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MULTI-ARMED BANDITS WITH DISCOUNT FACTOR NEAR ONE:
THE BERNOULLI CASE

By F. P. KELLY
University of Cambridge

Each of n arms generates an infinite sequence of Bernoulli random
variables. The parameters of the sequences are themselves random variables,
and are independent with a common distribution satisfying a mild regularity
condition. At each stage we must choose an arm to observe (or pull) based on
past observations, and our aim is to maximize the expected discounted sum of
the observations. In this paper it is shown that as the discount factor ap-
proaches one the optimal policy tends to the rule of least failures, defined as
follows: pull the arm which has incurred the least number of failures, or if this
does not define an arm uniquely select from amongst the set of arms which
have incurred the least number of failures an arm with the largest number of
successes.

1. Introduction. Each of n arms generates an infinite sequence of Bernoulli random
variables. The parameter of the sequence generated by arm i, 6,, is itself a random variable.
The random variables 8,, 6;, -- -, 6, are independent with common distribution function
F(z). At times t = 0, 1, ... we choose an arm to observe (or pull) based on past
observations. A pull on an arm at time ¢ makes known R(t), the next Bernoulli random
variable in the sequence associated with the arm pulled. We interpret R (t) = 0 (respectively
1) as a failure (respectively success) at time £ Our aim is to maximize the expected total
discounted reward

E[YZo B'R(2)]

where the discount factor 8 € (0, 1). The main result of this paper is that, provided
1 — F(1 — 2) varies regularly at the origin, as the discount factor approaches one the
optimal policy tends to the least failures rule, defined as follows: pull the arm which has
incurred the least number of failures, or, if this does not define an arm uniquely, select
from amongst the set of arms which have incurred the least number of failures an arm
with the largest number of successes. The least failures rule is a slight variation on the
play-the-winner rule introduced by Robbins (1952) in connection with the two-armed
bandit.

The proof proceeds by establishing asymptotic bounds on the Gittins index (see Gittins,
1979) associated with each arm. In Section 2 the key definitions and results of Gittins are
described, and in Section 3 the bounds are obtained.

Robbins (1952) proposed another rule with better performance, as judged by the
expected average reward criterion, than the play-the-winner rule. In Section 4 the structure
of discount optimal policies is investigated and it is shown that for discount factors near
one these policies perform well according to the expected average reward criterion, even
though the limit rule obtained from them does not.

One practical application motivating work on multi-armed bandits is the design of
sequential clinical trials, and in this context the play-the-winner rule has been investigated
as an easily described procedure with some reasonably good properties. Zelen (1969) has
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evaluated numerically the performance of a finite horizon policy which begins by using the
play-the-winner rule and then, after a certain number of trials, chooses the arm achieving
the highest ratio of successes to trials and plays this arm until the horizon. Sobel and
Weiss (1972; see also the papers referenced there) compare the performance of the play-
the-winner rule and a vector-at-a-time rule, which by time ¢ = nT has pulled each arm
exactly T times. In a subsequent paper it will be shown that if rewards have a normal or
Poisson, rather than a Bernoulli, distribution then the limit rule obtained from discount
optimal policies may well be a vector-at-a-time rule.

Results have previously been obtained from multi-armed bandits by allowing the
discount factor to approach one: see Nash (1973) or Gittins (1979) for a scheduling problem
and Kelly (1979) for a search problem. These earlier results are of an apparently different
kind: in both the scheduling and the search problems an appropriately defined expected
total discounted reward approaches the same constant under every policy, and the rate of
approach determines the optimal policy under a differently constructed expected total cost
criterion.

There are two other papers in the recent literature on multi-armed bandits which relate
to the work described here. Berry and Fristedt (1979) have obtained interesting results
applicable in both finite horizon undiscounted and infinite horizon discounted frameworks,
and certain of these results, to be discussed further in Section 3, can be interpreted as
bounds on the Gittins index. Rothschild (1974), in his development of a model for market
pricing, has investigated the long run behaviour of discount optimal policies. This work is
referred to in Section 4.

The relationship between discount optimality and expected average reward optimality
has previously been investigated within the broad context of Markov decision processes;
see Blackwell (1962), Ross (1968) and Veinott (1974). However these authors have had to
impose restrictive conditions not satisfied by the processes discussed in this paper. The
multi-armed bandits considered here do not exhibit absorption or recurrence but rather a
form of convergence.

