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ON THE ROBUSTNESS AND EFFICIENCY OF SOME
RANDOMIZED DESIGNS!

By CHiEN-FUu WU

University of Wisconsin-Madison

A concept of model-robustness is defined in terms of the performance of
the design in the presence of model violations. The robustness problem is
discussed for several randomization procedures commonly used in experimen-
tal design situations. Among them, the balanced completely randomized
‘design, the randomized complete block design and the randomized Latin
square design are shown to be model-robust in their own settings. To compare
different randomization procedures, we define a concept of efficiency which
depends on the particular “pattern” of model violations. This concept, when
applied to different designs, gives results which are consistent with the
intuitive grounds on which the designs are suggested.

1. Introduction. Experimental randomization is one of the greatest contributions of
R. A. Fisher to science and statistics. Among the most popular of the arguments favoring
the use of randomization are the following: It provides a solid basis for statistical inference;
it ensures impartiality; it is a source of robustness against model inadequacies. The first
argument has been discussed very extensively in the literature (Cox, 1958; Harville, 1975;
Kempthorne, 1955, 1975 and references therein). The main contention is that the necessary
assumptions for the randomization models are much less restrictive than for the ordinary
normal-theory models. The second argument contends that the use of randomization
ensures that the choice of design is not affected by any bias or preconceived notion on the
part of the experimenter (Cox, 1958; Harville, 1975). Both arguments seem to be well
defined and accepted. The third argument on the model robustness aspect of randomization
is also well accepted, but there has not been given a formal definition and rigorous
justification. It is the purpose of the present paper to take up this task. Our approach is
motivated by and related to works on robust estimation and design (Bickel and Herzberg,
1979; Box and Draper, 1959; Huber, 1972, 1975). Since a very different and new viewpoint
is taken in this paper, our criterion for comparing designs (Section 3) is different from the
traditional ones, e.g. Yates’s criterion for an unbiased error, “old” (in contrast to our
“new”) measure for the efficiency of a design (Kempthorne, 1955, 1975). A Bayesian
justification of randomization is given in Rubin (1978).

In this paper we restrict our attention to comparative experiments, in which the
experimental material is divided into N experimental units, to each of which any one of
the T treatments can be applied. An experimental design is an assignment of treatments
to units. If the experimenter’s model assumption is exact and correct, he will take the
optimal design approach (Kiefer, 1959; Fedorov, 1969) and choose a systematic design.
This is certainly not a good situation for justifying the use of randomization. In fact, the
experimenter’s information about the model is never perfect. When a model is proposed,
there is always the possibility that the “true” model deviates from the assumed model. Let
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G be the collection of all the possible “true” models. The concept of model-robustness
with respect to G is defined in terms of minimizing the maximum possible mean squared
error (m.s.e.) of the corresponding best linear unbiased estimator (B.L.U.E.) over G. In
Section 2, some randomized designs, including the balanced completely randomized design,
the randomized complete block design and the randomized Latin square design, are shown
to be model-robust with respect to any G which possesses an invariance property. A similar
result for simple random sampling was obtained by Blackwell and Girshick (1954). This
optimality property also holds for other types of problems, including violations of the
homoscedasticity assumption of the error terms and the estimation of variance under
either type of violation. As a by-product, several randomization procedures for the Latin
square design are reassessed in this framework. The standard practice of choosing a Latin
square arbitrarily and then randomly permuting its rows, columns and treatments is shown
to possess some desirable properties.

In Section 3, the efficiency comparisons of several procedures (systematic, partially
randomized, completely randomized) are made in terms of the maximum bias square of
the corresponding B.L.U.E. over a particular choice (3.4) of G. The efficiency of the
systematic arrangements relative to the completely randomized arrangements is inversely
proportional to the number of replications of each treatment. A similar result holds for the
comparison of randomized and systematic Latin square designs. The randomized block
design is shown to be very efficient when the block size is moderate or large. Conditions
for these designs to be superior to the completely randomized design (CRD) are also given
in terms of the special patterns of G. These patterns are quite consistent with the intuitive
grounds on which these designs are suggested. For example, the randomized block design
is better than the CRD if block effects account for most of the unknown effects in G. The
efficiency concept introduced here thus makes it possible to compare different randomi-
zation procedures quantitatively.

