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In a previous paper, it was shown that parameter-effects nonlinearities of
a nonlinear regression model-experimental design-parameterization combi-
nation can be quantified by means of a parameter-effects curvature array A
based on second derivatives of the model functon. In this paper, the individual
terms of A are interpreted and local compensation methods are suggested. A
method of computing the parameter-effects array corresponding to a trans-
formed set of parameters is given and we discuss how this result could be used
to determine reparameterizations which have zero local parameter-effects
nonlinearity.

1. Introduction. In an earlier paper (Bates and Watts, 1980), we developed curvature
measures for intrinsic and parameter-effects nonlinearities of a model-design-parameteri-
zation combination. The curvature measures were developed for the usual nonlinear model

in which the relationship between the values of a response y;, (t =1, 2, --- , n) and some
control variables x; = (x;1, Xs2, «+ + , x¢/)’ can be written

(11) yt=f(xt,0)+£t, t=1,2,---,n.
In (1.1), 8 = (64, 05, -+, 6,) is a set of unknown parameters and ¢ are random normal

errors assumed to have zero mean, to have constant variance, and to be independent of
one another.
Because the model is nonlinear, the solution locus (Box and Lucas, 1959) described by

(1.2) n(0) = (:(0), n2(0), - - -, 1 (0)),

where n,(6) = f(x,, 6), is not a plane as in the linear case, but is a curved surface dictated
by the model function and design combination. The non-planarity of the solution locus, or
intrinsic curvature, has been discussed by Beale (1960), Bates and Watts (1980) and
Hamilton, Watts and Bates (1981). The last reference presents methods for accounting for
the effects of intrinsic nonlinearity in constructing approximate confidence or likelihood
regions. In this paper, we consider parameter-effects nonlinearities and show how their
effects on linear approximation confidence regions may be modified by reparameterization
so as to provide improved linear approximation confidence regions. In Section 2 we give
interpretations of the individual terms in the array A and show how local compensation of
parameter effects may be effected. Next, in Section 3 we show that the array 4, corre-
sponding to a nonlinear reparameterization 8 = G(#), may be computed efficiently from
the original array, A, corresponding to the parameters #, minus a correction term which
depends on the first and second derivative terms G. and G... In Section 4 we discuss how
the above results could be used to determine reparameterizations which have zero local
parameter-effects nonlinearities and hence would yield good linear-approximation confi-
dence regions. One promising approach appears to be that of using a particular class of
transformation, such as Ross’s expected-value transformation, to give zero or small param-
eter-effects nonlinearity. The more general problem of measuring the curvature of a
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statistical problem to indicate the nonlinearity in the sense that locally optimum methods
fail to be globally optimal, is considered in Efron (1975, 1978) and the methods derived
there are applied in Efron and Hinkley (1978). N. Reid and D. Hinkley, in their discussion
of Bates and Watts (1980), both demonstrate that the intrinsic curvature of the nonlinear
solution locus is a special case of Efron’s statistical curvature. The implications of this and
other aspects of parameter transformations are discussed in Section 5.

2. The components of parameter-effects nonlinearity.

2.1. The parameter-effectAs curvature array. For a nonlinear model of the form (1.1),
the least squares estimates @ are the values of the parameters which minimize the sum of
squares

(2.1) SO =35 (v — f(xi, 0))°.
In vector notation, equation (2.1) can be written
(2.2) SO =|y-n0l,

where the double vertical bars denote the length of a vector, so that the least squares
estimates are those values such that n(é) is the point on the solution locus which is closest
to y. If the solution locus is relatively flat near n(@), so that it can be reasonably
approximated by the tangent plane, a 1 — a confidence region consists of those values of

@ for which
(2.3) | 9(8) — 9(@)|° < ps°F,

where F = F (p, v; a) is the upper a probability point of Fisher’s F distribution with p and
v degrees of freedom, and s is an estimate of o2 based on » degrees of freedom. Since the
form of equation (2.3) is that of a sphere, we regard the square root of the term on the
right as a radius. To avoid a dependence on the confidence level, we call p the standard
radius, where

(2.4) p?=ps>

In the following development, we assume that the estimates have been obtained and that
the data have been scaled so that p = 1.