2. Bandit processes. A bandit process is defined on a state space X, assumed to be
a Borel subset of a complete separable metric space. At times ¢t = 0, 1, ... the bandit
process can be either frozen or continued. If frozen, its state x(€ X) remains the same and
no reward is received. If continued, its state changes from x to a new state y € X, selected
in accordance with a transition mechanism q(-| x), and a reward R (x, y) is received. The
transition mechanism q is a regular conditional probability on X given X, and the reward
function R is a Baire function on X x X; for a detailed discussion of these, the usual,
measurability conditions see Blackwell (1965), Strauch (1966) or Hinderer (1970). The
reward function R is assumed to satisfy the condition

1) E[Y50 B R(x(t), x(t+1))|]<®o  VBE(0,1),Vx(0) EX

where (x(¢), t =0, 1, ---) is the Markov chain with initial state x(0) generated by the
transition mechanism q. Observe that (x(¢),t=0, 1, - - -) is the sequence of states obtained
if the bandit process is continued at times ¢ = 0, 1, - - .. For a bandit process (X, ¢, R) in
state x define the Gittins index »4(x) by

E[YiZ B'R(x(t), x(t + 1))]

E[Yi B]
where the supremum is taken over all positive stopping times for the Markov chain
(x(t), t=0,1, -..) with initial state x(0) = x.

(2) Vﬁ(x) = Sup.>o

LeEmMA 2.1. The Gittins index vg(x) is non-decreasing in B for each state x.

ProoF. Suppose 0 < B; < B2 < 1. Let 7, be a positive stopping time. Define

7o = min{r, T},
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where T is a geometric random variable independent of (x(¢), ¢t =0, 1, ---) and 7; with

distribution
Bl Bl -1
=) = S | 1=12,....
P(T=1) (1 /32>(,82> » 2,

Observe that 7, is a positive (randomized) stopping time, and that
E[Yi0 BAR (x(8), x(t +1))]
E[Yi Bt]
_ E[3i BiR (x(t), x(t + 1)]
E[Yi5" B1]

Thus, from definition (2),
v, (x) = vp,(x) VxeX 0

A multi-armed bandit is a collection of n bandit processes ((X,, ¢., R;), 1 =i < n) with
the constraint that at times ¢ =0, 1, - - - just one of them is chosen to be continued and the
others are frozen. Let x(¢) = (x1(t1), x2(t2), - - -, x2(¢,)) denote the state of the multi-armed
bandit at time ¢, where ¢, is the number of times bandit process i has been continued and
t=1¢t + ts + --- + t,. We shall sometimes write x(¢) = (x;, x2, ---, x»). Let a(t) €
{1, 2, .-+, n} be the bandit process continued (or arm pulled) at time ¢. A policy = is a
sequence m, i, - - -, where , is a regular conditional probability on {1, 2, ---, n} given
the history of the system till time ¢, A(¢) = (x(0), a(0), x(1), - - -, a(t — 1), x(¢)). Given h(t)
the policy = pulls arm ¢ with probability =,(¢| A(¢)). The expected total discounted reward
associated with policy 7 is

Ve(m) = E[ Y20 B'R(2)]

where R (t) is the reward received at time ¢ under the policy 7. The reward V;(7) is a
function of the initial state x(0). Call a policy 7* B-optimal if

Vg(m*) = sup, Vg (7).

THEOREM 2.2 (Gittins). The following are equivalent:

(i) =* is B-optimal
(ii) 7¥(Z|h(t)) =0 if  vg(x) < wplx),

except possibly on a set of histories with probability zero under =*.

The theorem shows that a B-optimal policy is obtained by choosing at each stage to
pull the arm whose index is then maximal. If two or more arms tie for the maximal index,
the arm to be pulled can be selected arbitrarily from amongst them.

REMARK 2.3. A standard arm A is a bandit process with state space X = {A} and
reward function R (A, A) = A. The Gittins index of a standard arm A is thus A. Consider
now a two-armed bandit comprising a standard arm A and a bandit process in initial state
x. Theorem 2.2 shows that a -optimal policy could start by pulling either of the two arms
if and only if »g(x) = A. This method of determining the Gittins index vg(x) is called
comparison with a standard arm, and provides an alternative to a direct use of the
definition (2).

REMARK 2.4. It is usual to replace the function R (x, y) with a function of x alone by
taking the expectation over the new state y in accordance with the transition mechanism
g(-|x). We shall find it more convenient to use the actual reward received, R(x, y).
Observe that under any policy =
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E[Y%o B'| R()|] = ¥i-1 E[B'| Rilxi(2), x:(t + 1))|]

and hence assumption (1) implies that sup,Vz(7) is finite. In this paper all the reward
functions considered will be uniformly bounded and hence assumption (1) will be satisfied.

