sets % which he can specify
up to a location and/or rotation parameter. We allow the statistician to estimate these
parameters from the data before calculating the mle based on the translation of &
according to those estimates. Any such location/rotation translation of members of % is
rigid and preserves their Lebesgue measure. In the sequel, we shall suppose without loss
of generality that the location and orientation of % are correct ones so that f is -
measurable. The error made by the statistician in estimating the vector of location/
rotation parameters is e,. Thus fn is calculated with respect to the e,-translation of %,
Other notation used in this section is as follows:

p  Lebesgue measure

Z* the e,-location/rotation translation of %

A the e,-translation of the set A

F°  the measure F*(A) = F(A™*)

fe the density of F* .

F;» the empiric measure F;"(A) = F,(A™*)

f. the formal density of F,:f.(x) = n™'/u(A;) if x € A; where & = {A;, .-, An} is
given in Section 2 .

F, the measure F,(A) = Ja fndu

T.g the set {x; g(x) = a} for any function g

P, g the set {x; g(x) > a} for any function g

The large sample properties of f,, will depend upon the accuracy of the estimated
translation parameters. We shall suppose that those estimates are consistent so that the
error e, — 0 almost surely. However, it is of interest to know what happens when the
estimates converge to the wrong value, so the main theorem will be presented in the more
general setting e, — e. Let h. = E[ | £°], the conditional expectation of f with respect to
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the o-lattice #° (see Barlow, et al, 1972, Chapter 7). Also, let H.(A) = [4 h. du. Note that
H. and F* are not the same, in general, unless e = 0 or f is #°-measurable. Throughout
this section we suppose that [ f2 du < co.

We begin with some simple lemmas, whose proofs are in the Appendix.

LEmMMA 3.1. Let o be a class of measurable sets in R*. s/ is an F-uniformity class if
and only if </ is an He-uniformity class.

LEMMA 3.2. Let & be an F~°-uniformity class and e, — e almost surely. Then

(a) suprege|Fu(l) — F(L)| - 0 as.,
(b) suprey|F5 (L) — F(L)|— 0 as.,
(c) supress|He *(L) — He(L) | — 0.

It is rather remarkable that F: -uniformity of the o-lattice % suffices to establish not
only the existence of f, but also its consistency. F-uniformity seems to entail that ratios of
the form F,(L N U)/uw(L N U) used in defining fn(x) will be close to F(L N U)/u(L N U)
which will be close to f(x). However, there are interesting exceptions to this behavior,
which may arise when the modal regions of f can have “tunnels” in or “spikes” on their
boundaries. An example is briefly mentioned in the Appendix as a pathology. Fortunately,
we can identify a set g« of F-measure zero, which contains all the exceptions.

DEFINITION 3.4. Let % be a class of sets and g be #-measurable. Let g+ denote the
set of all x for which at least one of the following holds:
@) Ja < g(x) with limd.*ninf(Leyd;ng)}L(Tag —-L)=0,

(11) 3b > g(x) with lima.einfire vaxenyu(L — Ppg) = 0.

THEOREM 3.5. If & is a o-lattice and an F-uniformity class, g is ¥-measurable and
g« 1s measurable, then F(g+) = 0.

PROOF. (See Appendix).

Existence of the mle. For the sake of notational convenience, we shall prove the
existence of the mle only for the case e, = 0. There is little loss of generality in this, as
noted below, provided we take care that the conditioning event, 0 < u(L(X;)) < o, in
Theorem 3.6, always be satisfied for e, different from 0. For example, ¥ may be a nested
class of sets decreasing to a point. If #°ris centered on an estimate of that point and the
estimate is an observation x;, then p(L(x;)) = 0. Whenever pu(L(x;)) = 0 [or ] for some i,
then the mle does not exist, for the likelihood can be made as large [or small] as we please.

THEOREM 3.6. P[mle exists |0 < p(L(X))) <oo,i=1,---,n]=1.

PrOOF. By induction on n. The case n = 1 is trivial, so suppose the theorem true for
n. Within the event [ £ exists] N [0 < p(L(X;)) < », i=1, -+, n + 1], condition on X; =
Xy, + -+, X, = X,.. It suffices to show

