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ESTIMATION OF THE MEAN OF A MULTIVARIATE NORMAL
DISTRIBUTION

By CHARLES M. STEIN

Stanford University

Estimation of the means of independent normal random variables is
considered, using sum of squared errors as loss. An unbiased estimate of risk
is obtained for an arbitrary estimate, and certain special classes of estimates
are then discussed. The results are applied to smoothing by use of moving
averages and to trimmed analogs of the James-Stein estimate. A suggestion is
made for calculating approximate confidence sets for the mean vector centered
at an arbitrary estimate.

1. Introduction. The central problem studied in this paper is that of estimating the
mean of a multivariate normal distribution with the squared length of the error vector as
loss when the covariance matrix is known to be the identity matrix. First an unbiased
estimate is obtained for the risk of a nearly arbitrary estimate of the mean. This is
specialized to a class of estimates that includes all formal Bayes estimates. Among these
a large class of minimax estimates is found when the dimension is at least three. A small
number of special problems are considered.

The present work arose from a question raised by Malcolm Hudson in connection with
his dissertation (Hudson, 1974, 1978). It was also inspired in part by the work of Efron and
Morris (1971, 1972a, b, 1973a, b) who modified the estimate of James and Stein (1961) in
several different ways to obtain estimates that are more appropriate in practical situations.

Sections 2 and 3 constitute a slightly expanded version of Section 2 of an earlier paper,
Stein (1973). The basic formulas for unbiased estimation of the risk are obtained in Section
2. The Bayes and formal Bayes estimates are computed in Section 3 and studied in the
light of the results of Section 2. In Sections 4-6, two special problems, related to papers of
Efron and Morris (1971, 1972a, 1973a), are considered. First, if X is normally distributed
\:vith unknown mean ¢ and the identity as covariance matrix, estimates of the form
£ = X — MX)AX are studied, where A is a given symmetric matrix. Under certain
conditions, a choice of the real-valued function A is found in Section 4 that yields a minimax
estimate which is optimum in the sense that the risk of the estimate cannot be improved
at any point by multiplication of A by a constant factor. An application is then considered
in Section 5. In Section 6 a modification of the James-Stein estimate is studied which
limits the amount by which any coordinate £; of the estimate £ can differ from the
corresponding X;. Section 7 considers the modification needed when the common variance
is unknown but an independent estimate of the variance is available in an important
special case. In Section 8, an unbiased estimate is obtained for the expected squared
difference between the squared length of the error vector and the unbiased estimate of its
expectation. This suggests rough confidence sets for the mean.

Since this paper was written (in 1974), there has been a great deal of research concerning
the estimation of a multivariate mean. No attempt will be made to discuss these subsequent
contributions extensively, although papers having a direct bearing on issues raised here
will be mentioned. The references in Berger (1980) may be helpful.

Received January 1981.

AMS 1980 subject classifications. Primary 62F15; secondary 62F10, 62F25.

Key words and phrases. Minimax estimate, Bayes estimate, multivariate normal mean, moving
average, James-Stein estimate, confidence region, trimmed mean, simultaneous estimation.

1135

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2
The Annals of Statistics. RINGY

®
www.jstor.org



1136 CHARLES M. STEIN

Throughout the discussion we take the zero vector as the focal point for both X and ¢,
this being the canonical form of the general problem. In practice X will often be the
residual from a fitted model; see, e.g., Efron and Morris (1975).

2. Basic formulas. A simple identity concerning expectations of functions of a normal
random variable is proved in Lemma 1 and extended to functions of several independent
normal random variables in Lemma 2. This result is used in Theorem 1 to obtain an
unbiased estimate of the risk (expected squared length of the error vector) of a nearly
arbitrary estimate X + g(X) of the mean of a multivariate normal distribution with the
identity as covariance matrix. This is specialized in Theorem 2 to a class of estimates that
contains all formal Bayes estimates, yielding a large class of minimax estimates. Although
versions of the lemmas have subsequently appeared in Hudson (1978), they are included
here for completeness and the generality obtained.

LEMMA 1. Let Y be a N(0, 1) real random variable and let g: # — & be an indefinite
integral of the Lebesgue measurable function g', essentially the derivative of g. Suppose
also that E|g'(Y) | < . Then

(2.1) E{g'(Y)} = E{Yg(Y)}.
ProoOF. Write ¢(y) for the standard normal density, with derivative ¢'(y) = —y¢(y).

E{g'(Y)} =f &' (y)¢(y) dy

00 00 0 Y
=f g’(y){j 2¢(2) dZ} dy—J’ g’(y){j 2¢(2) dZ} dy
0 y —o0 —o0
oo z 0 0
2.2) = f qu(z){ f g(y) dy} dz—j qu(z){ f g'(y) dy} dz
0 0 —o0 z

= <J' + Jr )[2¢(2){g(2) - g(0)}] dz

=f 2g(2)¢(2) dz = E{Yg(Y)}.