2. Model-robustness of some randomized designs. T different treatments are
compared on N experimental units with n, units assigned to the #th treatment,
Y Zi n. = N. Let y.. be the yield (or response) of the uth unit when treatment ¢ is applied.
In this paper we only consider the following additivity assumption (Kempthorne, 1955):

2.1) Yur = 0 + gu + €, =1.--,N

where qa, is the tth treatment effect, g, is the uth unit effect, €, is the random error with
zero mean and equal and uncorrelated variances ¢°. No interaction between treatment and
unit is assumed. In standard randomization models (Scheffé, 1958, Chapter 9), g. and e..
are called respectively unit error and technical error. Similar remarks apply to models
(2.7), (2.10), (2.11). The unit effect g, can be related to any particular feature of the uth
unit, e.g., fertility gradient, initial weight, income level. Our main concern is in comparing
the a.. If we can apply both treatments s and ¢ to each experimental unit and assume that
the outcomes on u do not interact with each other (e.g. there is no carry-over effect), then
as — a; can be estimated by y,s — y.. or its average over u. But in practice this is rarely the
case. In this paper we assume that each unit can receive only one treatment. Therefore,
the accuracy of estimating a, is complicated by the uneasy presence of g..

If a component of g, like a block effect or covariate effect is envisaged, we will include
these effects in a more complicated model than (2.1), which will be discussed later. For the
moment we assume that g can be any element from a set G. The special case g = ¢, a
constant, corresponds to the usual model assumption underlying the least squares theory.
We call G a neighborhood of model violations. In this paper we assume that G is invariant
under a certain transformation group H, i.e.,

(2.2) 8EG=>7ngE G forall #€ H,

where 78 = {g,-1w)}u, 7" is the inverse of 7 in the group H. The element g = ¢ should also



1170 CHIEN-FU WU

be in G. To avoid triviality, G is assumed to be bounded. The invariance assumption
reflects the vagueness of the experimenter’s knowledge about g,. In this paper we only
consider permutation groups. For response surface design, rotation groups may be consid-
ered.

Let I, = {u:u is assigned to treatment ¢} and call I = {I,}/=, a pattern. In design
terminology I corresponds to a non-randomized design with treatment group sizes | I,| =
n,t=1, ..., T Let #be the collection of such I's. A randomized design 7 is defined as a
probability measure over 4, i.e., {n(I)}ses with n(I) = 0 and Y, n(I) = 1.

The vagueness of our knowledge about model violations, as indicated by the invariance
assumption (2.2), suggests that we use the best linear unbiased estimator when g = c in
comparing designs. (Such an approach was taken by Bickel and Herzberg (1979) for a
robust design problem. See also Box and Draper (1959), Huber (1975). If one has a definite
idea about model violations, say, block effect or time trend, this should be included as
parameters in the model and analysis should be made accordingly.) Therefore

@s— @ =y.s—ys where y.,=n;"'Yuer, Yus

For any systematic assignment I = {I,} =, with | I,| = n,, we have, under (2.1),
a(l, g) = Ys<t E(@s — & — a5 + )’

®3) =Ty i (g:— &)V +e (T—-1) Y n,

where
gs=n:" Yuer, i 8. =T T1 8.0
For a randomized design 7, the expected mean squared error is then
r(, & = YesnDall, g).

This becomes a game with “risk” r(n, g) between the experimenter and nature. The
experimenter can choose any design measure n over .# and nature can choose any g from
G, corresponding to an unknown true model. The robust design problem can now be
formulated in a decision-theoretic framework.

A design n* is called minimax, or model-robust, with respect to G if it achieves

min,maxgec r (7, g).

