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CONTAMINATION DISTRIBUTIONS

BY MICHAEL GOLDSTEIN

University of Hull

A simple class of models for possibly contaminated data is considered, for
which the effect of large observations on our beliefs and on our procedures is
small. Various properties are derived, and the effects of differing prior opinions
are considered.

1. Introduction. Problems which involve samples with possibly contaminated data
tend by their very nature to be vaguely formulated, since we seldom have easily quantifiable
information on the nature of the contamination process. Because Bayesian modelling of
such problems typically requires detailed specification of the contamination procedure,
usually we are forced to employ highly simplified models for the spurious observations.
Thus, we must consider carefully how well the consequences of the model we have
employed correspond to our intuitive understanding of the problem before we may rely on
the Bayesian analysis to produce sensible answers.

However, once we admit the possibility that some of the observations may be drawn
from a spurious alternative distribution to the distribution of interest, then coherence
implies a posterior distribution of sufficient complexity that the properties of the posterior
distribution and the nature of the prior-data interaction are very hard to determine. In
particular, the analysis will depend crucially on the tail behaviour of the distribution of
interest, which is very difficult to specify meaningfully.

Barnett and Lewis (1978) in their survey on the Bayesian approach to outliers conclude
that “very much remains to be done to achieve a convincing advance in the Bayesian
study of outliers”. Their survey illustrates the general point that the formal treatment of
the Bayesian model for outliers is straightforward, but that there are major difficulties in
deciding upon a reasonable model, and assessing the consequences of its application. Thus
in contrast to the material surveyed by Barnett and Lewis, which provides detailed analysis
of specific applications, we shall consider qualitative aspects of the behaviour of the
simplest general model for contamination, namely that for which the sample value is either
drawn from a member of a parametric family, the parameter of which we wish to determine,
or the sample value is drawn from a spurious alternative distribution, in which case it
carries no information about the parameter of interest.

We formulate a general criterion for the model, corresponding to the requirement that
sufficiently discrepant observations have little effect on our beliefs and on our estimation
procedures, and the remainder of the paper is a consideration of the consequences of this
modelling criterion. Of course, we are not claiming that a model which satisfies our
criterion is necessarily a good model for treating contaminated data, only that if we
discover that the model does not satisfy the criterion, we might be hesitant to employ the
model, and would at the very least find it useful to have the information that the criterion
had not been met.

2. Notation and definitions. A random sample x = (x;, - - -, X,), of size n, is taken
in the following manner: each observation is independently drawn, with specified proba-
bility p from a specified distribution G(x), and with probability (1 — p) from a distribution
F(x|6), indexed by an unknown parameter 6.

Note that this model applies specifically to those problems for which outliers contain
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no information whatsoever about the unknown parameter 6. This will often be the case, as
it will be unusual for us to be able to specify meaningful models linking 8 with values
which are known to be contaminated. However this does not mean that we must refrain
from allowing our prior beliefs about  to influence our prior choice of G(-).

We shall require that all the distributions are absolutely continuous with respect to
some common dominating measure K, which will be either Lebesgue measure or a discrete
counting measure on a specified countable subset. Thus, the notations f(x|8), g(x) will
denote either the p.d.f. of F, G with respect to Lebesgue measure, or the p.f. of each with
respect to some specified countable set of x values.

We make the following definition. C is a class of real-valued functions of 8, each of
which has finite expectation with respect to a specified prior measure P(-) for 8. Let x; be
the sample omitting the value x;. We define G (x) to be a contamination distribution for
the class C with respect to the prior measure P if, for any value p € (0, 1), for any sample
size n, and for any fixed x(;), we have, for every h € C,

.

E{h(0)|x} > E{h(0)|20}, |xi|— .

In certain contexts, we may only require the above property for x; — .

As a very important special case, we define the class Co to be the class of indicator
functions for all sets of values of # which are measurable with respect to P. G is a
contamination distribution for C, if for each measurable set A,

P A|x) > P(OE A|xw), | x| — .