The third equality in (2.2) uses Fubini’s Theorem. This proof is essentially an application
of integration by parts, but this slightly disguised form seems to make a proof of the result
in the desired generality a bit easier.

In order to express this result in terms of an arbitrary normal random variable, define
a new random variable X related to the random variable Y of Lemma 1 by

X=0Y+¢,

where ¢ is real and ¢ positive so that X is N(£, o%). If we also define a new function

h: # — R by
) =g(x a— 5)’

then (2.1) yields
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1 X - 1 1
Er(X) = p Eg’(T§> == Eg'(Y) = p E{Yg(Y)}
X- - X-
o o o

Next let us indicate the notation and regularity conditions needed for the extension of
Lemma 1 to the multidimensional case. For x, y € #” we define

(2.3)

(2.4) xy=Yrixy, |x|?=x-2x=35 2%

DEFINITION 1. A function h: #” — % will be called almost differentiable if there exists
a function Yh: 2”7 — #P such that, for all z € %7,

1

h(x + 2) — h(x) = J' z-Vh(x + tz) dt

0

for almost all x € #”. A function g: #” — #” is almost differentiable if all its coordinate
functions are. Essentially V is the vector differential operator of first partial derivatives
with ith coordinate

d
2.5 i=—.
(2.5) v o,

Let us now extend Lemma 1 to functions of a normal random vector with the identity
as covariance matrix. Throughout the remainder of this paper, X will denote a p-dimen-
sional random coordinate vector with mean £ and the identity as covariance matrix, with
some change of point of view in Section 3. In order to indicate the dependence of
expectations on &, I write E; rather than E.

LEMMA 2. If h: #° — R is an almost differentiable function with E¢|| VA(X)| < o,
then
(2.6) EVh(X) = E{(X — §)h(X)}.

Proor. For i € {1 --. p}, let %; be the ¢-algebra generated by X; alone, and let %_, be
the o-algebra generated by all the X, for j # i. Let X_; be the random (p — 1)-dimensional
coordinate vector with index set {1, ..., p} N {i}° having the jth coordinate X, for j # i.
Somewhat imprecisely, to express the fact that X determines and is determined by X, and
X_,, I write

X=X X).

Then, using the independence of %; and 4_;, and also Lemma 1, we find that, for almost
all w in the set & of the underlying probability space,

[E{(X. — &)h(X)| B-}](w) = [E{{X, — &)h(X;, X_.(w)) | B-}](w)

=[E{(VA)(X;, X-i(w)) | B-}](w)
=[E{(Vh).(X)| B-}](w).

Thus

E{(Vh).(X)| #-} = E{(X; — £&)h(X)| B-},
and, taking the expectation of both sides, we find that
E{(Vh)i(X)} = E{(X. — §)h(X)},
which yields (2.6).
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We shall need the definition and some elementary properties of harmonic and super-
harmonic functions.

DEFINITION 2. A lower semicontinuous function f: #° — % U {+ «} is superharmonic

at a point x° € %7 if, for every r > 0, the average of f over the sphere
S (x%) = {x:]|x = 2°* =1}

of radius r centered at x° is not greater than f(x°). The function f is superharmonic in %7
if it is superharmonic at each x° € %#*.

LeEMMA 3. Iff: #° — R is twice continuous differentiable, then f is superharmonic in
R? if and only if, for all x € R®,

Vi f(x) <0

where V2 is the Laplacian V2 = ZV? with V; as in (2.5). The proof of Lemma 3 is given in
Theorem 4.8 of Helms (1969, page 63).

DEeFINITION 3. The twice continuously differentiable function f: £ — % is harmonic
at x° € #* if
2.7 V2f(x% = 0.

It is harmonic in %P if it is harmonic at each x° € %#*.

Lemma 2 will be used to obtain an unbiased estimate of the risk of a nearly arbitrary
estimate X + g(X) of the mean of a multivariate normal distribution with the identity as
covariance matrix. In accordance with (2.4) and (2.5), if g: 2 — %7 is almost differentiable,
I shall write

V.g=YY.g.

THEOREM 1. Consider the estimate X + g(X) for ¢ such that g: 22 — %7 is an almost
differentiable function for which
EZ|V.g/(X)| < oo,
Then, for eachi € {1, ..., p},
(2.8) Ed(X: + g(X) — &)° = 1 + E{g}(X) + 2V.g:(X)},
and consequently

(2.9) E(| X+ g(X) = &> =p + E{]| gX)|” + 2V -g(X)}.

