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COX’S REGRESSION MODEL FOR COUNTING PROCESSES:
A LARGE SAMPLE STUDY

By P. K. ANDERSEN AND R. D. GILL

Statistical Research Unit, Copenhagen; and Mathematical Centre, Amsterdam

The Cox regression model for censored survival data specifies that co-
variates have a proportional effect on the hazard function of the life-time
distribution of an individual. In this paper we discuss how this model can be
extended to a model where covariate processes have a proportional effect on

_the intensity process of a multivariate counting process. This permits a
statistical regression analysis of the intensity of a recurrent event allowing for
complicated censoring patterns and time dependent covariates. Furthermore,
this formulation gives rise to proofs with very simple structure using martin-
gale techniques for the asymptotic properties of the estimators from such a
model. Finally an example of a statistical analysis is included.

1. Introduction. The Cox-model for censored survival data (Cox, 1972) specifies the
hazard rate or intensity of failure A(¢) = lim 0 2[T < t + h| T > t] for the survival time
T of an individual with covariate vector z which may depend on the time ¢ to have the
form

(1.1) A(E; 2) = Ao(t)exp{Boz(t)}, t=0.

Here B is a p-vector of unknown regression coefficients and Ao(¢), the underlying hazara,
is an unknown and unspecified nonnegative function. The statistical problem is the one of
estimating B, and the function A, on the basis of, say, n possibly right censored survival
times T4, - - -, T, and the corresponding covariate vectors z1, - - -, 2,, where z; is observed

on [0, T}].
Cox (1972) suggested that inference on B, be based on the function
L efzamy )%
(1.2) @) =Tl A=

where #, = {j: T, = T;} and 1 — §, is an indicator for censpring. In a later paper (Cox,
1975) he derived (1.2) as a partial likelihood function. Letting 8 be the value that maximizes
(1.2), then the continuous estimator obtained by linear interpolation between failure times
of

d;
Yiea. e

for the underlying cumulative hazard Ao(t) = [6 Ao(s) ds was suggested by Breslow (1972,
1974). In a recent paper (Johansen, 1983) it'was demonstrated that L given by (1.2) is a
likelihood profile in the sense that L(8) = maxs L(B, A) where L(8, A) is a joint likglihood
for the unknown parameters 8, and Ao. Also the value of A that maximizes L(B, A) is
exactly A given by (1.3). This joint likelihood was derived by extending the Cox-model
(1.1) to a model allowing for multiple jumps and furthermore allowing (1. 1) to be the
intensity of a recurrent event.

In this paper we consider the large sample properties of a counting process model with

(1.3) At) =31
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intensity given by (1.1), i.e. we include the possibility of the event considered being
recurrent, but not more than one event may happen at a given time.

We have had several motivations for undertaking this study. First of all, much effort
has been spent on deriving the asymptotic properties of the estimators ,Z? and A in the Cox-
model, see Cox (1975), Liu and Crowley (1978), Tsiatis (1978a, 1978b, 1981a), Link (1979),
Bailey (1979) and Naes (1982). Asymptotic distribution theory for the score function test
statistic based on Cox’s likelihood is given by Tsiatis (1981b) and Sen (1981). We found
that the martingale theory which emerges very naturally from the counting process
formulation of (1.1) and which is also the starting point of Naes (1982) could be used very
efficiently to give proofs whose basic ideas are very simple. Nzes (1982) and Sen (1981)
each use discrete time martingale theory which to our minds does not fit so naturally in
this set-up. Secondly we found that the assumption of the covariates being bounded made
by all of the above mentioned authors except Tsiatis (1981a) and Sen (1981) (who on the
other hand only considered time-independent covariates) is too restrictive and should be
avoided. Finally in a practical example (see Andersen and Rasmussen (1982)) concerning
admissions to psychiatric hospitals for women giving birth, the results were needed for the
more general case of describing the effect of covariate measurements on the intensity of a
recurrent phenomenon. This example will be discussed in more detail below.

We conclude that it is useful to formulate the Cox-model in the more general set-up of
multivariate counting processes of Aalen (1978). This will be done in Section 2 where we
also outline the basic ideas of the proofs of asymptotic normality and consistency of ,Z? and
of weak convergence of Al ) — Ao(-). In Section 3 we give the basic assumptions and the
technical details for proving the results rigorously and in Section 4 we consider the problem
of actually verifying these conditions in the special case where the counting processes and
the covariate vectors are assumed to be independent and identically distributed. In that

final section we also return to the practical example.
Regression models for counting processes were also considered by Aalen (1980). He

parameterized the intensity process itself linearly rather than the logarithm as we do, and
thus the standard martingale central limit theory applied rather immediately when
deriving the asymptotic properties. On the other hand, this approach does not guarantee
the estimator of the intensity to be non-negative and hence some posterior smoothing of
the estimate has to be performed before applying the results from an analysis.

Methods for checking the assumptions of the Cox-model are given by Andersen (1982).

2. Counting process formulation of the Cox-model and its properties. In this
section we shall formulate the model (1.1) in the framework of multivariate counting
processes and sketch how proofs of the asymptotic properties of ,@ and A may be carried
out. For simplicity we shall be working on the time interval [0, 1] and we refer to Section
4 for a discussion on how to extend the results to processes on [0, ).

We shall use basic results from the theory of multivariate counting processes, stochastic
integrals and local martingales without further comment. A survey of this theory intended
for similar applications to ours can be found in Gill (1980). The survey in Aalen (1978) is
also very useful, though it does not include the concept of local martingales. Using this
concept allows us to avoid making superfluous integrability conditions. Apart from this
background theory, our basic tools are the inequality of Lenglart (1977) and the martingale
central limit theorems of Rebolledo (1978, 1980) which we state in specialized forms
adapted to our needs in Appendix L.

2.1. Formulation of the model. Since we are interested in asymptotic properties, we
shall in fact consider a sequence of models, indexed by n =1, 2, - - -. Also, as mentioned in
Section 1, we shall generalize from the possibly censored observation of the lifetimes of n
individuals to the observation (in the nth model) of an n-component multivariate counting
process N™ = (N{”, ..., N™), where N{® counts observed events in the life of the ith
individual, i = 1, - . -, n, over the time interval [0, 1]. So the sample paths of N{”, ..., N
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are step functions, zero at time zero, with jumps of size +1 only, no two component
processes jumping at the same time. Unlike Aalen (1978) we need not assume that &N {”(1)
< oo, only that N{”(1) is almost surely finite. For discussion of how the usual special models
for censoring can be treated in this set-up, see Aalen (1978), Gill (1980) or Andersen et al.
(1982).

In our model, properties of stochastic processes, such as being a local martingale or a
predictable process, are relative to a right-continuous nondecreasing family (% : ¢ € [0,
1]) of sub o-algebras on the nth sample space (@, #™, 2®™); # ™ represents everything
that happens up to time ¢ (in the nth model).