We shall refer to such a distribution G as a weak contamination distribution. The intuitive
interpretation of the weak contamination criterion is straightforward. Essentially, we are
aware that the observation may be drawn from a source other than the distribution of
interest, and we are requiring of our contamination model that sufficiently discrepant
observations do not affect our beliefs concerning the parameter of this distribution.
Typically, the one feature common to most problems involving outliers is that if a single
observation is sufficiently separated from the remaining observations, then we would
expect to be able to identify this value as an outlier. Precisely how separate this value
would need to be to make this identification with confidence will depend strongly on the
problem at hand. However, we employ outlier models precisely because we believe that it
is possible to detect outliers, so that if our model implies that no possible sample values
can be so detected, then we must either change our model or at the least, consider carefully
the implications of using this model.

Clearly, however, there will be richer classes than C, which will be of practical interest.
Indeed, it is frequently stressed that outliers will cause us to make bad decisions. Thus, if
we wish to estimate a variety of utility-based functions of 8, on the basis of our sample,
then by appropriate construction of the class C we may be assured that highly discrepant
sample values have little effect on estimates based on posterior mean values, for a wide
variety of functions of . Rarely would we make a virtually certain identification of an
observation as an outlier and yet still wish to allow it considerable weight in determining
our estimate, and even in such cases we would presumably find it useful to be aware that
our model implied such behaviour.

This raises an immediate problem. Clearly, under the specifications we have made,
convergence of the first few posterior moments does not ensure convergence of the higher
moments, as the following example shows.

ExampLE. Let F(x|6) be the uniform distribution on (0, ), dP (6)o< (d8/0")[a, 8 €
) for some a > 0, and dG (x)o< (dx/x"*), (r > k + 1). Then G(x) is a weak contamination
distribution and for a single observation x, as |x| — o, E(|0]'|x) —» E(|0]'), i<k,
E(|0|*|x) = ¢ <o, where c # E(|8|*), and E(|0]'|x) > %, i>k.

Obvious questions that must be settled are (i) is our definition of a contamination
distribution, for example for the class C; of polynomials in 8 of finite prior expectation, too
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restrictive to be always satisfied; and (ii) how may we constructively define a contamination
distribution for a specified problem?

To approach these questions, it is easier to deal with the apparently weaker require-
ments that the stated properties must hold only for a sample of size one, and we define
G(x) to be a single observation contamination distribution if the contamination property
is only required for n = 1.

Thus, in Section 3, we consider the above questions for single observation contamination
distributions. Then in Section 4, we demonstrate that, under fairly general conditions,
single observation and general contamination distributions are equivalent, so that the
results of Section 3 are immediately applicable in the more general case. This is accom-
plished by considering a rather more general problem, namely given two individuals who
have different prior distributions for the parameter § but who both agree on the contami-
nation distribution G(x), then to what extent may their identification of contamination
differ? Finally, in Section 5, we consider the reverse of this question, namely under what
circumstances may we find possible choices of distribution G¢x) which will be contami-
nation distributions for any individual, irrespective of his prior beliefs concerning §?

3. Single observation contamination models. We begin by establishing some
useful simple properties of contamination models for single observations. The subscripted
notations Po(8 | x) and Eo{(8) | x } refer to posterior calculations if we assume no possibility
of contamination, i.e. p = 0. Also Pg(x) = prob(observation from G|x). Thus, given a
common dominating measure for Fy and G, Pg(x) is given by

pg(x)
pg(x) + (1 —p)f(x)’

Ps(x) =

where f(x) = [f(x|8) dP(6).
Some simple properties of contamination distributions are given in the following
theorem.

THEOREM 1. Let C be a class of functions of 6 with the property that, for at least one
element h, € C,
3.1) lim infj x| | Eo{h:(0)|x} — E {h:(6)}| > 0.

A necessary condition for g(x) to be a single observation contamination distribution
for the class C with respect to P(8) is that, for each h € C, the function

(3:2) h*(x) = fh(ﬁ)f(xlﬂ) dpP(6)/g(x)

tends to zero as | x| — . This condition is also sufficient, provided that condition (3.1)
above is replaced by the condition that for at least one element h; € C,

(3.3) lim infy s | Eo{B2(8)] x}| > 0.