ProoF. From formula (2.6) with 2 = g, it follows that
E{X. + g(X) — &)° = E{(X; = £) + 2(X, — £)giX) + gH(X))}

which is (2.8). Summing over i we obtain (2.9). We observe that the latter formula asserts
that p + || g(X) ||® + 2V.g(X) is an unbiased estimate of the risk of the nearly arbitrary
estimate X + g(X) for &

When the dimension p = 3, we shall obtain a large collection of minimax estimates of
¢ by specializing Theorem 1 to a class of estimates which, as we shall see in Section 3,
contains all formal Bayes estimates.

THEOREM 2. Let f:#” — 2" N {0}° be an almost differentiable function for which
Vf: %P > R can be taken to be almost differentiable, and suppose also that
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1 . B
(2.10) Eg{ 70 = sz(X)I} <w,
and
(2.11) E¢|| V log f(X)|? < ce.
Then
VAX) | VX))
p— 2 = —
(2.12)
{VWf(X)}
=p+4E{———}.
viX)
ProoF. Let g:2” — %” be defined by
Vf
=VI =—.
g ogf ;
Then
v? vFII?
V.g=V.V logf=—ff—"—ff2—"—,

and thus it follows from equation (2.9) that

2 2 2

fAX) fX) FA(X)
_ VFX) | Vf(X)IIZ}
P E€{2 X )
which is the first form of (2.12). Also
R/

V= 7.9V = 7. v2f—zf—13,—2||wu2.

Vi 2vf
The final expression of (2.12) follows.

COROLLARY 1. If f: #" — Z* N {0}° is twice continuously differentiable and its
square root is superharmonic and (2.10) and (2.11) are satisfied, then X + V log f(X) is
a minimax estimate of &, that is, for all &,

V2Vf(X)
EelX + ¥ log f(X) — £ =p + 4Eg{—— “f}
/59

<p = inf, sup; E:|| X + g(X) — £||>

(2.13)

ProoF. The first equality in (2.13) follows from (2.12), the inequality follows from the
defining property (2.7) of superharmonic functions, and the final equality is well known.

Efron and Morris (1976), and Berger (1976) for the nonsymmetric situation, give
conditions under which estimates of forms other than X + V log f(X) are minimax. All
admissible estimators must be of this form, however, as was shown by Brown (1971).

3. Formal Bayes estimates. Some easy known results about Bayes estimates, and
also formal Bayes estimates, are now recalled, including the fact that they are all of the
form considered in Theorem 2. The unbiased estimate of the risk of a formal Bayes
estimate given in Theorem 2 is compared with the formal posterior risk, and it is found
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that if the formal prior density is superharmonic, the formal posterior risk is always larger.
Finally we make some remarks on L. Brown’s deep admissibility results for the present
problem.

The notation used in this section will differ slightly from that of the rest of the paper.
Let ¢ be a random p-dimensional coordinate vector distributed according to the prior
probability measure I1. Let X be a random vector in #”, conditionally normally distributed
given ¢ with conditional mean & and the identity as conditional covariance matrix. Then
the unconditional density of X with respect to Lebesgue measure in %#” is given by

(3.1) f(x) j e VA= gTI(Z).

= (2,”) p/2
I shall use E; to denote conditional expectation given £ and E* to denote conditional
expectation given X. The formulas of Section 2 involving E; remain valid, although their
interpretation is different. The Bayes estimate ¢11(X) of ¢, which is defined by the condition
that ¢ = ¢ 1 minimizes

j 1€ = ()P 134" A TI(E)
(32 El¢—¢X)|* = EEX|¢ — $(X)| =E{ }
J' e~ /21X dIL(¢)

is given by

j (- X)e—l/ZIIX—EII2 dII()
on(X) =EX=X+E¢-X) =X+

(3.3) J' e 121X dIL(¢)

=X+ Vlog f(X),

where f is given by (3.1). In equation (3.2), E denotes unconditional expectation. More
generally if IT is a possibly infinite measure for which f defined by (3.1) is everywhere
finite, we define the formal Bayes estimate ¢(X) by (3.3). Formal posterior expectation
E¥ is defined by the formula that yields posterior expectation in the case where II is a
probability measure:

Jg(X, £)e VX gTI(2)
E*g(X, ¢) =

f e 21X=1% g I1(¢)

Next let us compare the unbiased estimate of the risk of the formal Bayes estimate
¢n(X) of ¢ given by Theorem 2 with the formal posterior risk E*||¢ — ¢n(X)|* From
Theorem 2, the unbiased estimate of the risk is given by
VIX) VX

3.4 X) = 2
64 P =P+ I T A®)

For the formal posterior risk we have
E¥|§ - ¢nX)|* = E¥||¢ - X = V log f(X)|?