Our basic assumption is that for each n, N has random intensity process A = (A{",
«++, A%) such that

(2.1) AP(E) = Y (O)No(t)exp{ BoZM (t)}.

Here B, is a fixed column vector of p coefficients, Ao a fixed underlying hazard function,
and Y™ is a predictable process taking values in {0, 1} indicating (by the value 1) when
the ith individual is under observation (so in particular, N only jumps when Y{® = 1).
Finally Z{™ = (Z{, --., Z{P)" is a column vector of p covariate processes for the ith
individual. We suppose that Z{® is predictable and locally bounded (which is the case for
instance if Z{™ is left continuous with right-hand limits and adapted).

By stating that N™ has intensity process A we mean that the processes M{™ defined
by

t

(2.2) M) = N™(t) —J’ ANPw)du, i=1,.--,n t€]O0,1]

0

are local martingales on the time interval [0, 1]. As a consequence, they are in fact local
square integrable martingales, with

t
(2.3) (MP, M) (t) = f AMw) du and (MP, M™) =0, i#],

0

i.e. M and M/" are orthogonal when i % j. Under various regularity conditions which do
not concern us here, these facts are equivalent to the following generalization of (1.1):

1
(24) limyjo 2 PNt +h) — N{P(8) = 1| F] = NP (t+).

See e.g. Dolivo (1974, Theorem 2.5.1), Aalen (1978, Section 3.2) and Gill (1980, Section
2.3). For an application to censored survival data see Gill (1980, Theorem 3.1.1.). One could
start with (2.4) plus regularity conditions as the basic model; however we prefer to take
the local martingale property of M™ in (2.2) as primary, and only mention the “intensity”
property (2.4) as a motivation for this more abstract looking model.

In the following we shall everywhere drop the superscript (n). Only 8o and Ao are the
same in all models (i.e. for each n). Convergence in probability (—4) and convergence in
distribution (— ) are always relative to the probability measures 2™ parameterized by
Bo and Ao.

2.2. Asymptotic normality of ﬁ As demonstrated by Johansen (1983), Cox’s likelihood
(1.2) is a reasonable basis for the estimation of the regression parameter vector B, in our

more general set-up too. Let C(B, t) be the logarithm of the Cox likelihood evaluated at
time ¢, so that according to (1.2) and (2.1) we have

C(B, ¢) =Y J' B'Z.(s) dNi(s) — J' log (Y1, Yi(s)eh%®} dN(s),
0 0

where N = Y7, N;. Then we have that C(8, 1) = logL(8), and the estimator B is defined



COX’S REGRESSION MODEL 1103

as the solution to the likelihood equation (3/88)C(B, 1) = 0, where the vector of derivatives
U(B, t) of C(B, t) w.r.t. 8 has the form

Y Yi(s)Zi(S)eﬂ'Z:(S) _
U t) = J; Z;(s) dNi(s) — J' Y (5) P20 dN(s).

From (2.2) it is immediately seen that

2 Yt (8)Z:(s)eBiz(s)  _
~1 Y, (s)eBiZ(s) M (s),

U(Bo, t) = f Zi(s) dMi(s) —
0

where M = Y'7_; M, is a local martingale. Taylor expanding U(B, 1) around B, we get
2.5) U(B, 1) = U(Bo, 1) = —F(B*, 1)(B — Bo),

where 8* is on the line segment between 8 and 8, and the positive semidefinite matrix

¢ n . ®2,8'Z.(s n . A A ®2 _
(B, 1) =J ( =1 ZL(S)ZL(S) eFZ6 ( =1 X(S)Zz(8)6ﬂ2“> )dN(s)
0

“1 Yi(s)eB% Y1 Yi(s)epz6)

is minus the second derivative of C(g, t) w.r.t. 8. (For a column vector a we denote by a®
the matrix aa’, cf. Section 3.) Inserting ,8 in (2.5) we get

(2.6) n"2U(Bo, 1) = {n ' F(B*, 1)}n"(B — Bo),

since by definition U( ,Z?, 1) =
To prove asymptotic normality of n'/%( ,f? — Bo) it now suffices to prove weak convergence
to a Gaussian process of the local martingale n~"2U(,, -) and to prove convergence in
probability to a non-singular matrix of n™'.#(8*, 1). For the weak convergence we utilize
the central limit theorems for local martingales given by Rebolledo (1978 1980). As to the
convergence in probability of n™'.#(8*, 1), it suffices to prove that ,8 is consistent and that
n~'#(B*, 1) converges in probablhty for any B* such that 8* —, Bo. The fact that
U(Bo, -) is a local martingale implies that the discrete time process obtained from it by
only registering its values at jump times of N is also a local martingale (and under
integrability conditions, a martingale). This fact is derived by Sen (1981) in an i.i.d. set-up
by a permutation approach and used to obtain weak convergence results.

2.8. Consistency of ,é To prove consistency of ,f? consider the process

@n XB.0= n~Y(C(B, t) — C(fo, t))

—n‘[ LlJ'(,B Bo)'Zi(s) dN.(s) — f

0

{———2‘ 1 Yils)ed Z“’} dIV(s)} .

L1 Yi(s)eBoZis)

Then X (B, 1) is a concave function with a (w1th probability tending to 1) unique maximum
at 8 = ,3 by definition of ,8 Using the inequality of Lenglart (1977) (see also Appendix I)
it can be proved that X(, 1) converges in probability to a function of 8 which is concave
with a unique maximum at f,. A fairly simple argument using convex function theory then
shows that ,8 — 2 Bo.

2.4. Asymptotic distribution of A. Formulated by means of counting processes, the
estimator A given by (1.3) has the form

dN(s)

A
0= | Sy ez

and hence
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M%Am—mmn=nmf{ L — 1 }dﬁm
o (S8 Yi(s)ehzo Y, Y, (s)eficts)

el f dN(s) .
(2.8) +”/{O§EHQQJEJ_A””}

+ A (8) — Ao(2)},

where
Ag(t) = f Ao () {371 Yi(s) > 0}ds.
0

Here the third term is asymptotically negligible; the second term is a local martingale,
namely

n'?dM (s)

Wi(t) = ————2 Y. (5)ehz

and a Taylor expansion of the first term yields the quantity H(8*, t)’ n"/*(8 — f,), where
the vector H is given by

‘Y Yi(8)Zi(s)eBZ

#9) HEO == | S Yeerzoy N

0

and ,8* is on the line segment between ,8 and Bo. The asymptotic distribution of

n2{A(-) — A¢(-)} now follows by finding the asymptotic distribution of the local
martingale W(¢) and by proving convergence in probability of H(8*, ¢) for any 8* such
that 8* —, B0, and by finally noting that W (. ) is orthogonal to U(Bo, -):

<U(BO, ); J’ 2 Y e B, = 0.