To determine the curvature array, we evaluate the first and second derivatives of the
model function, V. and V.., with entries

(2.5) (V) = ome/ 6|5
and
(2.6) (V.)uy = 0m:/36:06;|5

and form an orthogonal-triangular decomposition of V. (see Kennedy and Gentle, 1980),
(2.7) V.= QR

where @ is n by n orthogonal and R is p by n with zeros below the main diagonal. The
upper p by p submatrix of R is denoted R; and its inverse by L = R,

Now we wish to perform some linear algebra manipulations with the second derivative
array V.., but normal matrix multiplication notation is ambiguous in this case. We
therefore distinguish one type of summation using square brackets, so that [@'][V..]
indicates a summation over the index ¢ in terms like (V. )., (the only summation which is
consistent with the dimensions). We also call this a numerator multiplication since the
summation is over the term occurring in the numerator of the partial derivative. Multipli-
cations written without square brackets indicate summation over the second index (for
premultiplication) or the third index (for postmultiplication). Note that the square bracket
and regular multiplications commute.
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Using this notation, the curvature array A.. can be written
(2.8) A. =[QL'V.L)],
which can be regarded as the second derivative array for the parameters
(2.9) 6=L0-0)

in a rotated set of sample space coordinates.
The first p faces of A.. constitute the parameter-effects curvature array A”. We also
denote the first p columns of @ by the symbol U., so A7, ¢an be written

(2.10) 4 AT =[U'][L'V..L].

The matrix U. is the derivative of n with respect to ¢ evaluated at ¢ = 0 and its columns
(ul, i=1,2, ..., p)provide an orthogonal basis for the tangent plane to the solution locus
at g = 11(0) The corresponding second derivative array is

(2.11) U.=LV.L,

composed of vectors (u,, i,j =1, .-+, p).

The advantage of the ¢ parameters is that if d = (ds, ds, - - - , dp)’ is a unit vector, then
the relative parameter effects curvature corresponding to the direction d is simply yZ =
|d’A..d|. The maximum curvature over all directions d is defined to be the parameter
effects curvature, I'". Since we will only be dealing with parameter effects, we delete the
superscript T and the subscripts - - on the parameter effects array in this paper.

2.2 Tangent plane coordinates. The usual approach to obtaining an app-oximate 1 —
a confidence region is to assume that both parameter-effects and intrinsic nonlinearities
are negligible, and to define a region based on a linear approximation as

(2.12) @-6yvv.e-o=F

where V. is calculated for the scaled responses. In Hamilton et al (1981), it is shown that
confidence reglons can be approximated as elliptical regions on the tangent plane to the
solution locus at 9 = 1,(0) and this approximation does not require any assumptions on
parameter-effects. It is further shown that this procedure compensates for intrinsic
nonlinearity. If the region is based on an estimate of ¢ from replications, this region is
contained in

(2.13) | 7@) — 4 | < m VF,

where 7(0) is the projection of the point () onto the tangent plane at 4, m is the inflation
factor expressed as

(2.14) m=(1-X\)7",
and A, is the largest eigenvalue of B =[y —4]’ [U .]. We call this a conservative confidence

region.

In the transformed sample space coordinates, the projection of n(#)—4 onto the tangent
plane is simply @'{n(#)— %} with the last n — p coordinates set to zero. Letting 7 be the
tangent plane coordinate vector we have

=U'((0)-n)

so that || 7| = ||%(@#)— 7. Then the conservative confidence region is simply the disk on
the tangent plane given by
(2.15) |7l < mVF = R,

where R, is the radius of the 1 — a conservative confidence region disk. We may also
express the coordinates 7 in terms of the ¢ parameters as

(2.16) r=U'{n(8 + L$)) — 9} = H(¢).
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Note from (2.16) that H(0) = 0 and

(2.17) dH/adplo=U'om/ddp|o=U'U. =1

The second derivative of H is a p X p X p array with i, j, k entry

(2.18) 8%,/ 3¢, ¢ |0 = 9°{ui(n — )}/ 3¢90 o
= uitr = (A)yr = ay,

that is

(2.19) *’H/ap*|o=[U'J[U..]1=A.

Thus the second-order Taylor series approximation to H is

(2.20) H(¢)=9¢+ (o' Ad)/2.

Equation (2.20) may be used to give an alternate interpretation for the curvature
measure I". From (2.13) the conservative confidence region in the ¢ coordinates will consist
of all values of ¢ for which

|H(¢)| = R,

and so using a first order approximation, the conservative confidence region consists of all
¢ such that ||¢|| = R.. To test the validity of this approximation we can compare the
length of the quadratic to that of the linear term. For the quadratic expansion, the length
of the quadratic term is

lo'Aoll/2 = llo]°d’Ad]|/2

= ||¢I|27d/2)

where the unit vector d = ¢ /| ¢ |, and so the ratio of the lengths of the quadratic to the
linear components has a maximum of R,I'/2. Thus R,I'/2 indicates the usefulness of the
linear approximation for a 1 — « confidence region, a value exceeding % or Y% indicating
unacceptable nonlinearity at level a because the quadratic term is comparable to the linear
term rather than being a small correction to the linear term.