3. Asymptotic bounds for Bernoulli bandits. The state of a Bernoulli bandit
process is a distribution function G on [0, 1], interpreted as the distribution for the
unknown parameter 6 of the Bernoulli reward sequence generated by the bandit. Define
operators g, ¢ on a distribution function G as follows:

D
f z2dG(2)
(6G)(p) = 0sp=<1
j z2dG(2)
0
4
j 1-2)dG(2)
(6G)(p) == 0=p=1

J’ 1 —2) dG(2)
(1]

These correspond to the posterior distributions for the parameter § after observing a
success or a failure respectively. Thus the operators commute and 0°¢/G is the posterior
distribution after observing s successes and f failures. If the bandit process is continued
from state G, there is a success with probability [5 z dG(2) and a failure otherwise. A
success means that the state becomes G and unit reward is received. A failure means that
the state becomes ¢ G and zero reward is received. More formally, the state space, the
transition mechanism and the reward function of a Bernoulli bandit process with initial
state F are

X={c'¢'F:s,f€ Z.},

1 1

z2dG(2), q(G|G) = J’ (1 - 2) dG(2),

0

4(eG| G) =f

0
R(G, oG) =1, R(G, ¢G) = 0.

Observe that if the process is continued indefinitely then with probability one the state
will converge weakly to a degenerate distribution with unit mass concentrated at the
initially unknown value of the parameter 6. Indeed this property could be taken as the
definition of the variable 4.

Let v3(F) be the Gittins index for a Bernoulli bandit process with initial state F.
Assume henceforth that F(z) < 1 for all z € (0, 1), and that F(z) > 0 for some z € (0, 1).
The only interesting case that these assumptions exclude, when sup {z:F(z) <1} <1, is
discussed in Remark 4.14. In this section we establish upper and lower bounds for vz (F).

THEOREM 3.1. There exists a function A = Ag(F') such that
Ag(F) = vs(F) VBE(0,1)

and

1 1

(z=AN)dF(2) =1 —f zdF(2).

0

3) limg . (1 —ﬂ)-lf

A

Proor. Define an informative arm to be a bandit process which behaves as does a
Bernoulli bandit process, except that after the first continuation the true value of the
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parameter becomes known. More precisely, from the initial state F,
q((oF, 8)|F) = 6 dF(6), q((pF,0)|F)=(1—8) dF(9),
R(F, (oF, 6)) =1, R(F,(¢F, 6§)) =0,
and from any subsequent state (G, 8) = (¢°¢'F, 8),
q((0G, 0)|(G,0)) =0, q((¢G,0)|(G,8) =189,
R((G,0), (G, 0)) =1, R((G, 0), (G, 0)) = 0.

Let A3(F) be the Gittins index for the informative arm. Observe that each positive stopping
time available for the Bernoulli bandit process corresponds to a positive stopping time for
the informative arm based solely on the first component of its state, and hence from the
definition (2)

Ag(F) = vp(F) vBeE (0,1).

To calculate Az(F') compare the informative arm with a standard arm A. If a 8-optimal
policy for the resulting two-armed bandit could start by pulling the standard arm then by
Théorem 2.2 it could continue pulling this arm indefinitely, resulting in a total reward
A(1 — B)~'. If a B-optimal policy starts by pulling the informative arm then the parameter
0 becomes known: if § > A the B-optimal policy stays with the informative arm, while if §
< Aitreverts to the standard arm. Thus a S-optimal policy for the two-armed bandit could
start by pulling either of the two arms if

2 =fzdF(z)+ 5 UlzdF(z)HJAdF(z)}
1-8 b 1-8 N 0 '

Rearranging this equation for A = Az(F) we obtain

1 A
4) 1- B)“j (z—A)dF(2) = J (A —2) dF(2).
A o

The right hand side of equation (4) is bounded above and hence

1
limg_., f (z—\) dF(2) = 0.
A

Thus as 8 1 1 the function Ag(F) 1 1, and so from equation (4)

1 1

(z—=A)dF(2) =f (1 —2)dF(z). O

0

limﬁ—»l(l - B)_l j

A
Define
F*2)=1—-F(Q1 — 2), 0=<z=1.
COROLLARY 3.2. There exists a function A = \g(F) such that
Ap(F) = vy(F) VBE©,1)
and

lim infs,; (1 — B8)"*Q1 = A)F*(1 —A) > 0.
Proor. Observe that

1
f (z—=AN)dF(z2)=(1-ANF*1-2) 0=A=1
A
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and hence the result follows from Theorem 3.1. Note that although the first expression is
continuous the second expression may be only right-continuous. 0

THEOREM 3.3. Foreach ¢ € (0, 1) there exists a function p = pg (F), possibly depending
on e, such that

ps(F) < vp(F) VBE(0,1)
and
(5) lim supg_1(1 — 8)™'(1 — p) F*((1 — w)(1 — ¢)) < oo,
Proor. We shall find a lower bound for »;(F') by using a particular form of stopping

time in definition (2). Identify the state space of the Bernoulli bandit process with Z3
using the bijection

(s, f) & (a°¢'F).