(35) = E*{|X - £]” - ||V log f(X)|"}
Vf(X)

=p +W_ |V log (X))
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The second equality in (3.5) uses essentially the theorem of Pythagoras in the appropriate
Hilbert space. The squared distance from ¢ to X is the sum of the squared distance from
£ to the closest X-measurable random variable X + V log f(X) and the squared distance
|V log f(X)||* from X + V log f(X) to X. Here squared distance is to be interpreted as
formal posterior expectation of squared geometric distance. The final equality in (3.5) uses
the fact that

V2 (X) v? J e~ 121X=¢)? dII(£) J (I1X - €)? _p)e—l/zux_g"z dTIE)

f(X)

J’e‘l/ﬂlx—&llz dII(§) J’e‘l/"’""‘f"2 dII)

=E*(|X - ¢|I” - p).
Comparing (3.4) and (3.5) we see that
V3f(X)
fx) -

This shows that if f is superharmonic then the formal posterior risk E* || ¢ — ¢1(X) || is an
overestimate of the risk of the estimate ¢1(X) given by (3.3) in the sense that

E¥||¢ = ¢n(X)|* = p(X) —

(3.6) EX||¢ — ¢uX)|? = p(X),
and thus, for all £,
(3.7) E:EX| £ - on(X)|* = E;p(X) = E¢ /¢ — ¢u(X)|>

Of course this inequality cannot hold in a non-trivial way if IT is a probability measure. For
possible implications of this see Morris (1977) and Berger (1980).

Let us also observe that, if the formal prior measure IT has a superharmonic density =
with respect to Lebesgue measure, then f defined by (8.1) is also superharmonic and thus
¢n(X) is a minimax estimate of £ and (3.6) and (3.7) hold. To see this, write

fl) = ——(2,”1),,/2 j e VA= () df = W f e W (x — y) dy.

If 7 is superharmonic so is the mapping x — 7(x — y), and thus also f, which is a convex
combination of these functions.

It may be of some theoretical interest to observe that, with the aid of the results of
Brown (1971), it is not difficult to obtain a fairly large class of admissible minimax
estimates of £. For, it seems to follow from his main theorem (ibid, page 884) that a formal
Bayes estimate with respect to a prior density 7 of the form

m(§) = J' 1€ =l do(m),

with p a finite measure, is admissible; and since = is superharmonic and thus also the
corresponding f given by (3.1) with d I1(¢) = 7(£) d¢, it follows from formula (2.12) that the
formal Bayes estimate X + V log f(X) is also minimax.

4. Choice of a scalar factor. We shall see that, in a fairly convincing sense, there is
a best choice of the magnitude of the correction to be made on the naive estimate X of ¢
if we have decided in advance on the direction of the correction, related linearly to X.
Detailed application to the use of three-term moving averages will be discussed in Section
5.
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Let us look at estimates of the form
(4.1) £ =X - MX)AX,

where A is a preassigned symmetric matrix, and A: 2 — 2~ is to be chosen appropriately.
It is convenient now to think of the x € #” as column vectors and to write, for example, x”
for the row vector transpose of x. We observe that, if

(4.2) 2A < (tr A)],

in the sense t!mat the largest characteristic root of A is less than 1/2 tr A, then the risk of
the estimate ¢ defined by (4.1) with

1
4.3) . Alx) = B2’
where
(4.4) B = {(tr A)I — 24)7'A?,
is given by
1 ) XTA%X AX
XTA%X trA XTABX
(4.5) =P+ Ef{ XBX?  ’XTBX (XTBX)z}

XTA’X
=r - B xraxyef

In the final equality we have used the particular choice (4.4) of B. Condition (4.2) is needed
for B given by (4.4) to be positive definite. If B is not positive definite, the expectations do
not exist and the formal computations are incorrect. Formula (4.5) shows that the estimate
£ defined by (4.1)-(4.4) is minimax.

It may be of some interest to observe that this estimate has a mild optimum property.
Any estimate that changes the choice of A in (4.3) by a constant factor cannot be better at
any parameter point. For, by a simple modification of (4.5) we see that, for any real
constant S,

2

B
X —rppAX - ¢

B*XTA%X — 28X T{(tr A)I — 24} BX
=p+E; T P
(X" BX)
XTA%X
(X"BX)*
For all ¢ this is minimized by 8 = 1. We observe that the special case A = I is the
nontruncated estimate considered by J ames and Stein (1961).