To assess the effect of " or of particular terms of A on a confidence region, we compare
them to 1/R,. Terms which exceed 1/R, in magnitude reveal serious departures of the
linear approximation from the true confidence region. This approach has the advantage
that once A and I" have been calculated, the adequacy of a linear approximation confidence
region for different confidence levels ai, a3 etc. can be determined simply by comparing
the curvatures a,: and I" to the curvatures 1/R,,, 1/R,, and so on.

2.3 Interpreting the array A. Just as we can trace parameter curves on the solution
locus by varying one coordinate of ¢ while holding the others fixed, so may we trace
parameter curves on the tangent plane. If the linear approximation to H were exact, these
parameter curves would be straight, equispaced, parallel lines and all entries in A would be
zero: non-zero entries indicate failure of the parameter curves to be straight or equispaced
or parallel. In fact, precise interpretation of each of the terms in the array A is possible.
For convenience, we denote the terms (A ), simply by a,.

To interpret the terms a, of the array A, consider a two dimensional example with
tangent vectors u; and us and second derivative vectors u;; = a1 + @212, U2 = Q112U
+ ag12us and Uz = @ 122U + @s22u2. Now the point ¢ = 0 coincides with the point r = 0, and
at that point d7/d¢: = u;. At another point ¢ = § the new tangent vectors dr/d¢: and
d7/d¢2 will be approximately

67/6(1)1 ~ 67/6¢1 Io + 61(327'/3(}')%) + 82(327/6(1)16(;')2) =u + 81u11 + 621112
and

97/dp2 ~ U2 + S1U12 + S2Use.
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Expanding gives
97/3¢1 ~ wi(1 + @11181 + @11282) + Ua(@21181 + @21282),
97/3¢2 ~ Wi(@11281 + @12282) + U2l + @21281 + @22205).

Thus, a1 gives the change in the u; direction of the dr/d¢; vector due to a unit change in
a7/¢1; that is, terms of the form a.. cause changes in length only. For this reason we refer
to a.. as compansion terms, since they cause compression or expansion of scale along a ¢,
parameter line. The term aq1; gives the change in the u; direction of the dr/d¢; vector due
to a unit change in ¢,; that is, terms of the form a;.. (j # i) cause changes in the u, direction
of the ¢, parameter lines as we move along them. We refer to these as arcing terms. The
term a2 gives the change in the u; direction of the dr/d¢; vector due to a unit change in
¢2; that is, terms of the form a,, cause changes in the u, direction of the ¢, parameter
curves as we move across the ¢, parameter curves. We call these fanning terms since the
¢. parameter lines will appear to fan out from a common point on the r, axis. Since a,, =
@y, terms of the form a, also cause ¢, fanning.

With two parameters, only compansion, arcing and fanning can occur. With more than
two parameters, only one more type of parameter effect can occur — when all the subscripts
are different. A term such as a,, causes a change in the u, direction of the ar/d¢, tangent
vector due to a unit change in ¢.. We refer to these as torsion terms since they cause a
twisting of the (¢, ¢») parameter surface, where a parameter surface — analogous to a
parameter curve — is the set of points generated by holding all ¢,’s except two constant
and varying those two.

2.4 An example. The data given in Section 3.1 of Bates and Watts (1980) for the
Michaelis-Menten model

f(x,0) =0:x/(6: + x)

yields a parameter effects array
0 —.292

—.163
( 0 —.081)
—.716
with I" = 0.771. Since each face of the array A is symmetric, we only display the upper
triangular part; so, for example, in the above array, azs = @ = —.081.

Examination of the terms in A reveals the following: the ¢ parameter curves will be
perfectly uniformly spaced since the ¢, compansion term (a1,) is zero. On the other hand,
since the ¢, compansion term (as) is —.716, the ¢; parameter curves will be markedly
compressed together as ¢, increases. The small ¢, arcing term (a122) of —.163 will cause
little curving of the ¢, parameter curves and the ¢; parameter curves will be straight
because the ¢, arcing term (as11) is zero. The small ¢, fanning term (@21 = as12) of —.081
causes little convergence of the ¢, parameter curves, but the larger value for the ¢; fanning
term (aiz1 = ai2) of —.292 causes considerable convergence of the ¢, parameter curves.
The parameter curves drawn on the tangent plane, shown in Figure 1, behave as predicted.
(To avoid confusion in interpreting this diagram, recall that a parameter curve is associated
with the parameter which is varying; therefore the lines labelled ¢; = 0, ¢; = 1, and so on
are actually ¢. parameter curves.)