(3.1) F{Xn+1; L)AL (Xn41) # ¢ and  p(L(x)AL(Xn+1)) =0} =0

fori=1, .-, n, where A is the symmetric difference operation. For if L(x;) = L(X,+1) then
F= {Ay, -+ -, An}, the maximal disjoint base for the o-lattice o {L(x1), - -+, L(Xn+1)} (see
Section 2), is the same as the base for o {L(xX1), - - - , L(X,+1)} and the induction hypothesis
applies. Or if u(L(x;)AL(X,4+1)) > 0,7 =1, ---, n, then by dividing the A; into two groups:
incumbents from the case of n, and new A;, we see that F,.1(4;) > 0= u(4,) > 0, so the
mle exists. The argument for (3.1) is similar to the proof of Theorem 3.5, but with L(x;)
replacing T.g and other obvious but somewhat tedious modifications and therefore is
omitted.
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The proof just given is actually valid for the case e, = e (free of n). It does not strictly
apply to general e, because the addition of x,.1, by changing the o-lattice from #*"to
£+ may change the sets L(x;), - - - , L(x,). However, this difficulty may be overcome by
insisting that e,.: be chosen so that, for each n, the condition 0 < p(L(x;)) < ®, { =1,
-++, n would have been met if e,.; had been used at stage n in lieu of the translation e,.
This is a relatively modest restriction which allows the induction argument to work in the
case of general e,. (I

The principal mathematical property of the estimate which can be proved is its
consistency. If the method of estimating location and orientation of the o-lattice is
convergent, then so is the estimate fn, and when the location and orientation converge to
the correct values then so does f’n.

THAEOREM 3.7. Let ¥ be a o-lattice and an F- and F~°-uniformity class. If e, — e,
then f,(X) = he(X) a.s. V X & hey, hence V¥ X in a set of H.-measure one.

Proor. First we note an immediate consequence of Brunk’s (1963) characterization of
isotonic regression. If g is a density, % is a o-lattice, § = E[g| %], and G and G are the
measures associated with g and g, respectively, then

3.2) GU)=GU)YUex
’ G(U)=GU)VY U= g (B) for some Borel set B.

(Actually, (3.2) holds if 4 (U) < « and B does not contain the origin, but that is the case for
all sets in the following argument.)

Let xo & hes. Without further comment, we assume that the event of probability one
occurs for which Lemma 3.2 and Theorem 3.6 hold. We treat two cases.

CASE 1: he(X9) >0.Lete >0, 0<a < he(xo) <bd,
8a = limenaeinf(l‘;eg”“";XaEL)I-L(Tahe - L) > 0;
8 = lim, .einfre -enxgryp (L — Py he) > 0.

Then for all n sufficiently large, we have the following inequalities:
o < He(Tahe = Psaf)*®) _ F(Tohe — Phxal)**)
© w(Tehe = (Phoofa) ™) — p(Tohe — (Phoufa)*™")

_ P o(Tahe — (Phosaa)*) + £ 8a/4 _ Fa(Tah&™® = Piysfs) + ¢ 8a/4

1 (Tohe = (Prxof)**) w(Tahe)™ ™ ~ Prixofa)
< Fn((Tahe) " __P/:n(xo)f:n) ": € 611/4S fAn(xo) + € fa!e4 2 = fn(XO) +_£
M((Tahe)en ¢ — P/,.(Xo)fn) I—L((Tahe) " Pf,.(Xo)f;l) 2

_ BuTjoffs = (Pohe)* ™)
" (Thaaf — (Pohe)*™)

Fu(Thofs = (Pohe)*™) ¢
1 (Thxofn — (Pohe)*™) 2

F((Thanf)* ™™ — Pohe) +85/4 ¢

+i<
5

_ Fﬁie"((Tﬁ.(Xa)fn)efe" — Pyh.) + & _ N
BThol = Poh)™™) 27 p(Thmohs — (Pohe)™™) 2
< He((Tfn(xo)fn)e:e" — Pyhe) -i- e 8p/4 + € <b+ Ae 85/4 _ +_£ b
WTisafn = Poh™™) 27 p(Thwohs — (Pohe)™™) 2

In this chain of 14 equalities and inequalities, the 1st, 6th, 8th, and 13th need no comment;
the 2nd, 5th, 9th, and 12th are obtained from (3.2); the 3rd and 11th from Lemma 3.2; the
4th and 10th from the definition of F}; *and p-invariance under the translation; the 7th
and 14th require more explanation. To cancel the §, in inequality 7, we must insure the
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membership of X, in the denominator set preceding 7. To this end, note that
| 1(Tahe = Praofs) = p((Tahd) ™™ = Paofn)| < i (TaheA(Tahe)™ ™).

But this symmetric difference goes to zero because Lemma 3.2 implies | He(Tohe) —

H(T.he)*°| — 0 (which, because A.(x) > a iff x € T.h. and because p(T.h.) =

L ((Tohe)*"¢), would be inconsistent with the symmetric difference remaining positive). For

inequality 14, show analogously that p (TF.x0)f» - (Pyhe)e®) is close to p(Tf.xofn — Pohe).
Since xo & hey, a and b are arbitrary. Thus f,(Xo) = Ae(Xo).