:

=p+ (B’ - 2B)E; {

5. Application to symmetric moving averages. Let us apply the general results of
Section 4 to the question of the appropriate choice of the weight in a three-term symmetric
moving average, first in the cyclic case. Let Xj, - - -, X, be independently normally distrib-
uted with means &, - - -, §, and variance 1, and suppose we plan to estimate the £; by

P

£i=Xi — AMX){X, — % (Xie1 + Xi1)},

where it is understood that X, = X, and X,..; = X, and similarly for the ¢’s. This is the
special case of

1 if j—1i=0 (modp)
0 otherwise.

—% if j—i= %1 (mod p)
(5.1) A=
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The characteristic roots and vectors of A, the solutions «; and y, of

Ayi =y,

with ¢, real and y, € #” are given, with j varying over the integers such that

o<l

by
J
(5.3) aj=1-— cos<277 —),
p
andforie {1 ... p}
(1
— if j=0
vp
ey it j=—|2
Vo 2
(5.4) Yij =9 P

\/gcos(?nij/p) if — [‘2] <j<0
b 2

2 . .. . . _|p
\/: sin(27ij /p) if 0<j< [—jl s
. Vp 2

this being the ith coordinate of y,. No difficulty is caused by the different ranges of i and
J in (5.4); see, for example, Anderson (1971, pages 278-284). The matrix A can be expressed
as

A= yay”,

where a is the diagonal matrix with jth diagonal element a; (for ; satisfying (5.2)) and yis
the orthogonal matrix with ijth element y;;. From the definition (5.1) of A we have

trA=p,

and from (5.3) we see that the largest characteristic root of A is less than or equal to 2, and
equal to 2 when p is even. Thus condition (4.2) is satisfied if and only if p = 5. In this case
the matrix B, given by (4.4), to be used in (4.1) and (4.3) is

(5.5) B = {(tr A)I — 2A7"}A? = y(pI — 2a) a?y”.

It is unreasonable to use a three-term moving average with weights more extreme than
(%, Y5, ¥%5). Thus it seems appropriate to modify our estimate to

£ =X - nX)AX,

where
. 1 2
AI(X) = mln<m, 5).
Of course A is given by (5.1) and B by (5.5). The unbiased estimate of the improvement in
the risk is changed from
XTA%X

A0 = By

given by (4.5), to
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A(X) if X"BX > g
(5.6) AX) =9 4p 4 1 2 3

?p—gz{xi—é(x_ﬁxm)} if X"BX=3.
The second expression in (5.6) is obtained by applying Theorem 1 to the form g takes on
{x:x"Bx < %}, namely

8i(x) = — % {x;i = % (xi-1 + xi1) }.
Next let us look at the case of a (nearly) symmetric three-term moving average in the

case where the indices are ordered rather than cyclic. We consider estimates of the form
(4.1) with A given by (4.3) and (4.4) and the p X p matrix A given by

Y% if i=j=1 or i=j=p
1 if i=j#1p

67 Av=Y i jijl=1
0 if |[1—j|#0,1,
that is
. {1 - AX)}X + % AMX)(Xi1 + Xiv) if i#1Lp
E=1{1-%AX)}X: + 2AX)X; if i=1
{1 -%AX)}X, + %L AX)X,—1 if i=p.
The characteristic roots a; and vectors y; of A are given, forj € {1, ..., p}, by
—1
(5.8) a=1-— cos{ﬁ]—-——l}
D
and, for: € {1, ---, p},
1
— if j=1
‘/; J
(5.9) Y, =
2 7(2i —1)(j— 1) e
—= 0§ —mMmMmMmm 8 if j#1;
vp %p ’

see Anderson (1971, pages 284-290). The matrix A can be expressed as
A = yayT
where « is the diagonal matrix with jth diagonal element «; given by (5.8) and y is the
orthogonal matrix with i, j element given by (5.9) for i, j € {1, - - -, p}. By (5.7),
trA=p-—-1,

and, by (5.8), the largest characteristic root of A is less than 2. Thus, according to condition
(4.2), the estimate given by (4.1), (4.3) and (4.4) is applicable for p = 5. Again the
appropriate choice of B is given by (5.5), but with A, a, and y given by (5.7) to (5.9). Again
it seems appropriate to replace A in (4.1) by A;, given by
. 1 2

}\1(x) = mm(m, 5).
The unbiased estimate of the improvement in the risk is changed from A(X) given by (4.5)
to Ay(X) given by
3
A(X) if XTBX= 3
4p—-1 4

A(X) = 3 9

2
1
oy Z{Xz -3 (Xio1 + Xi+1)}

1 3
-5 - X % X, = X, 1)? if X"BX<?.
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The second expression is obtained by applying Theorem 1 to the form g takes on {x:x'Bx
=< %}, namely

—1/3(x1—x2) if i=1
gx)=1—-%{x, — % (xim1 + X41)} if 2=si=sp-1
— Y5 (xp — xp-1) if i=p.