For any permutation =, define #I, = {7 (v):u € I}, nI = {xI} X, and ,(I) = n(«I). From
any design measure 7, we can construct a new design measure

. 1
(2.4) =57 YreP Ty
where P is the permutation group on N units. Denote a systematic design I by 8, i.e. 8;(I)

=1 and 8;(K) = 0 for other K in .% Then §; is the design which assigns treatment ¢ to a set
of n,(=|1;|) units completely randomly, ¢t =1, --- , T.

PROPOSITION 1. Suppose G satisfies the invariance property (2.2) for all permutations
of {1, ---, N}. Then for any 0,

maxgec 7 (1, &) = maxgec r(, g).
ProoFr. From (2.2) and a(rl, ng) = a(l, g),

. 1
maxgecr (M, 8) < N Yoep maxgec {Yresn(wl)all, g)}

= 2 S Mxeco (Sren(Da(d, 78)) = maseo (1, 8). D
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To assign NV units to T treatment groups, it is most balanced to choose treatment group
sizes n, as equally as possible, ie. | n,— (N/T) | <1 for all £. Such a choice minimizes
YZin?and ¥2, n/' subject to ¥, n, = N. A balanced completely randomized design is
defined to be the design which assigns treatment ¢ to a set of n, units at random, where
{n} X, are the most balanced group sizes as defined above.

THEOREM 1. The balanced completely randomized design is minimax with respect
to any G, which satisfies the invariance property (2.2) for all permutations of {1, --- ,
N}.

PrROOF. Any 71 and 7 can be expressed as Yresn(I)érand Yiesn( )8: respectively. Since
r (7, g) is linear in %, r (3, 8) = YresnI)r(8;, &). It is proved in the appendix that

T

x 1
(25) r(SI, g) = [N—ZM =1 (gu ) + 02(T— ]_ ] Z[L‘] ;t N

*

where § = N~ Y, g, and |I,| = n. Therefore max,cc r(8;, g) is attained by any g
maximizing Y3~ (g. — &)° irrespective of the choice of I, and is minimized by choosing
{n.} £, to minimize ¥~ n;". These and Proposition 1 imply the result. 0O

Theorem 1 justifies randomization as well as balance from the model-robustness
viewpoint. However, by using the squared error loss function in (2.3), we assume implicitly
that all the treatments are of equal interest. Otherwise, the results in Theorems 1, 2 and
3 may not be true. Such a situation needs further investigation.

Besides estimating the contrasts, we may also be interested in estimating the error
variance o> Due to the invariance assumption (2.2), we may assume g = ¢ in estimating o>

n (2.1), i.e

6% = (N - T)nl ZLI ZueI, (yu; —y.;)z.
The true bias under (2.1) is
b(I,g) =E@6® —o®=(N—T)" 3L Yuer, (8. — 827,

where g., = n;! Zuez Zu. A design n* is called minimax with respect to G for estimating o”
if it achieves min,max.cc ri(n, g), where ri(n, g) = Yesn(I)b(, g).

THEOREM 2. Under the condition on G in Theorem 1, any design 1 as defined in (2.4)
is minimax with respect to G for estimating o”.

Proor. From b(nl, 7g) = b(I, g) and (2.2), it can be shown by following the proof of
Proposition 1 that maxeec ' (7, &) < maxgec r1(n, g). Again from the linearity of ri(7, g) in
7, (1, 8) = YresnI)r1(8;, g). It is proved in the appendix that

1 _ 1
(2.6) 7'1(81, g) = Zu 1 (8u — g)2 = Z_V_ Z:iv=1 8u,
independent of the choice of I. Therefore maxec r1(, &) is a constant and the theorem

follows. 0O

Since % can involve different sets of {n,}Z,, in contrast to Theorems 1 and 2, the sizes
of the treatment groups are irrelevant to the study of model-robustness for estimating o>

We may also consider the possibility that the assumptions on errors €, in (2.1) are
violated. Suppose the true model is