From this last fact it follows that W(¢) and H(B*, t)’ n'/ (8 — Bo) are asymptotically
independent since ,8 is a function of U(Bo, 1) (cf. (2.6)). Hence the desired asymptotic
distribution can be derived using 2.2.

3. Asymptotic properties. In this section the notation is the same as in Section 2.
In particular, this means we are dropping a superfix (n) almost everywhere; only 8, and
Ao are fixed (i.e. independent of n). Unless otherwise stated, all limits are taken as n —
. Suppose a = (a1, ++-,a,) and b = (by, ---, b,) are p-vectors, then we write a ® b for
the p X p matrix ab’ with (i, j)th element a,b,. Also we write a®* for the matrix a ® a. For
a matrix A or vector a, |A|| = sup,, |a,| and ||a| = sup, |a;|. For a vector a, |a| =
(Zaz)l/z (a’ a)1/2 ,

Some further important definitions are:

1
SOB, t) = > D=1 Yi(t)eFZ 0

1
SVB, ¢) = n Vi1 ZAt) Y (t)eBZ®,

1
SPB, t) = - N1 ZAt)RY At)eBZ ),

_SY(B, 1)
E(B,t) _W’
and
S?(B, t)
V(B t)= - E(B, %

S(O)(,B, t)
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Note that S is a scalar, S’ and E are p-vectors and S and V are p X p matrices.

These quantities can be interpreted as follows. Suppose at time ¢, we select an individual
i out of those individuals under observation (i.e. with Y,(¢) = 1) with probabilities
proportional to efZ®, Then E(B, t) and V(B, t) are the expectation and variance
respectively of the covariate vector Z;(¢) of the individual selected. S, S’ and S® are
roughly to be interpreted as a norming factor, a sum and a sum of squares respectively.

The following list of conditions will be assumed to hold throughout this section. There
are a number of redundancies in them, and not all conditions are needed for every result,
but in this way we hope to avoid too many technical distractions in the theorems and their
proofs. Further discussion of the conditions is deferred till Section 4.

CONDITIONS.
A. (Finite interval). [ Ao(¢) dt < .
B. (Asymptotic stability). There exists a neighbourhood 2 of 8, and scalar, vector and
matrix functions s s and s® defined on % X [0, 1] such that for j =0, 1, 2

supeepo,pex | SV (B, t) — sV (B, t) | =2 0.
C. (Lindeberg condition). There exists § > 0 such that
n 2 sup;, | Z,(t) | Y.()I{BoZ.(t) > — 8 | Z.(t) |} ==0.

D. (Asymptotic regularity conditions). Let %, s, s and s? be as in Condition B and
define e = sV/s® and v = 5?/5s® — e®* Forall g € 4, t € [0, 1]:
2

1) _i © @ =a_ )
s (18, t) _6,83 (B; t)’ s (18, t) ) 23 (18, t);

s9(-, t), sY(-, t) and s@(-, ¢) are continuous functions of 8 € %, uniformly in ¢ €
[0, 1], s, s and s® are bounded on # X [0, 1]; s© is bounded away from zero on
Z# X [0, 1], and the matrix

Z= j v (Bo, )5 (Bo, t)No () dt
0

is positive definite.
Note that the partial derivative conditions on s, s and s® are satisfied by S, S
and S?; and that = is automatically positive semidefinite. Furthermore the interval [0, 1]
in the conditions may everywhere be replaced by the set {£: Ao (2) > 0}.

LEMMA 3.1. (Consistency of ). B —4 Bo.

L~

PRrOOF. (See Section 2.3.) Consider the processes X (B8, -) given by (2.7) and

-1 n t ’ ‘ S(O)(ﬁi ) Y
AB,t)=n [ z=1f0 (B — Bo)'Zi(u)A:(u)du —J; log{w(ﬁoﬁ}k(u) du]

SB, u)

— — pyQM _

}S“”(,Bo, u)]M(u) du,
where A = YA
Then for each 8, X(B, -) — A(B, -) is a local square integrable martingale with
<X(B> ') - A(B; '); X(B’ ') - A(ﬁ) ')) = B(B; ’))

say, where

- n ‘ ’ S(O)( b ) ?
B(B,t)=n"? ,=1J; [(,8—,80) Z,(u) —log{w(g)ﬁ}] A (w) du
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t 0)
=n"' J ((,8 = Bo)'S®(Bo, u)(B = Bo) — 2(B — o)’ SV(Bo, u) IOg{ Sl w }
0

S(O)(,BO, u)
SO 2

By Conditions A, B and D it follows that for each 8 € 4,

1

s9(B, u)

s(Bo, u)

A(B, 1) —wJ [(B = Bo)'s”(Bo, u) — IOg{ }S‘O’(Bo, u)])\o(u) du,

0

while nB(f3, 1) converges in probability to some finite quantity (depending on ). Therefore
by the inequality of Lenglart (1.2) we see that X(8, 1) converges in probability to the same
limit as A(B, 1) for each B8 € 4.

Now by the boundedness conditions in D we may evaluate the first and second
derivatives of this limiting function of 8 by taking partial derivatives inside the integral (cf.
Bartle, 1966, Corollary 5.9); these derivatives are therefore also by D equal to

1 (8o, u)
sM(Bo, u) — sV(B, u) S—})\ () du
J; { ’ sOB,u) | 1
= f {e(Bo, u) — e(B, u)}sV(Bo, uho(w) du
1]
and
1 s(O)(IB , u) L S(O)(B , u)
J; {—8(2)(,3, U)Wl;’u)'F sY(B, u)mmg Ao(u) du 1
== J’ v(B, U)S(O)(,Bo, u)Ao(u) du
0
respectively.

The first derivative is zero at 8 = Bo; the second is minus a positive semidefinite matrix;
and at B = B, is minus a positive definite matrix. Thus for each 8 € 4, X(B, 1) converges
in probability to a concave function of 8 with a unique maximum at 8 = B,. Since ,é
maximizes the random concave function X (8, 1), it follows by some convex analysis (see
Appendix 2) that ,é —y 0.0

THEOREM 3.2. (Asymptotic normality of f). n"/ 2(,[? — Bo) =0 (0, Z71).

ProoF. (see Section 2.2.) We have two tasks here: first to show that
n=2U(Bo, 1) =4 A0, =)
and second to show that
nT' AP, 1) 542

for any random B* = B*™ such that 8* —4 Bo.
For the first part we use the fact

t t

Z.(u)dM;(u) — n“/zj E(Bo, u) dM (u)

0

nV2U (o, £) = 72 iy J
0
t

=Yt | nT%{Zi(w) — E(Bo, u)} dM, (u).