6. Estimates in which the modification of individual coordinates is sharply
limited. This section treats a modification of an idea of Efron and Morris (1971, 1972a).
Roughly speaking, their idea was to modify the James-Stein estimate

A p—2
(6.1) =({1—-—=] X
6= ||X||2>+

by requiring that no coordinate be changed by more than a preassigned quantity c. This
leads to an improvement on the James-Stein estimate when the empirical distribution of
the | & | is long-tailed, and at worst only a relatively unimportant deterioration if the prior
distribution of ¢ has spherical symmetry. We consider a modification of the Efron and
Morris procedure, based on order statistics, that may permit a somewhat larger improve-
ment over the James-Stein estimate when the empirical distribution of the | ¢, | is long-
tailed.
Let us look at the simplest case of the estimate based on order statistics. Let

Z =X
and let
Zoy<...<Zp
be the rearrangement of Zi, ..., Z, in increasing order, and let £ be a positive integer, a
large fraction of p, the appropriate choice of which will be discussed later. Let
(6.2) £=X+gX),

where g: 2" — %7 is defined by

a
_————Xt i v =
S(X7 A Z) R
(6.3) &X) =
a .
- m)—)Z(k) sgn X, if | X, I > Z(k)

with a a constant to be determined and a N\ & = min(a, b).

2 2
1 k=1 Xl

EE—¢P=p+E|e—p——2a e e
ZZ
(6.4) +da(p—k+ 1)
Pt D Er Az

T T
=p+ {a%— 2k 2)0}E5{2(XJZ A Z&))}'

The optimum choice of a is
(6.5) a=k—2,

and, for this choice, the risk given by (6.4) becomes

e L
Ec|é-¢lF=p— (& 2>E€{z(foZ&,)}'
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As a guide to the choice of &, let us compute, for large p, the relative efficiency of the
estimate £® given by (6.2), (6.3) and (6.5) compared to the James-Stein estimate & given
by (6.1) in the case most favorable to the James-Stein estimate, that where the & are
themselves independently normally distributed with variance 72. We shall see that if 7 >
0, the asymptotic relative efficiency e, when k/p — y is given by

2

_ y
y+ 1 -y)q"—296(q)’

Some numerical values are given in Table 1.

(6.6) ey where ¢ = (IJ“{% a1+ y)}.

TABLE 1
Efficiency e, of trimmed estimate
relative to James-Stein estimate for
largep, k= yp

y 5 6 1 8 9
e, 827 873 909 943 974

) To derive (6.6), we observe that the estimated improvement in the risk for the estimate
£® given by (6.2), (6.3) and (6.5) is

(k —2)°

ARX) = o 2
&) S(XP A Z)’

and the estimated improvement in the risk for the James-Stein estimate is

(p—2)7°

AX) =g

The truncation in (6.1) is ignored because with 72 > 0 fixed and p — o, the probability that
truncation will occur approaches 0. For large p, A(X) and A*(X) are approximately
constant with high probability:

p’ p

AX) s ——=——
X s~ 1+

and

k? k?

(6.7) AP(X) = > = = ,
EXZAZ 7
PEX 1\ Zw) 2 (1 +¢2)U X% (x) dx+qzj & (x) dx}
1] q

where g = @ '{%(1 + y)} is an approximation to ZuA/1 + 72.
The first integral in the denominator of (6.7) can be evaluated by integration by parts, so
that we obtain '

- A(k)(X) - y2
“EAX) ([0 =
2{] ¢(x) dx — qo(q) + QZJ ¢ (x) dx}
0 q

which is (6.6).

The numerical efficiencies given in Table 1 suggest that in the case most favorable to
the choice £ = p, the loss due to taking k& even as small as 0.7 p is small enough so that it
will ordinarily be more than compensated for by the possibility that the empirical c.d.f. of
the ¢, is long-tailed. For small p, the possible loss in efficiency is likely to be somewhat
larger for a given value of y = k/p. Of course, we must have 2 = 3 for the formulas to be
meaningful.
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7. The case of unknown variance. The formulation of the problem up to this
point may be unrealistic in that the variance has been assumed known and taken to be 1.
Here a partial treatment is given of the more common case where the variance is unknown
but can be estimated by an independent multiple of a x2 random variable. We consider
only the case where, when the variance is 1, £ — X is chosen to be homogeneous of degree
—1 in X. Then it is not difficult to decide on an appropriate proportionality factor when
the variance is unknown in a way completely analogous to that of James and Stein (1961).
The problem has been treated more thoroughly by Efron and Morris (1973a). Since there
seem to be no complications in the special cases of Sections 4 and 5, they are discussed
only briefly.