For the 95% confidence level, a conservative confidence region corresponds to a circle
of radius Ros = 2.27 on the solution locus, as shown by the circle in Figure 1. This region

is much too large for the uniform coordinate assumption to be acceptable, and so we expect
considerable discrepancy between the linear approximation and exact 95% confidence
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regions. This inadequacy of the linear approximation at the 95% level is consistent with
the value I' = 0.771 greatly exceeding 1/Roo; = 0.441. In addition, we may compare
individual terms in A to the curvature 1/Roos to see if there are any severe parameter
effects at level 0.05. In this case, the 95% radius of curvature (0.441) is exceeded by the ¢
compansion term (—.716), so we again conclude that there would be serious effects due to
nonlinearity. Figure 2 further illustrates the serious inadequacy of the linear approximation
parameter confidence region (shown by the dashed line) when compared to the exact
region (solid line).

2.5 Compensating for particular parameter effect nonlinearities. As shown in (2.15),
the conservative confidence region is easily expressed in terms of the r parameters.
However, for the purposes of the experimenter and statistician, expression of the confidence
region in the @ parameters is much more valuable. If the inverse of the transformation H
were available, we would be able to map the region in the 7 coordinates into a region in the
¢ coordinates and thence into the 8 coordinates. Unfortunately, calculation of this inverse
would be an extremely difficult, if not impossible, task in most practical situations.

However, our knowledge of the types of parameter effects measured by the array A and
their relationship to the transformation H can be used to determine approximations to
H™' which allow us to compensate for particular parameter effects. For instance, in the
example above the most damaging parameter effect is compansion so we may be led to
approximate H™! by

H'(7) = {(— 1 + exp(awT.)} /i, i=1...,p

which compensates for compansion but does not alter any of the other parameter effects,
as shown in Bates (1978). The confidence region in the @ parameters obtained this way,
bounded by {8 + LA (7): | 7|l = R.}, will have been compensated locally for compansion,
but there will be no compensation for other parameter effects and no guarantee that the
compansion compensation will apply over the entire region of interest {r: | 7| = R.}.

A slightly more general approach which compensates locally for all of the parameter
effects is to use a second order Taylor series approximation

HYr) =1 —(7’AT1)/2.

This is an easily expressed transformation but unfortunately it can lead to curious behavior
of the confidence region: we have seen instances where regions calculated using this
approximate inverse had loops on the boundary and other bizarre behavior.

Both of these approaches and other possible types of local parameter effects compen-
sation suffer from the defect that they are local methods and are symptomatic in nature.
That is, they are attempts to combat the symptoms of the parameter effects rather than
attack the root causes. As such, it is not clear over what region these compensation
methods will be effective and therefore how large a confidence region can be approximated
using these methods. For example, Figure 2 shows the 95% confidence region obtained by
the quadratic approximation to H™' and, ‘while it is an improvement on the linear
approximation, it is still clearly inadequate. Local compensation methods also suffer from
the defect that the parameters created in this way, if we regard the approximate inverse
H! as effectively creating a new set of parameters, are artificial and hence would not
usually have a direct meaning for the experimenter or statistician. In general we have
found that reparameterization is a better approach to the problem of dealing with
parameter effects.

3. Determining a new parameter-effects array. The most effective method of
dealing with parameter effects is to reparameterze the model in an advantageous way,
where advantageous implies meaningful parameters with small parameter effects. In some
cases, there are recommended transformations (Draper ad Smith, 1966; Guttman and



NONLINEAR PARAMETER TRANSFORMATIONS 1159

TABLE 1
Effect of transformations for exponential models

Parameter-effects nonlinearities

Data set' Original Transformation 1 Transformation 2°
Yrms r Yrms r Yrms r

5 0.302 0.398 — — 0.179 0.207

9 2.095 3.405 — — 0916 1.492

13 0.402 0.659 0.088 0.146 0.317 0.521

14 1.375 2.241 0.284 0.449 0.329 0.531

16 2.650 5.935 1.024 2.296 1.544 3.467
18" 16.533 36.970 — — 12.516 27.989

19 1.086 2.487 0.606 1.366 0.885 2.045

22 1.487 4.196 4.369 12.424 3.600 10.211

! Refers to data sets of Table 3.1, Bates and Watts (1980).

? Subtracting the average x from the exponent: e.g. 6exp(6.x) becomes Biexp(B2(x — X)), s0 B2 = 6,
B = Giexp(6:%).

3 Taking logarithms of the exponent parameter: e.g. 61exp(6.x) becomes B,exp{(expfB2)x}, so 81 = 8,
B2 = In(6b).

* Indicates the transformation does not apply.

Meeter, 1965): for example, Table 1 shows the effect of applying two such transformations
to models with exponential terms. In most cases the parameter effects are decreased, but
in some cases the parameter effects are actually increased.