ProoF. Suppose that g(x) is a single observation contamination distribution. For any
h € C we have

(3.4) E{h(0)|x} = Pg(x)Eh(8) + {1 — Pg(x)}Eo{h(8)|x}.
Applying condition (3.1) in this expression with A = A, we have Pg(x) — 1 as |x| — o.
For any A € C, and any x for which g(x) # 0, we have
p (1 — Pg(x)) Eo{h(6)| x}
3.5 h* = . .
(3.5) (x) T—p Pox)

Thus, from (3.4), it is necessary that A*(x) — 0 as | x| — . Conversely, suppose that
condition (3.3) holds. If 4} (x) — 0 as | x| — o, then from (3.5), Pa(x) — 1 as | x| — .
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Thus, from (3.4) and (3.5), if A*(x) — 0 as |x| — o for all A € C, then g(x) is a single
observation contamination distribution.
We have the following corollary.

CoRrROLLARY 1. (i) A sufficient condition for g to be a weak single observation
contamination distribution is that the Bayes factor (f(x)/g(x)) — 0 as |x| — . This
condition is also a necessary condition provided there exists a set A for which

(3.6) lim infi e | Po(8 € A x) — P(8 € A)| > 0.

(ii) A single observation contamination distribution for any class C satisfying condition
(3.1) above is also a weak single observation contamination distribution.

Essentially, the conditions of Theorem 1 ensure that the observation does not auto-
matically “reject” itself over some subset of large values of X. If these conditions were not
satisfied, we would not need the mechanism of contamination models, in the sense that
discrepant observations would automatically tend to discredit themselves.

In certain contexts, it might be reasonable to incorporate the condition (3.1) into the
definition of the contamination distribution, in the sense that G is redundant if the*
posterior measure reaches the appropriate limit even without the contamination model.
The main reason that we have not done so is that many of the results we shall derive will
be of the form “if G is a contamination distribution under certain circumstances, it will
also be a contamination distribution under certain other circumstances”. Such results
would be rather awkward to state under the modified definition, whereas the practical
implication would be the same under each definition. A detailed discussion of the type of
situation where conditions such as (3.1) are not met is given in Dawid (1973) and O’Hagan
(1979). The essential difference between the model that they discuss and the model we are
using is that they consider those situations in which the so-called outliers are not arising
from some contamination process but are a natural feature of the data generating process,
i.e. models in which outliers are automatically accommodated, whereas we are treating
situations in which it is meaningful and indeed necessary to consider the explicit contam-
ination mechanism.

As a simple example, suppose that we are sampling from a normal distribution with
unknown mean 6 and unit variance, where the prior distribution for 4 is normal with mean
0 and precision ro. The marginal density of x, f(x), is normal with mean 0 and precision r,/
(1 + ro). Using Theorem 1, we may verify that g(x) = ¢f(cx), for any ¢ € (0, 1), is the p.d.f.
of a single observation weak contamination distribution. Further, it is a contamination
distribution for the class of polynomials in 6. Replacing P(8) by P(8|x), for a general
sample x, we may also use Theorem 1 to verify that g(x) has the above properties as a
contamination distribution for general sample sizes.

We may use the above theorem to provide a partial answer to the questions posed in
Section 2, namely, does a contamination distribution always exist and how can we construct
it? We answer both questions in the single observation case by providing, for a general
parametric family and prior distribution, a method for constructing a contamination
distribution for certain classes of functions C, assuming a common dominating measure for
F(x|8).

THEOREM 2. Suppose that a class C of real functions of 8 has the property that there
exist a countable sequence of non-negative functions {ri(8), rs(8), - - -} with the following
properties:

i) for each 6, r;(8) < r;(0) fori<j;
ii) for each value i, there is a function h,(0) € C with sup,|r:(6) — hi(0)| < o;
iii) for any function h(8) € C, there is a value of i for which h(8) < r;(0) for all 6.

Then, for any family {f(x|8)}, we may construct a contamination distribution for the
class C with respect to any prior distribution P for which the expected value of each
element of C is finite.
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ProoF. For each i, define f;(x) = [r:(8) f(x|8) dP(8). From property (ii) and the
condition imposed on P, [f;(x) dx < o, so that we may define a series of increasing finite
values C; such that for each i,

f fi(x) dx = %
|x|>C,

Define g(x) by
é(x) =ifi(x), C;= |x| < Cit1.

From the construction, the integral of g(x) is finite, so that we may define

g(x) = (x)/f (x) dx.

From properties i) and (iii), for each h € C, h*(x) is as defined
in (3.2). Thus, from Theorem 1, g(x) is a single observation contammatlon distribution
with respect to P, for the class C.