The problem considered here differs from the basic formulation of Section 2 in that X
is now a random p-dimensional coordinate vector, normally distributed with unknown
mean £ and covariance matrix oI, where o is unknown but we also observe a real random
variable S, distributed independently of X as o°x2. If, in the case where o is known to be
1, we would use the estimate

bh=X+gX)

where g:#” — 2" is homogeneous of degree —1, that is
1
g(\\x) =~ g(x)

for all real A # 0, we consider, for the present problem, the modified estimate
£=X+ cSg(X),

where c is a constant to be determined. Let

y=% ,=f -5
o o o

Then, using the independence of S* and Y, from Theorem 1 we obtain
Eeo| X + cSg(X) —§|P =0’E || Y + S*g(Y) —n |
(7.1) =0’E[p + ¢’S** | g (V)| + 2¢S*V*.g(Y)]
=d’E[p + n(n + 2)c? | g(Y)If + 2ncV*.g(Y)]

where V* is the vector of first partial derivatives with respect to Y. If we choose
c=1/(n+ 2), (7.1) now becomes

S 2 — 2 n 2 *
Ee,ul|X+mg(X) £ —oE[p +———n+2(l|g(Y)|l + 2V -g(Y))].

If g has been chosen so as to make || g(Y)|]*> + 2V*-g(Y) everywhere negative and, roughly
speaking, as negative as possible, by the methods of the preceding sections, this should be
a satisfactory estimate. Observe that we lose only the proportion 2/(n + 2) of the reduction
in risk that we would have achieved if we had known o
For some purposes it may be useful to have an unbiased estimate of the expected
squared length of the error vector. Using formula (2.3) we have
2

S — 2 2 S 2 S Y
Egor | X+ ——g(X) — £ [P = po +E£,o2{_—‘(n+2)z | @I +2—— X g)g(X)}

S S?
= Eg’uz{p ; + " g(X)"2 + 202

n +2) n+2v'g(X)}

s 8 ,
= E;. P;"'m{"g(){)" +2V.g(X)}

where V is the vector of first partial derivatives with respect to X.
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8. An identity suggesting approximate confidence sets for the mean. By
repeated application of formula (2.3), it is possible to obtain, in the one-dimensional case,
an unbiased estimate of the expected value of a power of X — £ times a function of X. This
is done for small powers of X — ¢ and the result is applied, in the p-dimensional case, to
obtain, for a nearly arbitrary estimate of £, an unbiased estimate of the variance of the
difference between the squared length of the error vector and the unbiased estimate of the
risk. This suggests a method of obtaining, approximately, spherical confidence sets for the
mean centered as a nearly arbitrary estimate. No attempt is made here to study the
validity of this approximation.

LEMMA 4. If X is a N(&, 1) random variable then

E{(X - £)g(X)} = Eg'(X),
(8.1)

E{(X-¢)’g(X)} =E{g(X) +g"(X)}
and
E{(X - £)'g(X)} = E(3g(X) + 6g"(X) + g™(X)},
where, in each case, all the derivatives involved are assumed to exist in the sense that an

indefinite integral of each is the next preceding one, and to have finite expectations. The

" (iv)

first through fourth derivatives of g are denoted by g’,g", 8", &

Proor. Clearly it suffices to consider the special case £ = 0. Formula (8.1) is the same
as equation (2.1). The remaining formulas follow by repeated application of (8.1). Some-
what imprecisely we write (f(x))’ as well as f’(x) for the derivative of f at x. Then, formula
(8.1) can be rewritten

(82) E{Xg(X)} = E{g(X)}".
By repeated application of (8.2) we obtain
E{X°g(X)} = E[X{Xg(X)}] = E{Xg(X)} = E{g(X) + Xg'(X)} = E{g(X) + g"(X)},
and similarly
E{X°g(X)} = E{3g'(X) + g”(X)}
and
E{X'g(X)} = E{3g(X) + 6g”"(X) + g™(X)}.

The following corollary will not be used here, but may be of some interest.

COROLLARY 2. IfXisa N (£ 1) random variable, then, with the derivatives interpreted
as in Lemma 1,

§Eg(X) = E{Xg(X) — g'(X)}
(8.3) £Eg(X) = E{(X* - Dg(X) — 2Xg'(X) + g"(X)}
£Eg(X) = E{(X* - 3 Xg(X) — 3(X* — 1)g’(X) + 3X’g"(X) — g” (X)}
and V
Eg(X) = E{(X* — 6X* + 3)g(X) — 4(X* — 3)Xg'(X)
+6(X% - 1)g”(X) — 4Xg” (X) + g™ (X)).