(2.7) Yu=p+oar+e€s, u=1 ..., N,

where €,, has mean zero and variance-covariance matrix V, V can be any element from a
set #; which contains o’ Iyxy. For any permutation =, define (7 V), =(V),-1,,-1, for all
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i, J. The set ¥ has the invariance property (2.2) for any permutation 7. Due to this
invariance assumption on ¥; we estimate «; by assuming V = o*Iyxy. Therefore

& = {&t}t’{‘——l = {yt —y..}tll = (ITXT - TnlJTXT)Pyy
where
y= -,y Y= nt Zuel, Yuts Y. = T! ZZ‘——I Y.t

Irxris the T X T identity matrix and Jrxr is the T X T matrix of ones, P = [a,]rxny with
ay = n; ' if j € I, and 0 otherwise. For any systematic assignment I = {I,} ,, the squared
error loss under (2.7) is

28) ¢, V) =Y« E(@ — @& — as + &) = T'tr Vara = T tr{ VP’ (Irxr — T 'Jrx1) P},

where c(I, V) depends on I through P and tr A is the trace of matrix A. A design n* is
called minimax with respect to ¥ if it achieves

min,maxve,r2(n, V), where run, V) =Y, ), V).

THEOREM 3. Suppose ¥ satisfies the invariance property (2.2), i.e. VE V=gV E ¥V
for all permutations m, then the balanced completely randomized design is minimax with
respect to V.

ProoF. From (2.2) and c(wI, 7 V) = ¢(I, V), it can be shown by following the proof of
Proposition 1 that maxvey ra(, V) = maxyey ra(n, V). From the linearity of rx(3, V) in
M, r2(@, V) = Yresn(I)re(8;, V). It is proved in the Appendix that

T-1

(2.9) r@n V) =5 —3

1 1
tr{ V(Inxn — N JNxN)} thl E ,
where | I;| = n,. The maximum of (2.9) is attained by a V* irrespective of the choice of I
and is minimized by choosing {7}~ to minimize ¥, n;'. The minimax design is any &
with the most balanced I = {I,} ~,, i.e. the balanced completely randomized design. 0O

If the experimental units can be divided into blocks of units such that the units within
blocks are more homogeneous than the units between blocks, then model (2.1) can be
refined as

(2.10) Yut = Q¢ + Bi + 8u + €ut,

where a;, 8. and €, are defined as in (2.1) and B; is the ith block effect. Since the block
effects, which are part of the “old” unit effects in (2.1), have been explicitly included in
(2.2), our knowledge of the “new” unit effects in (2.2) is vague. We therefore assume that
{g.} can be any element in an invariant set G to be defined below. For simplicity, we
assume that there are b blocks of T units and in each block T different treatments are
assigned to the T units. Let each such systematic complete block design be denoted by I.
From the vagueness of our knowledge on &, we will use the best linear unbiased estimator
when g = ¢ in comparing designs. Since the designs under consideration are equi-replicated
within each block, we have, for each I, & — & = y.. — y.. where y.. = T Yuer yus and I is
the collection of units receiving treatment s under I. The definitions of a(l, g), .4 u,
r(n, g) and minimaxity with respect to G are analogous to those for model (2.1). Suppose
G satisfies the condition that the g,’s in each block are invariant with respect to the group
of permutations of {1, ..., T}, then the randomized complete block design (design with
uniform measure on .#) is minimax with respect to G. The proof is analogous to that of
Proposition 1.

If the class of competing designs is enlarged to include connected designs with unequal
replications within blocks, the form of the best linear unbiased estimator under g = cis too
complicated to render a simple proof like the one for Proposition 1. But the minimaxity of
the randomized complete block design over the enlarged class may still be true.
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The following model for Latin square designs is proposed in the same spirit as models
(2.1) and (2.10):

(2.11) Yut = Q¢ + Bi + I + gu + €ut,

where a;, B;, r; are the ¢-th treatment effect, the ith row effect and the jth column effect
@,jt=1,-.-,T), g, is the uth unit effect, u = (i, j); & = {g.}. can be any element in a
set G. We also make the usual assumptions on {€us} ..