As an illustration of the above theorem, consider the class C of polynomials in 8 with
finite prior expectation. Specifically, denote £* = sup{k: E(|#|*) < »}, and define C; to
be the class of functions f.(8) = |8|%, % € [0, k*). We have the following corollary.

COROLLARY 2. With notation as in Section 2, for any family { f(x|6)}, and any prior
distribution P(6), we may construct a single observation contamination distribution for
C.

Proor. If the quantity k£*, as defined above, is infinite, then define the sequence of
functions r; () to be

ri(8) =1, [6]=1
=6, |6] > 1.
If £* is finite, then define r;(#) by
ri(8) =1, [0]=<1
=[O, (g|>1

unless E (| 8|*') < o, in which case it is sufficient to set ,(8) = sup(l, | §
result now follows from Theorem 2.

) for all i. The

4. Contamination with respect to differing prior distributions and the relation
between single observation and general contamination distributions. In this
section we establish the link between single observation and general contamination models
by investigating the following question, which is of interest in its own right: Suppose that
two individuals, A and B, have prior distributions P4(6#) and Pg(6) for 6. Suppose that
they both agree on the contamination mechanism, i.e. they have a common distribution
G(x). Under what conditions may they draw very different conclusions from discrepant
observations? Specifically, define the sets G4, G to be the sets of distributions which are
weak single observation contamination distributions with respect to P4, Pg respectively.
What is the relation between the sets G4, Gg? We have the follow ing theorem, assuming
a common dominating measure for Fy and G.

THEOREM 3. Suppose that P4, Pg each satisfy property (3.6) above. Then
f(x|6) dPg(0)

G4 CGs if and only if  lim supjyj»e—"————< .

ff(xle) dP4(0)
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Proor. If the above condition holds, then since

ff(xlﬂ)dPB(ﬂ) jf(xle)dPA(ﬂ) ff(xlﬂ)dPB(ﬂ)

& & f £(x16) dPA(6)

we have G4 C Gg. Conversely, suppose that the above condition does not hold and
construct a sequence {x;} with | x,| — o, for which

ff(xilﬂ) dPs(8) > i* ff(x,-lﬂ) dP4(8)

and

J Jf(x|0) dP4(0) dx = .;,-
[ x]>]x| e

Define g(x) by
g(x)=0iff(x|0) dP4(0), |x|E€[|xl], |x1])

where C is the appropriate normalizing constant. By Corollary 1, g(x) € G4 but g(x) &
G, and the result follows.
From the above proof, we may immediately state the following corollary.

COROLLARY 3. Suppose h(8) is a function satisfying properties (3.1) and (3.3) with
respect to P, and Py. Define Ga(h), Gg(h) to be the sets of distributions which are single
observation contamination distributions for the class consisting of the single function h,
with respect to Pa, Pg respectively. Then G4(h) C Gg(h) if and only if

jh(ﬂ)f(xlb’) dPg(0)

lim sup)x|— < oo,

fh(ﬂ)f(xlﬂ) dP4(6)

A useful simple corollary is as follows, where we assume a common dominating measure
for P4 and Pg, so that we may denote the p.d.f’s or p.f.’s Pa( ), Ps( ) respectively.

COROLLARY 4. With notation as above, let C denote any class of functions with finite
expectations with respect to both P4 and Pg. Let G4 (C), Gg(C) be the set of contamination
distributions for the class C with respect to P, Pg respectively. If property (3.1) holds for
individual A and

P3(0)

supg———PA(a) < o,

then G4(C) C Gp(C).

As an important application of the above corollary, we now provide the link between
the single observation and general contamination distributions. Essentially, for many
families, these two classes are equivalent, so that we may use the simple structure of the
single observation contamination to provide general results for the more complicated
situation. In particular the construction of Section 3 is a method of constructing a general
contamination distribution.

THEOREM 4. If g(x) is a single observation contamination distribution for a class C
for sampling from { f(x|8)} with respect to P(6), and if f(x|8) is bounded for each x as
a function of 0, then g(x) is a contamination distribution for the class C.
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p(0]|x)

p(0)
sample size and sample values. Thus the result follows from the above corollary, with
pa(8) =p(8) and ps(0) = p(0]| x»).