Because there is little guidance available as to the choice of a transformation and its
effects in a particular situation, it may be necessary to experiment with many transfor-
mations. While it is usually possible to reexpress the model in terms of the new parameters
and then recalculate all the derivatives and the A array, this would be inefficient, especially
when evaluating the effects of a number of transformations. To facilitate evaluation of the
effects of a reparameterization, therefore, we derive formulas which express a new param-
eter-effects array in terms of the original.

Suppose we wish to determine the parameter-effects array A corresponding to a
reparameterization in which the new parameters f are nonlinear transformations of the
0’s,

(3.1) B=G()

or

(3.2) B: = G.(0), i=1,2---,p.
We assume the inverse transformation is

(3.3) 0=5(p),

or

(3.4) 0: = Si(B), i=1,2 ---,p,

and write the p X p Jacobian matrices as S. and G. with elements 8S,/d8, and 4G./d0,
respectively. The p X p X p second derivative arrays are written as S.. and G.. with
elements 9°S,/983,08: and 8°G./86,00, respectively: a term with subscripts i, j, % resides in
the ith face, jth row and kth column.

Using the chain rule for differentiation, the new tangent vectors at the least squares
estimates ﬁ = G(f) are

(3.5) b; = /aB:| g = X7-1(0m/36,|5)(S.) = X5-1 Vi(S.),
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where v, is the jth column of V.. Equivalently, we have
(3.6) B. = (b, by, ---,b,) =V.S.
Similarly the new second derivative vectors are
ij = 6°0/3B:dB; | 4

= (3/9B)) =1 vr(S.)ri

= Y01 V(S )rij + YPa1 Y1 (S)nVis(S.) g,
where v, is the rsth vector in the array V... Thus we may write

' B.=[V]S.]+SV.S.

Now A =[U"]J[U..], where U. = V. L, U.. =L'V.. L and L is chosen so that U’U. = I. We
may likewise orthonormalize B. by M, say, to give W. = B.M subject to W.W. = I. One
suitable choice is M = ST'L so that

A=[W]W.]=[BM)IMB.M]
and from (3.6) and (3.7),
A=[L/(STYS VIL(STY(V.IS..1+ S V.S)ST'L]
=[UIL(S7YY[V.I[S..1S7'L] + [U.[L'V..L]
(3.8) =[UL(STYY[V.]S..1S7'L] + A.

But the square bracket and regular multiplications commute, so the first term in (3.8) can
be written

(3.9) [UVIL(S7'YS..ST'L] = —[L"|[L'TL]

where we define
(3.10) T=—(S7'yS..S™.

Since this is in the form of a curvature, that is acceleration/(velocity)?, we refer to T as a
transformation curvature array.
Thus, the new array equals the original array minus an adjustment,

(3.11) A=A-[LLTL).

This result was derived independently by Clarke (1980). But the term T'is given in terms
of derivatives with respect to B, whereas it would be more convenient to have it in terms
of the original parameters 8. By writing

B=G(S(B))
and differentiating with respect to 8 twice, i‘t is easy to show that
(3.12) SG.S. =-[G]S..],
so, from (3.10),
(3.13) T=[G[G..].
Thus
(3.14) A=A-[L LG [G..]L]

which is the final result.
Two important points should be noted. First, to determine a new array A it is only
necessary to have the original array A and the matrix L from previous calculations, a total
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of only p*(p + 3)/2 values. Equation (3.14) is therefore an extremely efficient form for
computing the effects of different transformations. Second, the term T is expressed in
terms of the original parameters @, which is very helpful when evaluating a transformation
because it avoids having to determine the inverse transformation S.

ExamPLE 3.1. Data set 15 from Bates and Watts (1980), taken from Meyer and Roth
(1972), has a model of the form
f(x’ 9) = «9103x1/(1 + 01x1 + O:2x2).

At 8 = (3.1320, 15.160, 0.77998)’, the matrix L is

0.000  0.000 —1.400
L= 0000 1.047 -0.314
—-0.018 0.028 0.261

and the array A is

70.00 —0.04 —0.33]
—0.05 0.69
L 12.77
0.00 —0.02 0.00]
A= —-0.03 0.10
L —0.03 |
[0.00 0.00 —0.02]
-0.02 —-0.07
L 0.22 |

so that I" = 12.8. This is clearly unacceptable since 1/Ro o5 = 0.23, so the radius of the 95%
confidence disk is more than 50 times the minimum radius of curvature of a parameter
curve.