Since there does not exist a simple transformation which maps a transformation set of
Latin squares (L.S.) into another set, the invariance technique used before will be applied
to each transformation set. Let # = U%, .% be the totality of transformation sets of Latin

squares. Formally we define, fori=1, --- , &,
Si={rSi7€Q},

where S, is a generating L.S. for % and @ is the group of permutations of rows, columns
and treatments. A randomized Latin square design is defined as a probability measure 7
over .% Note that here we do not identify the identical L.S.’s among the (T")® squares, i.e.
every square in .% is considered “different”.

Motivation of the following definitions were given before for models (2.1) and (2.10).
For any systematic Latin square design I, we use the estimator &, — & = y.; — y.. where
y.s is the average of observations receiving treatment s. The definitions of a(Z, g), r(n, g)
and minimaxity with respect to G are analogous to those for model (2.1). For example,

all,g) =TSE (g.— &> +oX(T—1) with g=T72%" g
and
212) rm, 8 =T YSE (8 — 8)° + N (8 — &) (8w — &)Tuw} + 0> (T — 1)

with ... = Prob(x and u’ receive the same treatment).

Write n(I) = n(I|.%)c; with ¢; equal to the probability of choosing the transformation
set .% containing I and n(I|.%) equal to the conditional probability of choosing I within .%.
To simplify the notation, we write n(I|i) for n(I|.4).

THEOREM 4. Suppose G satisfies the invariance property (2.2) for all m € Q. Then
any design with equal 7., for all u # u’ is minimax with respect to G.

Proor. For each 7, define 7 (I|i) = (T!)® S.e@n(rI|i) and (1) = (| i)c;for all I €
Sandi=1, ...,k Then, using (2.2) together with the fact that a(rI, 7g) = a(l, g), we
have

maxgec 7 (1, ) = maxgec Y1 Yreq ¢ (7S: | Da(nS;, g)
= (T) 7 Ve maxgec{Yreq Y1 e (r7S; | Da(nS,, g)}
= (T Y e Maxgec{Tace Ei’il cm(AS; | Da(AS;, g)}

= maxgec{Yk1 ¢ Yres n(I | Ha(l, g)} = maxeec r(, 8).

(2.13)

Since (I]i) = (#F) ' foral I € 4, i =1, ---, k, (2.13) reduces the candidates for
minimax designs to the subclass of designs 7 with 7 (- | %) the uniform measure on .% for
each i. From (2.12), maxecc (1, &) depends only on {u, }ux.. The proof is completed by
noting that any % with 7 (- | %) the uniform measure on %, i =1, - - -, k, give equal m,,- for
aluu'. O

In particular, complete randomization within a transformation set is minimax. This will
greatly simplify the randomization procedure for Latin squares in the Fisher-Yates Tables
(1953). Instead of randomizing first over the class of transformation sets and then within
a particular set (the Fisher-Yates “recipe”), it is sufficient to consider any procedure 71
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with equal 7,,. The simplest one is to choose any Latin square and then randomly permute
its rows or columns. This is especially convenient for higher order Latin squares where the
class of transformation sets is not available. It is interesting to note that both the equal
7w procedure and the Fisher-Yates procedure were mentioned in Fisher’s definition of
Latin Square in his 1926 paper. However, no justification for the equal 7, procedure was
given there:

Consequently, the term Latin Square should only be applied to a process
of randomization by which one is selected at random out of the total number
of Latin Squares possible; or, at least, to specify the agricultural requirement
more strictly, out of a number of Latin Squares in the aggregate, of which
every pair of plots, not in the same row or column, belongs equally frequently
to the same treatment (Fisher, 1926).