Thus, under certain circumstances, detection of a single contaminant implies the
detection of one contaminant out of n for general n. We now state the converse, namely
that if g(x) is not a single sample contamination distribution then only in trivial circum-
stances will it be a more general contamination distribution.

ProoF. Under the above assumptions, is bounded as a function of § for any

THEOREM 5. Suppose that g (x) is not a single observation contamination distribution
for a class C of nonnegative functions of 0 for sampling from { f(x|6)} with respect to
P(8), and that properties (3.1) and (3.3) of Theorem 1 are satisfied. Then g(x) will not
be a single observation contamination distribution with respect to P(6|x) for any values
x = (X1, X3, ++ +, Xn) With condition (3.1) holding for P(0|x) and g(x;) =0,i=1, -+, n.

PRrOOF. As g(x) is not a single observation contamination distribution, from Theorem
1 there is an element A € C for which

f h(6) f(x|6) dP(8)

P 50, |x|— oo.

But

J’h(b’)f(xlﬂ) dP(0|x) = PG(a_c)J’h(H)f(xlﬂ) dpP(9),

where Pg(x) is the posterior probability, given x, that all the members of the sample x
were drawn from G. As g(x;) >0,i=1, ---, n, Pg(x) > 0 so that

J’h(ﬂ)f(xlf’) dP(0|x)
40,

g(x)
and by Theorem 1, the result follows.

5. Sufficient classes of contamination distributions. In this section, we consider
a complementary question to that posed in Section 4, namely how wide a class of
distributions G(-) will we need to consider to ensure that any individual, whatever his
prior beliefs concerning 6, may find at least one contamination distribution in this class?
Thus, we define a sufficient class of contamination distributions for sampling from the
family F(x|8) to be a class G of distributions such that for any prior distribution P(8)
there will be at least one member of the class G which is a contamination distribution
against P.

If we may find a sufficient class with a small number of elements, then we have a useful
reference collection of contamination models, at least one of which must apply for any
prior measure. Clearly the simplest such class would be a class consisting of a single
member, and we call such a class a unit sufficient class.

Notice that if there is a countable sufficient class {g1, g, - - -,}, then g(x) = 2(%) ‘gi(x)
is a contamination distribution for all P(6). Thus, either there exists a unit sufficient class
for { F(x|6)} or every sufficient class is uncountable.

We now give the necessary and sufficient condition for the existence of the unit sufficient
class, this condition being essentially that very large values of x should be unlikely under
every member of the parametric family.

THEOREM 6. There exists a unit sufficient class of weak contamination distributions
if and only if, for some k,
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(5.1) f*(x) dx < oo,

|x|>Fk
where f*(x) = supsf(x|9).

Proor. First, suppose that (5.1) holds. We will derive a unit sufficient class for a single
observation. Then by Theorem 4 this will also be a unit sufficient class generally because
the boundedness in 8 of f(x| ) is ensured by the existence of f*(x).

Because of (5.1) we may define an increasing unbounded sequence { C;} satisfying the
relation

(5.2) f f*(x) dx < 1/(2%), i=12 -
|x|>C,

Let

A(x)= 0 |x|<Cl,
& if*(x)  Ci=|x|<Ciu, i=12---

From (5.2), g(x) is integrable and we can define the density function
gx) = é(x)/fg(x) dx.

We now employ Corollary 1. For any prior distribution P (#), g(x) is a weak contamination
distribution because

jf(xlﬂ) dP(6) jf*(x) dP(8)
f(x) _ - _ *(x)
g(x) g(x) - g(x) g(x)’

which tends to zero as |x| — o. Therefore g(x) is a unit sufficient class of weak

contamination distributions.
Conversely, if (5.1) does not hold, then for any p.d.f. g(x) we will construct a prior
distribution P(6) for which g(x) is not a weak contamination distribution. We deal first

with the case of a single observation.