CASE 2:  he(x0) = 0. Apply the argument of Case 1 from inequalities 8-14 only,
whenever 0 < f,(Xo) so that the denominator of the terms in the inequalities will be
finite. 0O

COROLLARY 3.8. Let £ be a o-lattice and an F-uniformity class. If e, — 0, then fn(x)
— f(x) a.s. V X & fo, hence ¥ X in a set of F-measure one.

PrROOF. ho=F.

It should be noted that F-uniformity has been used in Theorem 3.7 only through
Lemma 3.2. In view of Topsge’s (1970) techniques, however, there seems little to be gained
by making Lemma 3.2 an assumption to replace that of F-uniformity.

4. Examples. The first three examples have previously been studied in the literature.
The results cited are all easily seen to be special cases of the general methods presented in
this paper. In each case Zis an F-uniformity class and f« consists precisely of the points of
discontinuity of f.

ExaMpPLE4.1. Estimating a unimodal univariate density with known mode (Robertson,
1967, particularly Theorem 4.1 and Corollary 4.1), # consists of all intervals containing the
mode 6.

ExAMPLE 4.2. Estimating a unimodal univariate density with unknown mode (Weg-
man, 1969, particularly Theorem 4.1), #°* consists of all intervals containing a consistent
estimate e, (e.g., Sager, 1975) of the mode 6.

ExaMPLE 4.3. Estimating an “increasing” density on the unit square (Robertson,
1967). If f(x, y) is defined on [0, 1) X [0, 1) and Zis the class of sets with “nonincreasing”
curves as boundaries, then the consistency result Theorem 4.4 of Robertson (1967) again
follows.

ExaMPLE 4.4. Estimating a “unimodal” density on R*. Let f(x) be defined on R* and
£ be the o-lattice of sets L defined by the following: L € £« x € L implies the k-cell
determined by 0 and x is contained in L (if x;, =0,i =1, - - -, &, the k-cell determined by
0 and x is [0, x;] X - -+ X [0, x,.]; if any x, < 0, then replace [0, x;] by [x:, 0].) It follows from
Topsge (1970) that £ is an F°-uniformity class for all e for absolutely continuous F. The
meaning of unimodality is determined by the class .. In this example, f being .#-measurable
implies the existence of a “modal set” L, € £ containing 0 on which f has the constant
value f(Lo) > f(x) for all x & L,. Moreover, f is nonincreasing along every ray emanating
from 0. But even more structure is imposed by the requirement that modal regions [f = c],
VY ¢, bein Z. .

It should be emphasized that the computation of f, with respect to this £ or any
location/rotation translation of ¥ is an easy matter with the maximum upper sets
algorithm. The reason for this is that, after e,-location/rotation of the coordinate systems,
the L (x,) are simply k-cells determined by x; and 0, the p measure of which is the product
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of the magnitude of the coordinates of x,. Hence, for small n one could compute f, by
hand, if necessary. A consistent multivariate modal estimator 8, may be used for locating
£ (see Sager, 1978). Estimating the rotational orientation of £°» may prove more difficult.
A search through various rotational orientations until one is found which maximizes the
likelihood of £, will be computationally expensive without an efficient algorithm.

Figure 2 was produced by assuming the theoretically correct location and orientation
were known. In this map, the o-lattice £ is obviously misspecified (it should be ellipses)
and the map has been processed to consolidate some of the isopleths for visual display.
One would probably not use these raw estimated contours as final estimates any more
than one would use the empiric cdf as a final estimate of a continuous cdf. One might use
this very general o-lattice for a “first look” under conditions of relative ignorance about
the shape of the true contours.

ExaMpPLE 4.5. Estimating a density with elliptical contours. Let f(x) be unimodal at
# in R? and have elliptical contours centered at 6. Suppose it is further known that the
ellipses all have uniform eccentricity ¢ and the same major and minor axes. Let #(¢) be
the class of elliptical regions of eccentricity ¢ centered at 0 with the horizontal and vertical
axes as major and minor axes. Then £(¢)° is a o-lattice and an F ~°-uniformity class for all
€ and e. Again, if one can estimate the location and orientation of £(¢), one can compute
f,, by the method of Section 2 and obtain consistency from Section 3. Additionally, if the
eccentricity ¢ must be estimated and can be done so consistently then adaptation of the
methods of Section 3 will yield consistency of fn

Figure 1 is illustrative of this method. The center of the ellipses was estimated by the
vector of means and the orientation and eccentricity were estimated from the eigenvectors
of the variance-covariance matrix. Thus, if the data were from a normal distribution (and
they are), these estimates would be maximum likelihood. But the contours that are
obtained are not restricted to those of a normal distribution. Both heavier and lighter-
tailed distributions may be obtained.