0
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We apply Theorem 1.2 of Appendix I with
Hi(t) = n7V*{ZA¢t) — E(Bo, t)}:.
To verify condition (I1.3), we note that

Jr Yi1 Hilw)H,(w)\(u) du
0

¢ (1) ®2 t
=< JO {S‘Z’(,Bo, u)—%}mwdu)ﬁ—m( fo 0 (Bo, )5 (Bo, u)ho (1) du)

. i
by Conditions A, B and D.
To verify (I.4) note first that by the simple inequality
la—b2I{|a—-b|>¢) 54[a|21{|a| >§} +4 |b|21{|b| >§}

it is sufficient to verify

(i) Jr | E(Bo, &) |P'I{n 2 |E(Bo, t)| > ¢} 2',;1% Y (t)eBiZA\o (t) dt —4 0,
0

(iia) J %22;1 |ZAt) |2 I{n™"2 | ZAt) | > &, BoZAL) < — 8 | ZAt) |} Yi(t)eBszioNo (¢) dt
0

—450

and

(iib) J’ %2'!;1 |ZAt) |PI{n™"2 | ZAt) | > &, BZAt) > — 8 | ZAt) |} Yt)ehizaon, (¢) dt
0

—>p 0.

Convergence of E(Bo, -) and S®(Bo, -) and finiteness of [} Ao(t) dt deals with (i)
immediately. For (iib), we note that

P[4 t:nT2 | ZAL) | > &, BoZAt) > — 8 | ZAt) |, Yo(t) = 1] — O
by Condition C. Finally, the quantity on the left hand side of (iia) is bounded by

J %2',;1 | Z,(2) |Pe—31Z0I{| ZAt) | > n'%}o (t) dt.
0

But x%¢ 7% — 0 as x— + . So for any 5 > 0, for large enough n this quantity is bounded
by 7 [ Ao(2) dt.

This shows that n™2U(B,, -) converges weakly to a certain continuous Gaussian
process. Since this process evaluated at time ¢ = 1 has covariance matrix 3, the first part
of the proof is complete.

For the second part of the proof note that

dN (t)
n

n=H(B*, 1) =f V(B*, ¢)

0

and that

2=f v(Bo, t)sP(Bo, t)Ao () dt.
0
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Hence

' dN
7' AB* 1) — 2| = J' {V(g*, t) —v(B*, 8} e (t)"
0

[ s of B0 50 )
0

f v (Bo, 1){S(Bo, t) — 5 (Bo, £)}Ao(2) d’“ .
0

! dN
(3.1) + J {v(,B*,t)—v(,Bo,t)}T(t)“+
0

+

First we show that lim e lim,_.. 2 -I—V—,(li) > c] =0.
By consequence (1.1) of Lenglart’s inequality,

3.2) 9[-1-\%1—)> c] = g + WU SO(Bo, t)Ao () dt > 8] .
0

For 8 > [ s7(Bo, t)Ao(t) dt the latter probability tends to zero as n — o; and the required
result now follows easily. Next, by B and the boundedness conditions in D, it follows that

supeepo.i1.8e3 || V(B, £)— v(B, t) || =2 0.

Hence 8* —4 B0 and (3.2) imply that the first term on the right hand side of (3.1) converges
in probability to zero.

Again, (3.2) together with the continuity in B, uniformly in ¢, in Condition D implies
that the second term on the right hand side of (3.1) is also asymptotically negligible.

For the third term we use consequence (1.2) of the inequality of Lenglart. We have

L _
9[ j vij(Bo, t)ﬂ(t)l >8] Sn/82+9’[lf
o n nJ,

Thus condition B plus the boundedness conditions in A and D shows that this term
disappears too.

Finally the fourth term on the right hand side of (3.1) converges in probability to zero
by directly applying Conditions A, B and D.

Note that this proof actually yields the stronger result

1

{vi;(Bo, £)}2S@ (B, t) Ao(t) dt > n:| .

1
sup: ;f(ﬂ*, t) — 2(t)|| >20,

where 2(£) = [ v(Bo, u)s(Bo, u)Ao (1) du.O

COROLLARY 3.3. (Consistency of estimator of asymptotic covariance matrix of
n'2(B = Bo)). nT'H(B, 1) >4 =

PrROOF. See the last part of the proof of Theorem 3.2.

THEOREM 3.4. (Weak convergence of nV*(A — Ao)). nV*(B — Bo) and the process
equal in the point t to
t
n' (A @) = Ko(t)} + n'X(B — Bo) J' e(Bo, u)ho (1) du
0

are asymptotically independent, the latter being asymptotically distributed as a Gaussian
martingale with variance function
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t

Ao (©)

————du.
A S(O,(,Bo,u) u

ProOOF. (See Section 2.4.) Note first that by Condition B and the boundedness
condition in Condition D,

PN =Ao on [0,1]) > 1.

So we need not consider the term n'/?(A% — Ao) in the equality (2.8).
By precisely the same arguments as those we used to deal with .#(8*, 1) in the preceding
proof, we can now show that

t
supcepo [\H(B*, t) + f e(Bo, u)o(u) dufl -0
(V]
for any B8* such that 8* —, B,.
It remains to apply Theorem 1.2 to
"n7V2dM (u)

n"2U(Bo, -) and J;————S(O'(Bo,u)

jointly.

By orthogonality of these two local square integrable martingales we need only consider
verifying (I.3) and (I.4) for the second of the two; i.e. we take p = 1 and Hy(f) =
n_l/Z/S(O)(BO, t)

But

. , [ I{Y%1 Ydu) > 0) N )
J; S5 Hifu)’Adu)du = J; SO0, 1) Ao (u)du yJ; 5O (Bo. ) du

(giving (1.3)), and

1
f Y1 Hidt) NI {| Hift) > ¢ |} dt
o

is zero on the complement of the event {S”(8,, t) =< n'/% for all t}. So by Conditions B
and D, (I.4) holds too. 00

CoROLLARY 3.5. (Consistency of estimator of limiting covariance function of
1/2( A
n’*(A — Ao).)

t

HQB bt + J' e(Bo, u)ho () du

0

Sup«ero,1] —20

where H is given by (2.9).

Proor. It was indicated how this could be proved at the beginning of the proof of
Theorem 3.4. 00

4. Some special cases. Before considering some special cases of our model in detail,
we shall give a general discussion of our conditions.

A. (Finite interval). From a practical point of view, this condition is hard to justify. One
would like to use all the observations on the whole line [0, «), and since in general we will
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have [§° Ao(¢) dt = , the infinite interval case cannot be derived from the finite interval
case by a simple mapping. Also in general we will have s”(¢) — 0 as ¢t —> «, so Condition
D also prevents easy extension to [0, o).