One obvious transformation is to express the product 6;6; as a single parameter so 8;

=6\, B2 = 0, B3 = 6,60;. Then
1 0 O
G=|010
6 0 6,

and G.. is zero except for (G..)313 = (G..)s31 = 1.0. Then

[0.00 —0.04 0.11]
—0.05 0.00

L —0.05 |

_ (0.00 -0.02 0.007
A= -0.03 0.10
L —0.03
(000 000 —0.02]
-0.02 —0.07

L 0.21 |

with I = 0.264. This is a considerable improvement over the original parameterization and
reveals that the projection of the joint confidence region onto the (d;, ;) plane is essentially
bounded by a pair of hyperbolae of the form 6, 8; = constant. That is, the confidence region
is like an elliptical pancake of roughly constant thickness which has been lifted at one end.
Since this transformation reduces all the dominant parameter effects and markedly reduces
the parameter-effects curvature measure, the confidence region given by a linear approxi-
mation in the B parameters would be much closer to the actual region than that given by
a linear approximation in the original parameters. Furthermore, mapping the good ap-
proximate confidence region in B through the exact nonlinear inverse transformation
should give a superior approximate confidence region in 6.
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4. Procedures for obtaining zero parameter-effects.

4.1. Introduction. In some cases the form of the model function suggests a transformation
to try, such as in the above example, whereas in other cases there may be recommended
transformations, as discussed previously. Other approaches can be proposed, based on the
development of Section 3: that is, we try to find a reparameterization such that the new
array A is zero.

Setting A equal to zero in (3.11) and solving for the resulting “target” transformation
curvature array T* gives

(4.1) T* = [L][(L")'AL™]
which may be written in terms of the original parameters and derivative matrices as
4.2) T*=[(V'V.)'V/][V..],

again using the relations U. = V.L, U.. = L'V. L, and U'U. = I. Note that the right-hand
side of (4.2) consists of the least squares coefficients of the acceleration vectors regressed
on the first derivative vectors. From (3.13), then, the target transformation g8* = G*(8)
should satisfy

(4.3) [G*'[G*]1=T*
or, by premultiplying by G*,
(4.4) G* =[G*][T*]

which expresses the second derivatives of the target transformation in terms of its first
derivatives and the acceleration regression coefficients.

The above equations suggest procedures for obtaining transformations which produce
zero curvature locally. The first method is to attempt to solve these equations completely
generally and so to derive a global solution for G* using the algebraic form of (4.2) and
(4. 4) A second approach is to obtain a particular solution to (4.4) in which (4.2) is evaluated
at 8, that is to solve the system of coupled second order equations

(4.5) G* =[G*][T*@)].

A third procedure is to solve equation (4.4) with the transformations restricted to a
particular form or chosen from a spe01al class of functions, and then for a specific data set,
get the particular solution evaluated at §. We consider each of these procedures below and
discuss their relative merits in Section 5. For convenience we delete the asterisk on the
target transformation and its derivatives, and on the target transformation array.

4.2. A general procedure. The general procedure and its basic impracticality can be
demonstrated using a one-parameter example. Suppose that the model function is f(x, 0)
= exp(#,x) and n observations are obtained at x1, x;. . ., x,. Then the target transformation
array can be written

T(0) = Yoy {x7 exp(20:x,)}/ Ti-1 {x? exp(26:x,)},

and so the general solution is

’g/d0 = (dg/db:) ¥i-1 {x° exp(261x,)}/ Ti-1 {x* exp(26,x,)}.

This would appear to be a difficult equation to solve in general, and even more difficulty
could be expected with more parameters, since the answer requires solving a set of coupled
nonlinear second-order differential equations. In fact, we suspect that there may not be a
general solution since such a solution would imply that there is a global transformation of
parameters which would reduce the parameter-effects curvature to zero everywhere on
the solution locus. In addition, it seems highly likely that the parameters resulting from
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such a procedure would not have meaningful interpretations, nor would the transforma-
tions be invertible; that is, it would not be possible to express the §’s as closed-form
functions of the f’s. Because of the apparent difficulties inherent in this approach, we do
not pursue it further here; nevertheless, exploration in this area may yield interesting and
valuable insights into the reparameterization process.

4.3. Local transformations using T(ﬁ). Transformations which will yield zero parame-
ter-effects curvature near § can be derived by solving (4.5) in which case a simpler set of
linear coupled partial differential equations results. These equations may not have solu-
tions, however, and so they will be of limited usefulness.

To illustrate the approach and the difficulties associated with it, we consider a two
parameter model. In this case, each of the transformations B8; and B, must satisfy the
equations

(4.6) 8°B/00% = t11,08/80, + t:1:08/ 06,
(47) 32ﬁ/66'1 602 = tmzaﬁ/aal + t2126ﬁ/302
(48) 62B/30% = tlzzaﬁ/301 + t2226,8/302.