The same invariance technique can be used to show that some other randomized
designs are minimax over a specified class of competing designs with respect to an invariant
G. For example, in the BIBD case, the standard method of randomizing the blocks, the
units within each block and the treatment numbers is minimax with respect to such a G;
in the first order multi-factor design, the device of “angular randomization” (Box, 1952)
makes the design minimax with respect to the set of second order models.

3. Comparisons of some randomized designs in terms of maximum bias
squares. In this section, we attempt to evaluate more precisely the gains and losses in
using various randomization procedures. The efficiency comparisons will be made for
model (2.1) and n, = n, under which

(3.1) r(n, g = Tn™%s(n, g) + o*T(T — n~"
and
(32) 8(17, g) = Zlﬁ\;l (gu - §)2 + Eu#v (gu - g)(gu - g)'”uu,

where § = N' Y., g, and m,, is the probability that units % and v receive the same
treatment under 7. Since the variance of technical error in (3.1) is independent of 7,
comparisons of designs will be based solely on the bias squares. (The randomization models
considered by Kempthorne and his coauthors do not include the technical error term, i.e.
0% = 0. Our efficiency criterion (3.3) is closer to the traditional one in such models.) More
specifically, for designs n1, 7., define the relative efficiency of n; to 1. to be

(3.3) maxgec $(1n2, £)/MaxXeec s(n1, 8)
for model (2.1), where
(3.4) G={g:|lg.—£&|=<¢ u=1,---,N}.

Comparison of designs in terms of bias squares is no stranger in experimental design
theory. Box and Draper (1959) in their pioneering paper on robust designs used this kind
of criterion in measuring the model-robustness of various designs (see also Karson et al,
1969).

Since [74.]u0 is @ nonnegative definite matrix, s(n, g) in (3.2) is a convex function in g
for any n and its maximum over G is attained at one of the extreme points of G. The set
& of extreme points of G is

(3.5) {e(1,---,1,-1, ..., —1) and its permutations} for N even,
(3.6) {c(0,1,...,1,—1, ---, —1) and its permutations} for N odd,

where N/2 of the components are 1 in (3.5) and (N — 1)/2 of the components are 1 in (3.6).
Since the relative efficiency (3.3) is independent of ¢, the radius of G, we will assume ¢ =
1 in the following efficiency comparisons. The computations are based on (3.2), (3.5) and
(3.6). For simplicity details are omitted (see C. F. Wu (1977)).
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Example 1. Completely Randomized Design (CRD).

N —
n N for N even,
maxgeg s(n, 8) =1 N—1
N—-n for N odd.

Note that the maximizing g can be any point from the set &.
This calculation amounts to saying that all procedures with equal =,,’s are minimax
with respect to G (3.4). In particular, the CRD is minimax.

Example 2. Systematic Design. N B
The design measure for the systematic design is a point mass 87 withé7(I) = 1, I
is a pattern. We have

maxgec (67; g) = Nn for T even, Nn — n® for T odd.

The relative efficiency with respect to the minimax value is (N — n)/{n(N — 1)} < 1/n for
T even, T/(nT — 1) = 1/n for T odd and n even, (N — n)/(T — 1)n® = 1/n for T, n odd.
Therefore the loss of efficiency for the systematic design is proportional to the number of
replications of each treatment. For moderate or large n, unless a specific pattern of the
model violations is known, it is not advisable to use a systematic design.

Example 3. Randomized Block Design (RBD).

Divide the N units into ¢ blocks {I”}%£; and assign T treatments each with n/¢
replications (n being divisible by ¢) completely randomly to each of the ¢ blocks. Let m;
(or n,) be the number of u from I with g, — & equal to 1 (or —1). Then s(», g) is

N-n 4N — n)

N = Z2:'{;1 (m, + n,) —m 21 (mi — n,)%

This is maximized by taking | m, — n,| as small as possible and m, + n; as large as possible.
We obtain

N-n N
maxgec s(n, &) = N N7 for ~ even,

=(N—-n)(N+¢)/N for —I; odd and Zeven,

=(N-n)(N+<¢-1)/N for Ef odd and ¢ odd.