An identical problem arises when other statistical methods for analysing censored data
are described from the point of view of counting processes, see Gill (1980) or Andersen et
al. (1982). In those cases some extra conditions have to be made ensuring that the
contribution to the test statistics from the data on [, ®) can be made arbitrarily small,
uniformly in n, by taking 7 large enough. In Theorem 4.2 we shall give such an extension
in the special case of bounded covariates, only sketching the proof though.

Our finite interval condition is also present, explicitly or implicitly, in the cases studied
by Tsiatis (1981a), Nees (1982) and Bailey (1979).

B. (Asymptotic stability). Up to the uniformity in 8, and to a lesser extent, in ¢, these
conditions speak for themselves. Such conditions have been proposed in a heuristic proof
of consistency of ,B by Oakes (1981). It may be noted that uniformity in 8 is not required
for consistency of ,8 or for asymptotic normality of n""?3 log L(8) / 98 | s= 8,- However it is
to be expected that some kind of convergence uniform in 8 will be needed to ensure
convergence in probability of n™'9% log L(B)/38*| -4

C. (Lindeberg condition). This condition appears at first sight complicated, but in some
important special cases it is very easy to verify. For instance, if the covariates are bounded,
the condition is completely empty; if they are bounded by random variables having a
bounded rth moment for some r > 2 it is also easy to verify. We shall see presently that in
the special case of i.i.d. observations it is implied by a natural second moment condition.
Finally the condition simplifies somewhat in the one-dimensional case p = 1; it is then
equivalent to

2 supic Z,(t)Y.(t) >0  if Bo>0
n 2 sup;, —Z;(t) Yi(t) »>»0 if Bo<O
n™% sup;, | Zi(t)] Y.(¢) 520 if Bo=0

D. (Asymptotic regularity conditions). These conditions on boundedness, continuity,
and interchanging of orders of various limiting operations do not require any discussion.

Finally some miscellaneous remarks. Note that the function Ao (¢) itself is never needed
in the theorems or their proofs; we could replace Ao(¢)dt everywhere with dA(t), where
Ao is assumed continuous, nondecreasing and 0 = Ay(0) < Ao(1) < . Next, a suitable
choice of covariates yields as score test many of the standard (p + 1)-sample tests in the
literature of censored data, see Lustbader (1980) and Oakes (1981) for a discussion of this
point in the case p = 1. Since we only need to work under 8, for this statistic, the uniformity
in B in the conditions may be relaxed. Finally, we have not discussed the asymptotic
distribution of the generalized likelihood ratio test. However, it is clear that our methods
will give the expected results under the same conditions, see Rao (1973, Section 6e).

The literature so far only contains rigorous treatments of the Cox model in what are
essentially ii.d. cases, and in order to show how powerful our methods are, we shall show
here how Conditions A to D are satisfied in such cases. Four approaches deserve special
attention. Nees (1982) employs martingale techniques in the model where (N{™, Y, Z{™),
i=1, ..., n are iid. replicates of (N, Y, Z) say. He works on a finite interval, with
bounded covariates. Tsiatis (1981a) works also in an i.i.d. set up with Z 1-dimensional and
time independent though possibly random. He also has a finite interval condition and
further a second moment condition &(Z%*?%) < w for 8 in a neighbourhood of B,. This is
stronger than what would be a natural condition here, §(Z%e*%) < « for 8 in a neighbour-
hood of Bo. Liu and Crowley (1978) discuss a situation in which, in each of a finite number
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of independent strata, (N{”, Y™, Z”) are i.i.d. and Z{™ is time independent and non-
random. They do not make a finite interval assumption; however their proof is extremely
complicated. Finally Bailey (1979) assumes fixed censoring imposed on an i.i.d. situation:
i.e. one observes ii.d. replicates of (N, Y, Z) on intervals [0, ¢{”],i =1, - .-, n. All these
authors work in the original life testing situation considered by Cox: i.e. N{® makes at
most one jump. Various independence assumptions are also made. In each case our
counting process model is applicable.

We shall consider the i.i.d. case in detail: (N{™, Y{”, Z{) are i.i.d. replicates of (N, Y,
Z). We suppose that Y and Z are left continuous processes with right hand limits, which
will allow us to apply laws of large numbers for the space D[0, 1] (after reversing the time
axis!). It will be obvious (taking the results of Appendix 3 into account) how to make either
or both of the following extensions: i.i.d. case within each of a finite number of independent
strata, a positive limiting fraction of observations in each stratum as n — o; and the case
where (N{”, Y{”, Z{”) are observations of independent replicates of (N, Y, Z) on fixed
intervals [0, ¢{”], where the distribution of the ¢{*’s converges as n — oo. Thus all the cases
considered by the above authors are covered.

THEOREM 4.1. In theiid. case with Z and Y left continuous with right hand limits,
Conditions A to D are satisfied if:

4.1) J’l Ao(t) dt < oo,
)
there exists a neighbourhood % of B such that
4.2) & {suprero,npes Y(&)| Z(t) |*efF %9} < o,
4.3) 2{Y(t) =1vte[0,1]} >0,
and

(4.4) X is positive definite, where s, s and s® are now defined by s (B, t) =
éa{Y(t)eﬁ'Z“)}, s“'(,B, t) = é”{Y(t)Z(t)eB'Z(”}, 8(2)('8’ t) = éa{Y(t)Z(t)meﬂ'Zm}.

Proor. By (4.2) we also have
& {supreonpes Y(8)| Z(t) |eF 4P} < 0
and
& {supecpo) pes Y (1)ef?V} < w,

By dominated convergence s, s’ and s® are continuous functions of B € % for each ¢
€ [0, 1], uniformly in ¢ € [0, 1]. They are also bounded on £ X [0, 1] and, by (4.3), s is
bounded away from zero on % x [0, 1]. Without loss of generality we may take % to be
compact. We can consider Y (t)e??® as a random element of D[0, 1], where the elements
of D[0, 1] take values not in R but in the Banach space of continuous functions on %
endowed with the supremum norm. Then by Theorem IIL1, Condition B holds for S©;
the same argument works for S and S,

This leaves Condition C (the Llndeberg condition) to verify. First note that if Xi, X5,

- are ii.d. random variables with & (X?) < oo, then by the central limit theorem it holds
that sup;-1,.....n | X, — £X,| >, 0 as n — oo, which implies that sup;—,,... ,n | X, |
—» 0 as n — o. Thus in the i.i.d. case, Condition C holds if there exists § > 0 such that

&[supeepnY (8)| Z(O)PI{BZ(t) > =8| Z(¢)[}] < oo.
Now choose § such that the closed cube of side 28, centre By, is contained in %. Then

BoZ(t)>—-0|Z(t)|=3BE A suchthat B'Z(t) > 0;
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simply choose the jth coordinate of 8 to be (Bo), + 8§ if (Z(¢)), = 0, (Bo);, — § if (Z (), <o.
Thus
suppeaY ()| Z(t)’e? Y = Y (t)| Z()PI{BoZ(t) > =5 | Z(2)|};

and Condition C holds by (4.2). 0O

Next we shall see how in the i.i.d. case with bounded covariates, one can easily extend
the results to the infinite interval [0, »). As an example we shall sketch the proof of an
extended version of Theorem 3.2, but also Lemma 3.1, Corollary 3.3, Theorem 3.4 and
Corollary 3.5 generalize in the obvious fashion. = is now defined by integration over
[0, «). The condition of bounded covariates can probably be replaced by conditions similar
to (4.2).