Solutions to these equations may be determined by letting

g =09B/a6, g=0dB/30;, and g=(g,&)"
Then (4.6), (4.7) and (4.8) can be written
(4.9) og/ob, = Tg,
(4.10) og/ob, = T, g,

where T, has elements t,., i, j, & = 1, 2. Differentiating (4.9) with respect to #. and
substituting (4.10) while differentiating (4.10) with respect to #; and substituting (4.9), and
exploiting the fact that the order of differentiation is interchangeable, implies that the
solution must satisfy

(4.11) (T'Ty — T>T)g = Tg =0

Now (4.11) will have no solutions if the rank of T is 2, will have a solution (but one which
cannot satisfy boundary conditions) if the rank is 1, and will have proper solutions if the
rank is 0. In this last case, T\ Ts = T2 T, and the solution is of the form

g= by {exp(m. 6, + mq2) — 1}
bo{exp(ki6) + k2b:) — 1} )’

where m,, m; and k;, k; are the eigenvalues of T} and T respectively, and b; and b, satisfy

(o)) - ().

The condition T; T, = T. T is a severe one, however, and one which we suspect will be
rarely satisfied.

The method may be extended to higher order models, but the solution will have to
satisfy multiple conditions 7.7, = T,T., i,j = 1,2, ..., p, i # j, and hence there is little
likelihood of any solutions existing. In addition, where solutions exist, the new parameters
will be exponential combinations of # and will almost surely have no meaning to the
experimenter or the statistician. The transformations will generally not be invertible either.
For these reasons, we are reluctant to pursue this approach further at this time; neverthe-
less, they do suggest that there is a restricted class of transformations required so that
perhaps subsets of them may be used effectively. It can also be seen, by referring to Section
2 and to Bates (1978), that these transformations compensate specifically for compansion
and fanning parameter-effects nonlinearities.
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Possibly the most important observation to be made, though is that analytic solutions
may exist which provide zero parameter curvature near # and hence that there is a
parameter metric in which the linear approximation should be accurate under the as-
sumption that higher-order derivatives are smaller than the second-order ones. In other
words, while Beale (1960) pointed out that one can envisage a parameterization for which
there are no second-order parameter effects curvatures, the above result provides an
explicit solution.

4.4. Restricted transformations. The third procedure we consider is that of selecting a
transformation of restricted form and “tuning” it to produce small curvatures for the
particular data set at hand. As an example, we consider the expected-value transformations
suggested by Ross (1970): in this approach, the expected values of the model function at
particular design points are selected as parameters for the model. However, the effective-
ness of such a reparameterization will depend substantially on the choice of design points
for which the expected value is used. In our procedure, it is these design points which are
tuned so as to produce small curvatures.

This procedure is best described by means of an example, so we consider the Michaelis-
Menten model of Section 2.4, with

f(x, 0) = 6,x/(6: + x),

in which the parameter 6, occurs conditionally linearly (that is, 6f/36;, does not depend on
61). The transformation to expected value parameters is obtained by choosing values r and
s and setting

(4.12) Br=bir/(62 + 1),
B2 = b61s/(0: + s).
For this transformation the array [G.7*][G..] is

0 0
—26,/{(62 + r) (62 + s)}
(4.13) T=

0 1/6,
—2(20: +r + 8)/{(6: + 1) (82 + 5))
while the transformation target array T*(#) = [(V'V.)"'V/][V..]

A !

(4.14) T*@) = R
<o 1 /01)
b

where @ and b are constants determined by the particular experimental design and
parameter estimates. They are in fact the coefficients of v, regressed on v, and vs.
Equating T and T*(#) and solving for r and s gives

(4.15) r=—0,+[b— (b + 8(a/f)}'"*1/2(a/b)),
s=—0+ [b+ {b* + 8(a/b)}*]/2(a/b)).

Under the transformation (4.12) subject to (4.15), A = 0 and so the linear approximation
confidence region in B will be good: mapping the linear approximation region into the 8
plane should therefore give an accurate approximate region in 8.

Using the data from Section 3.1 of Bates and Watts (1980) again, we find that r = 0.396
and s = 1.945 (values that are very close to the design points x = 0.4 and x = 2.0). The
exact 95% confidence region (solid line) and the conservative region derived from the linear
approximation in the B parameters using this r and s (short dashes) are shown in Figure
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Fic. 3. Exact and approximate 95% confidence regions for the Michaelis-Menten example.

3. The elliptical region from the linear approximation in the @ parameters (long dashes) is
seen to be very poor compared to the transformed linear approximation in the B parame-
ters. In addition, the linear approximation confidence region is much simpler and less
expensive to produce than the exact region. We note, for interest, that in this case 7' T
— T, T\ is of full rank and hence no solution to the differential equation (4.5) exists.

