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A REPRESENTATION FOR MULTINOMIAL CUMULATIVE
DISTRIBUTION FUNCTIONS

By BrucE LEVIN

Columbia University

A re-expression of the usual representation of the multinomial distribution
as the conditional distribution of independent Poisson random variables given
fixed sum provides a convenient new way to compute multinomial cumulative
distribution functions.

1. A representation of the multinomial cumulative distribution function. The
following theorem offers a convenient way to compute multinomial cdf’s, although it
appears not to have been explicitly stated in the literature on multinomial distributions.

THEOREM. Let (ny, ---, n,) have a t-category multinomial distribution with sample
size N and parameters (p,, -+, p,). Let (ay, - - - , a;) be non-negative integers, and define

pn=pNt,py, e, pp e, ) =Pm=a, -, = a).

Then for any real number s > 0,
1

(1) p~=;,%':g{ f=1P(Xzéaz)}P(W=N),

where X, ~ indep P (sp,) = independent Poisson r.v.’s with mean sp, and W is a sum of
independent truncated Poisson r.v.’s, namely W= Y1Y, where Y; ~ TP, (sp,) = truncated
Poisson(sp,) with range 0,1, --- , a,.

The theorem may be proved by applying Bayes’ Theorem to the usual representation
of multinomial frequencies as independent Poisson frequencies conditional on their sum
being fixed. Let A; denote the event [X; = a;] where X; ~ indep P(sp;). Then the
multinomial cdf is

P(A; --- A)

P(A, --- AYiX.=N) =m

PQiXi=N|A; .- A).

The result follows by noting that ¥X; ~ P(s) and that the conditional distribution of X;
given A, is TP, (sp:). An alternative proof follows directly from the generating function for
pn~ which is well-known to be

N .
(2) Y %0 PN f‘ﬁ = H:=1 {(1+pu+ - + (pu)*/al},

(see, e.g. Good, 1957, or Barton and David, 1959). We write u = sx for any positive s, and
multiply and divide the i-th factor on the right of (2)by Y%, (sp.)’/;j! to find
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N N

s'x
ZN 0 PN

J /i o/

=e[[ PX.=a) ]! Ex"=€]]', P(X- = a) Ex",

where X, ~ indep P(sp,) and Y, ~ indep TP, (sp,). Comparing coefficients of x" concludes
the proof. We are indebted to C.L. Mallows for the succinct first proof.

As a corollary we obtain a representation for the cdf of the maximum multinomial cell
frequency by taking a; = ... = @, = m, so that (1) gives P(max, n, = m). The theorem
shows that for small ¢ the multinomial cdf is as easy to compute (exactly) as the convolution
of ¢ truncated Poisson r.v.’s. Of greater practical importance is the fact that for large ¢ the
Central Limit Theorem offers an approximation to the last term in (1) with two virtues:
(a) the approximation is quick to compute with hand-held calculators and does not require
special tables; and (b) the approximation works well even for cases in which the Bonferroni-
Mallows bounds (see Mallows, 1968)

(3) 1-YaPn>a)=py=]]' P = a),
are wide, e.g. when each term P (n, > a,) is of order 1/¢. We illustrate the approximation in
Section 2 through two examples that have appeared in the literature.

In general, the use of a first-order normal approximation to P(W = N) in (1) is not
guaranteed to produce an estimate between the Bonferroni or Mallows bounds. In our
second example below we use an Edgeworth expansion through terms of order O(¢7}) to
improve accuracy. While Edgeworth corrections are not guaranteed to work either,
numerical experience suggests they are quite adequate for three- or four-place accuracy.
To state the approximations we need the first four moments of a truncated Poisson r.v.,
say Y ~ TP, (). These are furnished through the following lemma, which we state without
proof, concerning the factorial moments of Y,

H(r)=E{Y(Y—1)---(Y—r+1)}, H(0)=1.

LEMMA. LetY ~ TP,.\). Then

A" /m! P(X =m)
H=M(1)=EY=A<I_W>=A{I_M} where X"’P(}\)

o’ =VarY=p— (m—p)QA —p)
and in general,
Bir+1) = >\,Uf(r} - m(r}(A - ‘U,) fOr r= 1’ 2’ e

where

m?=mm-1) --. (m —r+1).