THEOREM 4.2. Szfppose in the iid. case, given in Theorem 4.1, Z is bounded and
&N () < . Then if B is Cox’s estimator of B based on the observations on [0, ») instead
of only on [0, 1],

n2(B = Bo) =>4 N (0, =7,

provided only that X is positive definite, and that for each T < o, Z(Y(t) = 1Vt < 1) >
0.

PROOF. Since & N(x) < o, we also have
& J’ Y (s)ePZOo(s) ds < w.
0

So by boundedness of Z and the condition on Y, it must be that [§ Ao(s) ds < « for each
7 < . Thus the conditions of Theorem 4.1 are satisfied on the interval [0, 7] for each 7
< oo,

To extend to [0, ] we must show that throughout the proofs, the contribution from
(7, ®) can be made arbitrarily small, uniformly in n, by choosing  large enough, see Gill
(1980) Theorems 4.2.1 and 4.3.1 or Andersen et al. (1982) Theorem 3.1 for examples of this
technique. We illustrate it here by considering one of the simplest such cases where this
must be done. This is in the proof of Theorem 3.2 where we must show that in particular

limﬁmlimsupnﬂm W{J’ " S(Z,(Bo, t)" }\o(t) dt > 8} =0
for any ¢ > 0. By boundedness of Z we may consider proving instead

L "1, ,
hmﬁmhmsupn_mg’{ J - Yo Y ()P ZON(t) dt > e} =0.

Now

-y , -
9’{ f — X1 Yu(£)eP 4 ONo(t) dt > e} = é”{ f ,—ILZ:;l Yi(8)ePZ 0N (¢) dt} / P

= é"{% i1 Ny(o0) — N,('r)}/e—) Oas 1 oo

The quantity supges{# (8, ©) — #(B, 7)} in the proof of Theorem 3.2 may be dealt with
similarly. 0O
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ExAMPLE. Finally we shall consider an example concerning admissions to psychiatric
hospitals among women giving birth (Andersen and Rasmussen, 1982). In that study it was
investigated who among the about n = 70,000 Danish women giving birth to a child in
1975 had been admitted (possibly more than once) to a psychiatric hospital in the period
from 1 October 1973 to 31 December 1976 and the dates of admission and discharge
respectively were registered. Moreover, information on such demographic factors as age,
marital status and parity (= number of children born before 1975) was available. Due to
the fact that the exact date of birth was known only for the women who were actually
admitted during the time span considered, reliable information on admissions was only
available in the time interval ranging from —15 months = —456 days to 12 months = 366
days relative to the date of birth, and hence that interval is the relevant one to consider.

Let Yi(¢) =0 if women ¢ (i =1, ---, n) is resident in a psychiatric hospital at time ¢
relative to the date of birth (—456 days < ¢ < 366 days) and let Y,(¢) = 1 otherwise; let
N,(t) be the number of admissions for woman i in the interval [—456 days, ¢]. For each
woman i = 1, ... , n we consider the two state Markov process model:

au(t)
not admitted ——— |admitted
palt)

where a,(¢) and p.(¢) are the forces of transition. It follows that N,(¢) is a counting process
with intensity process A,(£) = a;(¢)Yi(¢) (cf. Aalen, 1978, page 709). In the following we
assume that this intensity process has the form (2.1), i.e.

}\z(t) = )\o(t)em‘z‘“)Yl(t), i= 1, ---,n,

where the information on demographic variables and admissions prior to time ¢ for woman
i is collected in the vector Z,(¢).

First we consider a model (Model I) where only the parity of the woman and the time
relative to the date of birth are assumed to influence the probability of being admitted to
a psychiatric hospital and we define the (time independent) covariates

7 = 1 if woman i has parity 0,
i 0 otherwise,

1 if woman i has parity 2,
Z,‘z = N
0 otherwise,

1 if woman ¢ has parity = 3,
Z,‘3 = N
0 otherwise,

Ao(¢) being the force of transition for women with parity 1. The estimated regression
coefficients in Model I are given in Table 1 (numbers in brackets) together with their
estimated standard errors and correlations.

From Table 1 it seems that the intensity of being admitted is much larger when parity
exceeds 2 but also the women with 2 children seem to have a somewhat increased intensity
compared to those with parity 1 or 0. The Wald test statistic for the global null hypothesis
(B1, B2, Bs) = 0 takes the highly significant value 18.34 with 3 degrees of freedom in fairly
close agreement with the value of the likelihood ratio test statistic 16.22.

As mentioned above, the counting process generalizations of the usual nonparametric
k sample tests for censored survival data may be obtained as score tests by appropriate
choices of stochastic covariates. In the present example, the generalized log-rank test
statistic takes the value 18.6 and the same value is attained by the Breslow generalisation
of the Kruskal-Wallis test (see Andersen et al., 1982). We conclude that parity has a highly
significant influence on the intensity of being admitted to a psychiatric hospital.

Consider next the model (Model II) obtained by introducing the age of the women in
the model by means of the two covariates

7. = 1 if woman i is <18 years old, 7. = 1 if woman ¢ is >34 years old,
“ 710 otherwise, 710 otherwise.
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TABLE 1
Estimates in Markov process models (Models 1, 11)

estimated correlations

i covariate Z; B: {var(B:)}
1 2 3 4 5
1 parity 0 0.094 0.010 1
(0.090) (0.099) (1)
2 parity 2 0.202 0.131 0.42 1
(0.253) (0.130) (0.43) (1)
3 parity =3 0.458 0.168 0.32 0.30 1
(0.641) (0.157) (0.36) (0.27) (1)
4 age =< 18 years 0.116 0.238 —0.16 0.01 0.00 1
5 age > 34 years 0.601 0.162 0.04 -0.13 —-0.35 0.02 1
TABLE 2

Estimates in semi-Markov process model (Model 11I)

estimated correlations

i covariate Z; B {var(B)}V*
1 2 3 4 5 6
1 parity 0 0.036 0.102 1
2 parity 2 0.252 0.132 0.42 1
3 parity =3 0.473 0.167 0.32 0.30 1
4 age <18 years 0.113 0.251 -0.16 0.02 0.01 1
5 age > 34 years 0.473 0.160 0.03 -0.13 —0.33 0.01 1
6 admission during  6.13 0.133 -0.03 0.02 -0.01 0.02 0.01 1

latest month

The estimates for Model II are given in Table 1. By comparing ,és with its estimated
standard error it seems that the intensity of being admitted is increased for the older
women compared with the younger ones. Furthermore the influence of parity has dimin-
ished compared to Model I; this is of course due to the positive correlation between parity
and age, which is reflected for example in the fairly large negative estimated correlation
coefficients: —0.16 between ,él and ,& and —0.35 between ,ég and ,és. The Wald test statistic
for no influence of age when parity is included in the model takes the value 14.01 with 2
degrees of freedom compared to the value 12.28 of the likelihood ratio test statistic. The
Wald test statistic for no influence of parity when age is included in the model takes the
value 8.04 with 3 degrees of freedom, and we conclude that both age and parity have a
significant influence on the intensity of being admitted in spite of the positive correlation
between these two covariates.