It is not difficult to derive these formulas from Theorem 1 by computations similar to
those used in the proof of that theorem. However, it may be simpler, or at least more
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systematic, to proceed in the following way. Let D denote the operation of differentiation:
(Dg)x = g’(x)

and T the operation of multiplying by x:
(Tg)x = xg(x)

Then equation (8.1) can be rewritten

(8.4) §E:g(X) = E{(D — T)g}(X).

By induction, for & a positive integer

8.5) £*Eg(X) = E((D — T)*g)(X).

Equation (8.3) is simply another form of (8.1) or (8.4), and the equations following (8.3) are
obtained by expanding (8.5) for & = 2, 3, and 4, using

D’T = TD’ + jD’!
and
DT’ = TD + jTV!

which follow by induction from the special case j = 1 of either.

Next we look at an expression for the mean square of the difference between the squared
norm of the error vector and the unbiased estimate of its expectation. The regularity
conditions assumed here may be stronger than needed.

For an application of the above ideas in finding minimax estimators of ¢ with quartic
loss, see Berger (1978).

THEOREM 3. Let X be a random p-dimensional coordinate vector, normally distrib-
uted with mean £ and the identity as covariance matrix. Let g: %7 — R be a twice
continuously differentiable function such that

E{ll g X)IP + X, 85(X) + Xi85(X)}) < oo,
where g; = Vg, and g,; = V.V, g.. Then
8.6) Efl| X +gX)—&IF — {p+]gXIF + 292X}
=2p + 4E{|| g X)|* + 2V g (X) + tr{Vg"(X))’],

where g7 denotes the vector-valued function whose value is the transpose of the value of
the function g.

Proor. Expanding the left hand side of (8.6), we obtain

Ef| X+gX) —£¢IF = {p+ | g X + 297g(X))T
=E[(IX-£P —p) +2{(X - §)"g(X) —VgX)}}
=El( X~ ¢IF - p)* + 4{(X - §)Tg(X) - V(X))
(8.7) +4(| X - ¢P - p{(X - §)"g(X) - VTg(X)}]
=20 +4E[{(X - ) Tg(X)}* + {(VTg(X)}* — 2((X — §)"g(X)}V g(X)
HIX - EPX - 6)"g(X) — | X — £ PV g(X)].

We can express the expectation of the first term in brackets on the right hand side as the
expectation of a function of X alone in the following way:
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E(X-9"gX)P=EY: Y, (Xi— &)X — £)g(X)g (X)
ad
=E; Y, Z’a_X, {(X; — &)gi(X)gi(X)}

= E; Y Y, [6,8(X)g(X) + (X; — §){8:(X)g/(X) + g:(X)gi(X)}]
(8.8) =E; 3, Y, {8,8X)8(X) + gi,(X)g/(X) + gu(X)g,(X)
+ 8,(X)gi(X) + £:i(X)g,(X)}
= E{l|l g XIF + (Vig(X)) + tr(Vg" (X))} + 2 3. ¥, 8(X)gi(X)].

The second term in brackets on the right hand side of (8.7) is already in the desired form.
For the third term we have

89)  ElX-9Tg))V7g(X)] = BN (V8(X))g (X))
=E{{(Vig(X))* + %: ¥, £,(X)g(X)].
For the fourth term in brackets on the right hand side of (8.7) we have
E{l X - ¢IPX - §)"8(X)} = Ee(3: 5 (Xi — £)°(X; — §)g(X)}

- E{Y; zjain (X, — &%, (X))]

= E{Y. ¥, {265(X. — £)g(X) + (X, — £)°g,(X)}]
= E{2V7g(X) + || X — £ |PV7e(X)).
Thus for the combined fourth and fifth terms we have
810 EllX—(PX-9HTg0) — | X - £ [PVg(X)}
=E{2V7g(X) + | X - £ PVTg(X) — | X — £ |PV7g(X)} = 2E{V g (X)}.

Combining (8.7) through (8.10) we obtain (8.6).

It seems plausible that under appropriate conditions, with p large, the random variable
in brackets on the left hand side of (8.6) is approximately normally distributed with mean
0, and that the random variable in braces on the right hand side is approximately constant.
This suggests as confidence sets for ¢ with approximate probability 1 — « of covering £

Sx={&)é- X +g@X)IF <p+ | gX)f +2V7g(X)

(8.11)
+ ¢ V2D + 4{ g X)IP + 2VTg(X) + t[VgT(X)T?})

where
D(c,) =1 - a.
Actually it may be better to choose ¢ in such a way that
P{x:<p+cV2p}=1-a.
With this choice of ¢, and reasonable choice of g, the probability that £ € Sx approaches
l—aasf— .

Different approaches to obtaining improved confidence sets for £ are described by
Morris (1977), Faith (1978) and Berger (1980).
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