A similar approach can be used for any two-parameter model in which one of the
parameters is conditionally linear because T*(#) and [G.™'][G..] will always be of the form
(4.13) and (4.14), and so an expected-value transformation can always be found which will
render the parameter-effects curvature zero.

With higher order models it becomes more difficult to use expected-value parameters
since transformation back to the original parameters may not be explicit. In some cases it
may be possible to restrict the expected-value transformations to make them invertible.
For example, in the three parameter model f(x, #) = 6, + 6. exp(6;x), the expected-value
transformation is not invertible (that is, the inverse does not have a closed form) but it can
be made so if the three values of x are chosen to be equally spaced as suggested by Ross
(1978). The parameters 8 would then be

B1 =0, + 6; exp{Os(s — t)},
B2 = 0; + 62 exp(6;s),
Bs = 6 + 0: exp{fs(s + t)}.
While this transformation will not eliminate parameter-effects completely, it can substan-

tially reduce them.

5. Discussion. In this paper we have discussed the problems of reparameterizing
nonlinear models so as to obtain accurate linear approximation confidence regions for the
parameters. A result is derived which expresses the parameter-effects A under a repara-
meterization 8 = G (0) in terms of the parameter-effects array A for the original parameters
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0 and the first and second derivatives G. and G.. of the transformation. This result provides
an extremely efficient computational procedure for determining the effects of different
transformations and, as shown in Section 4, can be used to determine reparameterizations
for which the new parameters will have zero parameter-effects curvature. This implies
that in the new parameters the linear approximation confidence region should be accurate,
under the assumption that higher-order derivatives are small. In particular, we show that
the expected-value transformations of Ross (1970, 1978) can be used advantageously to
produce zero or small parameter-effects curvatures.

We also present other methods for obtaining parameterizations which provide accurate
linear approximation confidence regions. The first involves using the A array and compen-
sating for particular nonlinear parameter effects, the second uses an impractical global
transformation procedure, and the third requires the solution to a set of coupled partial
differential equations. These methods are apparently of little practical use, mainly because
they will involve transformations which do not permit ready interpretation of the param-
eters. The two methods based on partial differential equations also suffer from the
disadvantage that in the one case they will be difficult, if not impossible, to solve, and in
the second case the solutions may in fact not exist. When solutions do exist in the second
case, these solutions will also suffer from basic non-interpretability of the parameters.
Nevertheless, they could be used to obtain accurate approximate marginal confidence
regions for the individual parameters or joint parameter regions by using a mapping
procedure.

Except for the papers of Box (1960), Ross (1970, 1978) and Gillis and Ratkowsky (1978),
we are unaware of much work on the use of parameter transformations in multi-parameter,
nonlinear regression. The recent paper by Clarke (1980) should be mentioned. This is an
important area for research but, of course, the ideal situation would be one in which the
experimental design is selected so that the original parameters will themselves have small
parameter-effects curvatures. Designing nonlinear experiments for small curvatures is a
difficult and challenging problem, and one which clearly is due for attention.

The wider problem of the choice of parameters for a general statistical model can be
approached through the concept of statistical curvature introduced by Efron (1975). The
intrinsic curvature of the solution locus is just a special case of Efron’s statistical curvature
and can be related to the extent to which locally most powerful tests are globally powerful.
For example, a locally most powerful unbiased level « test of H:0 = @, versus A:8 # 0, is
based upon the length of the component of the residual vector at n(f,) parallel to the
tangent plane to the solution locus at 7(6,). A most powerful level « test of H:0 = 8, versus
A:0 = 0, will be based upon the component of the residual vector at 9(6) in the direction
of n(6:) — n(6) so the extent to which a locally most powerful test retains its power
globally is related to the extent to which the tangent plane approximates the solution
locus.

Efron (1975) deals with the one-parameter case (although extensions to multi-parameter
cases are mentioned in J. Reeds’ discussion of that paper) and examination of the
parameter effects in a one-parameter situation is relatively easy since the only type of
effect possible is compansion. From (4.2) or (5.4) of Efron (1975) it can be seen that the
compansion term is

a = vu()/ (i)

in Efron’s notation. This quantity will be related to the local symmetry of the likelihood
function and a transformation which reduces this quantity will create a parameter that
approaches its asymptotic behavior more rapidly. Under a transformation of the parameter
from @ to B this quantity would transform as

G = a— (B/36%)(3B/06) " (iy) >
which is analogous to (3.14) with 88/a8 for G., 8*8/3%0 for G.., and (i;)™/* for L. In fact,
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the whole concept of measuring both intrinsic and parameter-effects curvatures by an
array A.. in the multi-parameter situation can be extended to Efron’s statistical curvature,
but that is the subject of another paper.
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