Finally we consider a model (Model III) where the psychiatric past of the women is
introduced by means of the time dependent covariate

during the month [¢ — 30 days, ¢),

1 if woman i has been resident in a psychiatric hospital
Zl6(t) =
0 otherwise.

Since the probability of being admitted in this model depends on the time since latest
admission, Model III is a semi-Markov model rather than a Markov model as Models I
and II. The estimates in Model III are given in Table 2.

From Table 2 we notice first the marked influence of prior admissions reflected by the
value ,ée = 6.13 with an estimated standard error of 0.133. The estimated effects of age and
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parity are practically unchanged compared with Model II, and we conclude that the oldest
women and women with high parity, i.e. women who have terminated their “birth career,”
have the highest intensity of being admitted to a psychiatric hospital in connection with
another pregnancy which is being carried to term. Furthermore prior admissions increase
the risk of being admitted again.

APPENDIX L

All stochastic processes are defined on the time interval [0, 1].

THEOREM L1. (Two applications of the inequality of Lenglart).
(a) Let N be a univariate counting process with intensity process A. Then for all 9,
n>0

1

(IL.1) P{NQ1) >} S%-’-Q{J'

0

A(2) dt > 8}.

(b) Let W be a local square integrable martingale. Then for all §, 7> 0

(L2) P {suprepo; | W) > 1} < % + P W, W)(1) > 6).

THEOREM L.2. (Application of Rebolledo’s Central Limit Theorem for local square
integrable martingales). For eachn=1,2, - - - let N™ be a multivariate counting process
with n components. Let H™ be a p X n (p = 1 is fixed) matrix of locally bounded
predictable processes. Suppose that N™ has an intensity process A, and define local
square integrable martingales W™ = (W, ..., W) by

WP (t) =J Y HR(w){dNP (1) — AP (u) du}.
0

Let A be a p X p matrix of continuous functions on [0, 1] which form the covariance
functions of a continuous p-variate Gaussian martingale W, with W*(0) = 0; i.e.
Cov(W (), Wi (u)) = A,,(t A u) for all i, j, t and u. Suppose that for all i, j and ¢

(L.3) (W, W) = J Y1t H2 () HJ2 (N (5) ds —» Aij(t)
0

as n — o« and that for all i and ¢ > 0

1
(L4) J' S5 HOEND(OI{] HY ()| > ¢) dt —,0 as n— o.
0
Then W™ —, W™ as n — o in D([0, 1]7).

These two results have each in different ways been slightly extended with respect to
the originals. In the first place Theorem I.1 is only a direct application of Lenglart’s
inequality when & {N(1)} < o in (I.1) or € {W(1)*} < « in (1.2). In our situation we only
know that a sequence T, < T: < ... < 1 of stopping times exists, Z(T; =1) > lasi—
oo, such that & {N(T})} < « or & {W(T\)?} < o for all i. So the inequality of Lenglart does
directly apply to the “stopped” processes, N (¢ A T;) and W(t A T;). Letting i — o then
gives our versions.

Theorem 1.2 has been extended by making the original univariate theorem into a p-
variate theorem. This extension can be done by standard Cramer-Wold type arguments,
see for instance Aalen (1977, Lemma A.1) for a similar extension worked out in detail.



1116 P. K. ANDERSEN AND R. D. GILL

APPENDIX II.

Pointwise convergence in probability of random concave functions implies uniform
convergence on compact subspaces.

The “almost sure” version of this theorem is a direct consequence of Rockafellar (1970,
Theorem 10.8). However for an “in probability” result we must be more careful. The
following “diagonalization method” was pointed out by T. Brown.

THEOREM IL.1. Let E be an open convex subset of R? and let Fy, Fs, ---, be a
sequence of random concave functions on E such that Vx € E, F,(x) =2 f(x) asn— «
where f is some real function on E. Then f is also concave and for all compact A C E,

Supsea | Fa(x) — f(x)] 520 as n — .

Proor. Concavity of fis obvious. Next let xi, x2 - - - be a countable dense set of points
in E. Since F,(x1) =2 f (x1) as n — o there exists a subsequence along which convergence
holds almost surely. Along this subsequence F,(x2) —2 f(x2) so a further subsubsequence
exists along which also F,(x2) —as. f (x2). Repeating the argument, along a (sub)* sequence,
Fo(x;) >as f(x;) forj=1, - .. , k. Now consider the new subsequence formed by taking the
first element of the first subsequence, the second of the second, etc. Along the new

subsequence we must have F,(x;) —.s f(x,) for each j =1, 2,
By Rockafellar (1970, Theorem 10.8) it now follows that

Supxea | Fu(x) — f(x)| —=as. 0 along this subsequence.

We have shown more generally how, from any subsequence, a further subsequence can be
extracted along which sup.ea | Fn(x) — f(x)| —as. 0. It now follows that

Supzea | Fn(x) — f(x)] =20 along the whole sequence. 0

CoROLLARY IL.2. Suppose f has a unique maximum at £ € E. Let X, maximize F..
Then X, -4 X as n — o,

ProoFr. The proof, a simple ¢ — § argument, is left to the reader. O
APPENDIX III.
Extension of SLLN for D[0, 1].

Let X; Xi, X5, -+ - be i.id. random elements of D[0, 1] with &|| X|| = & sup:eo,1; | X (¢)]
< o0, Then by Theorem 1 of R. Ranga Rao (1963) we have almost surely

— 0 asn— o,

1
’—— -1 X, - 6X
n

We need to extend this result in two directions. Firstly we must allow the random elements
of D[0, 1] to be random functions not from [0, 1] to R but from [0, 1] to the space of
continuous real functions on %, where % is a compact neighbourhood of By € R”. If we
endow this space of functions with the supremum norm it becomes a separable Banach
space, and that will be all the structure we need.