The third and fourth central moments are obtained from the usual formulae

pe = pe + (n—p?), ‘

ps = o + pe(8 — 3u) + (u— 3u® + 2u%),

pa = o) + (6 — 4p) + pey(7 — 120 + 6p°) + (p — 4p® + 6° — 3u).
The Edgeworth approximation we use is
4) P(W=N)=f (
where i, = EY,, 02 = Var Y, and where

1 —x2/2
o= <¢w )

2
Y1 3 Y2 4 2 Y1 6 4 2
. I — 2= — + I — + 45x% — 15) ¢,
{1 + (x 3x) + 2 (x 6x 3) + ™ (x 15x X )}

N—Ziu,) 1
Vyie? J VYol
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1 t
(i)

v1 = coefficient of skewness = — ————7,

Ve (%2‘1 o?>

1 (Ei Ma,i —303)
v2 = coefficient of excess = T R

1 t 2
(721+)

The first-order normal approximation is (4) with f(x) replaced by its first factor.

and

o~ | =

2. Examples.

ExampLE 1. Mallows (1968) discusses an example of the maximum cell frequency in
the multinomial distribution with N =500, ¢ =50, p; = --- =pso=.02and a; = --- = aso
= m = 19. The parameter s in (1) is a ‘tuning’ parameter which may be chosen for
convenience and stable computation. With N large, a reasonable choice is s = N so that
the first factor in (1) becomes v27N, ignoring the error in Stirling’s approximation for N!
While the choice of s that optimizes accuracy of the normal approximation is an open
question, we have found s = N to be generally satisfactory, and it is also natural in that
Np; are the expected cell frequencies. For the final factor in (1) we apply the first-order
normal approximation to P(W = N) with Y, ~ TP1,(10) to find P(W = N) = .018120.
Thus

P(ni=19,---, nso=19) = v27.500 (.99655)*(.018120) = .8545,
which lies between Mallows’ bounds of .8437 = py = .8551.

ExXAMPLE 2. Barton and David (1959) discuss the distribution of max n, for N =t =
12,py=---=pp=%2anda;=--- =ap=mform=1,2, .... We consider the case m
= 3. Proceeding as we did in Example 1, we choose s = 12 and find that the first-order
normal approximation yields

12!

P(n1§3,"'n12§3)iw

(.981012)'%(.12441) = .8643.
The Bonferroni-Mallows bounds (3) yield .8340 = p;» = .8461, while the exact value is
.8371 to four decimals. Thus the first-order normal approximation to P(W = N) has
overestimated the correct value by 3.2%. The Edgeworth approximation (4) gives P(W =
N) = .12044 yielding p:» = .8367, reducing the relative error to 0.05%.

Note that for the case m = 2 the first-order normal approximation yields P(n; = 2,
«eo, ne = 2) = .3210, (the exact value is .3127) with a relative error of 2.7%, while the
Bonferroni-Mallows bounds are rather wide, .1359 = P(n;1 = 2, - .-, n;2 = 2) = .4079.

3. Discussion. While the generating function (2) for py is well-known, the represen-
tation (1) and its consequent normal approximation appear to be not widely- recognized.
Kozelka (1956) gave a different normal approximation, based on the asymptotic normality
of the binomial terms in the first Bonferroni inequality. Because his normal approximation
is to a bound rather than an exact term, we expect our application to be superior. Good
(1957) and Barton and David (1959) give different asymptotic expansions for large ¢ based
on the generating function (2), although our application of the Edgeworth expansion to
P(W = N) is more straightforward, is applicable to any (pi, --- p:) and (a,, ---, @), and
appears to offer excellent accuracy. Good (1957) and Riordan (1958) give recursive relations



1126 BRUCE LEVIN

in the equiprobable case which are awkward. For exact computation, the convolution of
truncated Poisson distributions is easy to program and offers an attractive alternative to
enumerative methods such as Freeman’s (1979), whose program covers only the equiprob-
able case. We also remark that our method of computing {px:N =1, 2, ...} for fixed ¢,
(p1, -+, p) and (a1, ---, a;) is especially well-suited for calculating the operating
characteristics of certain sequential methods for multinomials, e.g. the inverse sampling
procedure of Cacoullos and Sobel (1966) for selecting the most probable multinomial
outcome. Perhaps most important is the observation that the Bonferroni-Mallows bounds,
which are so easy to calculate, are occasionally too wide to be useful, so that an equally
simple point approximation is handy to have in order to ‘fill the gap’.
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