The relative efficiency to a CRD is (N — ¢)/(N — 1) for N/¢even, N*/((N + ¢)(N — 1)) for
N/¢odd and Zeven, N/(N + ¢£— 1) for N/¢odd and Zodd. In particular, /=1 is equivalent
to a CRD and the relative efficiency is 1. When ¢/ N is close to 0, the relative efficiency is
close to 1. For moderate #/N, the loss of efficiency for the randomized block design is still
very small.

If G is not of the form (3.4), the relative efficiency of an RBD to a CRD can be greater
than 1. For example, if an extreme point g is chosen such that

(3.7) Yai (m— n)?> N,
then
N-n ¢(N —n)

s(nrep, &) < N—ZN_N(N—Z)

N =N —n = s(crp, 8).

Let G be the smallest convex set spanned by some (or all) extreme points g satisfying (3.7);
G is not invariant under the permutation group of {1, ---, N}. Then

maxged S(rBD, &) < MaXgeds(ncrp, &)-
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Condition (3.7) can be best explained by the effect of blocking. In order to satisfy (3.7),
| m, — n,| should be large. The extreme case |m; — n,| = N/¢for all i gives the same g,
value for all u in the same block. The common g, value for the ith block is the ith block
effect. For the general situation (3.7), “block effect” still accounts for most of the effects in
G and thus makes RBD the more efficient design.

The efficiency comparisons of the Latin square design will be made under model (2.11)
and

G={g:|lg.—&l=lu=0())1=i,j=T).

Example 4. Randomized Latin Square Design. .
For the randomized Latin square design, 7., = (T — 1)~ for u, v not in the same row
and column and max,cq s(n, &) = T%/(T — 1) for T even, (T° — 8T + 4)/(T — 1) for T odd.

Example 5. Systematic Latin Square Design.
For the systematic Latin square design, max,cc s(n, g) = T° for T even, (T — 1)T? for
T odd. The relative efficiency to a randomized Latin square design is
T°—3T+4 1

1
T—1 for T even, T T for T odd.

It is also worth noting that the permutations of treatments only gives the same 7,,, and
thus the same relative efficiency, as the systematic design and hence is not advisable.
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Kiefer.

APPENDIX
For any systematic assignment pattern I = {I,}~; with |I,| = n, define g.(I) =
ni' Yuer g It can be verified that
1 1 1 1
4.1 — Mrl) ==Y gt + | 1 — = | Y 8280
“1 w1 2rer 847D = o Yumi g N(N—l)( n,>2*gg
1 N
(4.2) Wl Yocp &.s(n)g.(wl) = m Yo Bulv
where P is the group of permutations of {1, --., N}.

Proor oF (2.5). This follows from
2;7=‘1 (g.:— g..)2 =1-7T7) Ztil g.zz -7 Eszét 8.8t
(4.1) and (4.2).

Proor oF (2.6). This follows from
2;7;1 zuell (8u — g.z)2 = ZLIJV=1 83 - 217;1 ntg?t
and (4.1).

ProoF oF (2.9). Without loss of generality, we can assume I, = {Yi n, + j}jL, ¢t =
1, -++, T. Then the matrix P'(Irxy — T 'Jrxr)P in (2.8) is equal to 3.7, by M., xn, where
bi = (1= T Yni? b, = =T "'ni'n" for i # j, and My xn = [Mrizkc<n With me, = 1if k €
I, and /€ I,, and 0 otherwise. For any matrix A = [a;], define 7A =[a,-1,.-y, ]. Then it
can be verified that
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1 _n(N—n) n(n; — 1)
(4.3) N Yoep TMpxn, = NN=1 Iyxn NN=1) I

1 nin, L.
(4.4) il Ve TMy xn, = NN-1 (Juxny — Inxn) for i3 .

Now (2.9) follows easily from (4.3) and (4.4).
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