Secondly we must allow for censoring. To tie in with the usual rlght continuity
convention for D[0, 1], we shall consider left censoring: X, is only observed on an interval
[t, 1], or more generally, in a triangular array scheme, on [t{™, 1] or [T {?, 1] for fixed or
random times ¢ or T'{" respectively.

THEOREM IIL.1. Let X; X1, X5, --- be iid. random elements of Dg[0, 1] (endowed
with the Skorohod topology) where the elements of Dg[0, 1] are right continuous functions
on [0, 1] with left hand limits taking values in a separable Banach space E (rather than
the usual R). Suppose that &|| X || = & sup:epo,1; || X (¢)]] < o».
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For each, n, let t{" = ... =t be fixed time instants in [0, 1]. Let y® =1 [ew, 1) and
suppose there exists a distribution function y such that, on [0, 1],

1
R
Then

1
“ - Sri Xy — Xy “ — 0 almost surely as n — .

Proor. - Note that Dg[0, 1], just like Dg[0, 1], is separable and complete with respect
to the Skorohod do-metric (see Billingsley (1968, Section 14), replacing | - | where appro-
priate with || - ||). Thus any random element of Dg[0, 1] is tight (Billingsley, 1968, Theorem
1.4). Also X is a random element of Dg[0, 1], provided that its sample paths have the
correct properties and that X (¢) is a random vector for each ¢ € [0, 1]. The characterizations
of compact sets of Dg[0, 1] given by Billingsley (1968, Theorems 14.3 and 14.4) do not
carry over directly to Dg[0, 1], since in E a closed, bounded set is not necessarily compact.
However it can be verified that the conditions given are still necessary for compactness,
even if not sufficient any more.

We shall make use of the following three properties of Dg[0, 1] corresponding to
properties used by Rao (1963) in the case E = R:

(i) Ve>0,V compact K C Dg[0,1],36 >0 suchthatx E Kanda=t<fB8=<§= [| ()
—x(a) | =] x(B-) — x(a) | + & (Billingsley, 1968, Theorem 14.4, necessary condition
for compactness; see above.)

(i) SUXN<o=V8>030=t<t <-.-- <ty=1suchthat, forallj, |t — | <
8 and &[|| X(tj+1 —) — X (&)|]] < e. (Proof as in Rao, 1963, Lemma 2.)

(iii) SX|] <= &[|| X|I{X & K}] can be made arbitrarily small by suitable choice
of compact K C Dg[0, 1]. (Tightness of random elements of Dz[0, 1], see above.)

Given compact K C Dg[0, 1] and ¢ > 0, choose 8§ by (i). There exists a finite partition of
[0, 1) such that y(8 —) — y(a) < ¢ for each interval [, 8) in the partition. By applying (ii)
for each interval in the partition separately, we can find 0 = ¢, < ¢, < ... < ¢ty = 1 such
that |t — | <6, |y(tj+1) —y(t) | < eand &{| X(4+1 —) — X(¢)|} <eforeachj=0, ...,
N-1

Since trivially || €X((1/n) ¥y —y)|| = 0 as n — oo, it suffices to consider
[ (1/n) ¥ (X, — £X)y™||. For any t € [0, 1), let [, B) be the [#, t,.1) interval containing
t. Then

“ Lyr, o - gxa»yﬁ")(t)” <€) + 2 S I X T(X € K) + 601 X | I(X € K)]
where

@) = “ % Yim (X(I{X, € K} — ¢[X(t)I{X € K})) yﬁ"’(t)“

1
= ” o Yim (X)X, € K} — S[X()I{X € K}])yr(t)

1
+= 2 || Xid(B=) — Xl + 6 (| X(B=) = X(a)||} + 2

1
+ Y | X)) {y(B-) — ¥y (a))

1 1
X X@I(B-) =y (@)} + - Zi=1 [| Xi(B=) = Xi(a)]| + 3e.
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Now suppose U; Uy, Us, --- are ii.d. separable Banach space valued random variables
with &[] U||] < «. By the SLLN for separable Banach space (Mourier, 1953) we have
(1/n) ¥7-1 U, — €U almost surely as n — .

We want to show that we now also have

n

1
— X Uy (a) = & Uy(a) almost surely as n — o.

Define k(n, a) = max{i : ¢/’ = a}. Then

k(n, a) Y U,
kn,a) ’

1
; 27=1 Uiyﬁ"’(a) =

where k(n, a)/n — y(a) as n — o, If k(n, a) - © as n — o« then the required result
obviously holds. Also if 2(n, a) remains bounded as n — o (which implies, but is not
implied by, y(«) = 0) then the required result again holds. Since from any subsequence
(n.) we can always select a further subsequence along which either k(n, a) — « or
k(n, a) is bounded as n — o, the result is true generally.

Applying this result to eX(f) we see that

lim Sup,_.»SUpPsepap en(t) < 28| X () [{y(B-) — y(@)} + 4e < 28| X|| + 4e

and hence, again applying the SLLN, (and treating ¢ = 1 separately),

lim Supn-,«Sup:efo,1

1
;ZL {Xi(8) — X))y (2) H

= 28| X|| + 4e + 28| X | I(X & K}].

Since € and K were arbitrary, by (iii) the theorem has been proved. 00

CoROLLARY II1.2. Suppose that for each n, X\, ..., X" are iid. elements of
Dg[0, 1] with the same distribution as X; suppose that 8| X || < . Suppose also that for
eachn, T?, ..., T™ are independent censoring times in [0, 1], independent also of the
X{™’s; suppose that their average distribution function

L P{T" <t}
converges uniformly in t to some distribution function y. Then

1
- Y1 XLy — 6Xy

—50 as n— o«

Proor. By Van Zuijlen (1978, Theorem 2.1 and Corollary 3.1) we have
(1/n) ¥i=1 Iiw 1) converges in the supremum norm to y, in probability, as n — . Thus by
a Skorohod-Dudley construction (see Wichura, 1970) we can construct a new probability
space on which are defined TM i=1,..,n,n=12, -..,and X;, X>, - - - such that

(i) X, X, .. isindependent of T/, i=1,..-,n,n=1,2, --;
(i) T™=T{=... =T almost surely;

o 1 .

(iii) > Yi=1 It ;) converges almost surely uniformly toy; and
: 1 n_ ¥ 1 n (n)

(IV) ; Zl=1 XiI[fv!m’l] =g ;L 2,=1 X; I[T."",l]'

On this new probability space we can apply Theorem IIL1 (or rather its proof, since in the
theorem the T"’s were supposed to be nonrandom; however this played no part in the
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proof), to give

1 ~
=Y, XiIi3w 1 — €Xy| — 0 almost surely.
n [T,1]

Therefore we also have

1
- Y X o — 6Xy “ — 0 in probability. 0
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