This particular example was motivated by work the author has done for the U.S. Navy.
A multivariate density estimate was desired for a high-dimensional dataset. It was felt that
the true density was similar in shape to (and may in fact be) a multivariate normal. But
the assumption of normality was felt to be too strong and a nonparametric estimate was
desired. However, standard nonparametric density estimators converge very slowly in
higher dimensions—too slowly for the problem in question. By assuming elliptical contours
and estimating orientation from principal components, the possibility of normality was
allowed while preserving the most relevant nonparametric alternatives. Moreover, since
the elliptical contours impose a linear order on R* in which “higher” means closer to the
center of the ellipses, the algorithm for the estimator essentially reduces the problem to
one d1mens10n In fact, the methods of Prakasa Rao (1969) could probably be used to show
that n/*{f,(x) — £(x)} has an asymptotic distribution. So the rate of convergence does not
depend on the dimension, nor does computation speed of the estimate (except for principal
components).

APPENDIX

ProoF oF LEMMA 3.1. Topsge (1967, Theorem 3), showed that .o is an F-uniformity
class iff F'(NiZ185A;:) = 0 for every sequence {8,} | 0 and every sequence {A,} of sets from
o/ where ;A denotes the set of points within distance § of both A and the complement of
A. Let o/ be an F-uniformity class, {8;} | 0 and A, € o/ ThenV ¢ > 0, F(NZ,85, A; N T.f)
= 0. Hence, by absolute continuity,u(NZ18s, A; N T.f) = 0 and Ho(NZ185 A: N T.f) =
Now by the properties of isotonic regression (3.2), H*(T.f) = F(T.f) 1 1 as c¢ | 0. Hence
H,. (NZ105 A;) = 0. The converse is similar. [

ProoF oF LEMMA 3.2. Part (a) is immediate from the definitions. Since a quarter-
space (a subset of the plane congruent to the first quadrant) is convex, it follows from
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Topsge (1970) and other sources that the class of quarter-spaces is an F' ~e.uniformity class.
It is easy to see from the nature of the e,-translation and the absolute continuity of F that
F*(x) —» F°(x) VY x. Hence

|Fen(x) — F~*(x)| < supge:|Fa(Q) — F(Q)| + | F™*(x) — F°(x)| —> 0 as.
where 2 is the class of all quarter spaces. Hence F, * = F~°. So
Fi*(L) — F(L)| =supre «| Fx*(L) = F*(L)| —> 0 as.

Supre ¢«

Since Zis assumed to be an F~°-uniformity class, then #° is an F-uniformity class and
by Lemma 3.1 an He-uniformity class. As in part (b), H & e(x) —» H.(x) so that H °=
H,. Part (c) follows. 0

PRrROOF OF THEOREM 3.5. Letgl, i =1, 2, denote the subsets of g+ for which condition
(i) or (ii) holds, respectively. We first consider gY. For each x € g, let ax denote the inf
of all a for which (i) holds. For each rational r, let @, = {x € g%, ax <r < g(x)}. The
following two properties of @, are immediate:
(a) Fn(Qr) = F(Q)) as.
(b) If x € @, then limg_.oinfy; ¢ prgryu(Trg — L) = 0.
Now let ¢ > 0. By absolute continuity, 3 § such that u(A) < 8= F(A) <¢/3. For a given
realization, let us denote the observations in @, by xi, - - -, X,.. By (b), we can find a d with
|d| small and Ly, - - -, L, such that x; & L; € £ and p(T,g — L;) <8 p". Letting L = L
N .-+ NL, € ¥ we have x; & LY and F(T,g — L) < ¢/3. It is easy to see from Topsge’s
characterization that {T.g N L; L € %%} is an F-uniformity class. By applying this and
Lemma 3.2, we have F.(Q,) = F.(T.g) — F.(LN T,g) < | F.(T.g) — F(T.g)| + | F(T:g)
—F(LNT.g)|+|F(LNT.g) —F.(LNT.g)|<e. Since ¢ is arbitrary, F (@,) = 0 by (a).
Now for each x € g, x € , for some rational r. Hence F (gY%) = 0. An analogous
argument shows that F(g%) = 0.

A pathology. To see that the set g of Theorem 3.5 is not necessarily null, consider
the following example: Let x; and x be i.i.d. N(0, 1). Let %, consist of all balls centered at
the origin. Let % consist of the sets B;, i =1, 2, - - - where B; is the ball of radius i centered
at the origin but with the “wedge” between *1/i radians removed from the ball. And let
#be the smallest o-lattice containing & U %. Clearly, #is an F-uniformity class and the
density of (x, x2) is #measurable. Now, Robertson’s (1966) representation theorem can
be used to show that f,(x) = 0 a.s. for all n and for all x on the nonnegative half of the
horizontal axis! (By adding wedges to B;, the same outcome could be obtained.)
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