The failure of (5.1), and the fact that g(x) is a p.d.f., means that the ratio f*(x)/g (x) is
unbounded. More precisely, given any £ > 0 and ¢ > 0 we can find x; > % such that f*(x;)
= cg(x1). Furthermore, having found x; in this way, we can also find 6; such that f(x:| 6:)
= cg(x;). By this procedure we recursively define an increasing unbounded sequence {x;}
and a corresponding sequence {#6;} such that

f(x1]61) = 4g(x1),
f(x:|0:) =4 (g(x:) + D)= f(xi|6))},  i=2,8, -,
Notice that the definitions of x; and 6; for i > 1 are valid because
i {g(x) + L7 f(x]6)}
is a p.d.f. We now define the prior distribution P (8) to be the discrete distribution
P@=6)=2" i=12 ...
This prior distribution satisfies condition (3.6) because for j < i
Po(0;| x:) = P(6;) f(x:| ;) / Zi=1 P () f(x:] O)
= P(6)) f(x:]6,)/ P(8:) f(x:| 6:) = 2" (x:]0) /f (x:] 0:)
=27 f(x:]6)/{g(x:) + Ti f(x.]62)) = 2747,

and therefore as x — o, P(6;) — Py(6;| x) does not tend to zero for any j. Therefore, using
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Corollary 1, the fact that
f(x:)/8(x:) = 71 27F (x:|6)) /g (x:) = 27 (x;| 6:) /g (x:)
=21 + 3/ f(x:] 0)) /g (x:)}

implies that f(x)/g(x) /0 as x — o, and hence that g(x) is not a weak contamination
distribution for this P(#) in the case of a single observation. Finally, we use Theorem 5,
with C the class C, of indicator functions so that (3.1) is automatic and (3.3) reduces to
(3.6). It follows that for any g (x) there is a P (6) for which g (x) is not a weak contamination
distribution, and therefore no unit sufficient class exists.

Surprisingly, the condition for a general contamination unit class is the same as that for
the weak unit sufficient class, as shown in the following theorem.

Note that when we refer to a sufficient class of contamination distributions for a class
C, it is implicit in the notation that the distribution should be a contamination distribution
with respect to each prior measure which gives finite prior expectation to each element of
C. We give the proof for a single observation. The result will hold for the general case if
the conditions of Theorem 4 are satisfied, i.e. if f(x | ) is bounded, for each x, as a function
of 6.

THEOREM 7. A unit sufficient class of weak single observation contamination distri-
butions for sampling from f(x|8) is also a unit sufficient class of single observation
contamination distributions with respect to a general class C of functions of 6.

Proor. If there is a unit sufficient class of weak contamination distributions, then
condition (5.1) must hold. Thus, we may construct a unit sufficient class of weak contam-
ination distributions, g(x), as in (5.2) and (5.3). The Bayes factor (f(x)/g(x)) — 0 as | x|
— oo, for each prior distribution for . Further, for any function A(#) and any prior
distribution P () with [|A(8)| dP(8) < , we have

”h(ﬂ)f(xlﬂ) dP(6) f*(x)f|h(0)|dP(0)
—_ <<

¥ = 2(x) = 2(x)

which tends to zero as | x| — o, so that g(x) is a unit sufficient class with respect to a
general class C.

6. Discussion. As stressed above, models which meet the contamination criteria we
have proposed are not necessarily good models for outlier analysis. However, models which
fail to meet these criteria should be treated with care, as it is implicit in such models that
however discrepant the observation, we will always include it in the analysis. Under certain
circumstances, this may be desirable, but at the very least we should be aware that our
model implies this. A particular advantage of the specific qualitative features identified by
the contamination criteria is that we may assess them for the general sampling problem by
considering the more straightforward single observation problem.

As to the assignment of G(x), in certain cases it will be straightforward, in the sense
that there is a clear, perhaps subjectively assessed, contaminating mechanism, while in
others we may be unwilling to specify precisely our beliefs in the nature of contamination.
In such cases, we might use the criteria of contamination with respect to various choices
of class C, to specify general classes of possible contamination models, and investigate the
effect upon our subsequent procedures of various choices within our class.

More generally, we may consider using the contamination models whenever we are
modelling real data by distributions with infinite tails. Typically, we will have information
that will place bounds on the range of possible sample values, and the contamination
model is a compromise for avoiding the need to truncate the parametric family. As an
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extension of this argument, most of the common parametric families are employed
essentially for reasons of simplicity, and in particular are unlikely to model accurately the
tail behaviour of the sampling distribution. Thus, tail values will not, in practice, provide
reliable information as to the value of the central “unknown” parameter, and we may
employ contamination distributions as a formal device to partially discount such values.
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