Recall that (x(¢), £ =0, 1, -..) is the sequence of states obtained if the bandit process is
continued indefinitely, and that R (¢) = R (x(t), x(¢ + 1)) is then the reward obtained at
time ¢. For each % > 0, define the stopping set D, C Z2% by

Dp=A{(s,f):f>0,s<(f+ 1)k}
and the positive stopping time 7, by
T = inf{¢:x(¢) € Dy} if 3 ¢t:x(¢t) € Dy,
= o0 otherwise.
Let
T = inf{¢:R(¢) = 0} if 3¢:R(¢) =0,
= o0 otherwise.

Observe that if T < k then 7, = T + 1, and if T = k then

VYA R(t) = —— l=r=m.
- =0 R(t) Z+1 r="mk

(6)

Where no confusion can arise we shall omit the subscript £ and write 7 for 7. Define

U(r) = Y% B'R(¢8) and
Wi(r) = Y23 B
From definition (2) it follows that a lower bound for »; (F') is given by p’ = ug (F') where
, _ EU(7)
)
_ E[U(n)|7=Ek]P(r=k) +E[U(1)|k<7<o]P(k<t<)+ E[U(1)| 7= 0] P(r = @)
T E[W(r)|r=<k]P(r=k) +E[W(1)|k<T<w]P(k<71<)+E[W(r)|r=00]P(r=00)

Let

(7 a = E[U(7)| T < k]P(r < k).

Then

(8) E[W(r)|T<Ek]P(r<k)=E[U(r) + B |T<Ek]P(r< k)

<ap+ 1.
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Observe also that
E[U(T)|k<T< ] - k

®) EWn|k<r<w] Ek+1

and
(10) ElUG) |7 =] 2o (1= )7,

since if 7 > k it is possible to partition the set {R(0), R(1), ---R(r — 1)} into disjoint
subsets in such a way that each subset contains a single failure and at least & successes all
of which occurred before the failure (cf. inequality (6)). From relations (7), (8) and (10) we
obtain

’

_ o+ E[U()|k<7<]Pk<7<%) +k(k+1) (1= B)'Pr =)
T MA L+ E[Wn|k<r<o]Pk<r<o) + (L—B) Plr = )

Now «ar < &, and so

Ap k
< —

11 .
(1) ar+1 k+1

This together with inequality (9) implies that
)71 - B)P(r =
(12) W= ar + R+ 1) ( »,lf) (1 = o)
a+ 1+ (1—B)P(r=c0)

To proceed further we need more information on P(r = ). Condition on 6, the
underlying parameter of the sequence R(0), R(1), --- . Then

Plr=|0) =6"P(S2 Tr=mk+1),m=1,2, --- ),

where conditional on é the random variables T, T, - -- are independent and identically
distributed with

P(Ti=1|0)=(1-6)8"" =12 ...

Let Yy, Yo, - - - be independent exponentially distributed random variables with unit mean.
Then (—log #)"'Y, is a random variable which is stochastically smaller than 7' and so

1
P(~r=00|0)20kP<;1— =1 Y,=—(k+ 1log b, m=1,2, >

Choose § > 0 and let

0=1—(k+1)'1+28)7"L
Then

limy_... 8% = exp[—(1 + 28)7]
and
limy [~ (% + 1)log 6] = (1 + 28)".
Thus there exists K; such that for all £ = K
Pir=w|f=1—(k+1)7"(1 + 28)7") = exp[—(1 + 28)7"]

1
. P(—Z,"Ll Y,=2(1+8)  ,m=1,2, )
m
But by the strong law of large numbers

1
Zz:n:] Yr_> 1 a.s.
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and so we can deduce that there exists a P; > 0 such that
1
P(;Zr’ll Y, =2(1+8),m=1,2, ) = P,

Thus there exists a @; > 0 such that for all 2 = K
Pr=w|=1-(k+1)7'1+28)7")=Qs.
Now P(r = x| 8) is an increasing function of 8 and hence
P(r =) = @ F*((k+ 1)7(1 + 26)7Y)
for £ = K;. Thus, from inequalities (11) and (12),

W= o+ k(E+ 1)1 - B)QF*((k + 1)1 + 28)™1)

(13) a+ 1+ (1=B)7'QF*((k+1)71(1 + 26)70)

for £ = K;s. Now choose % as a function of 8 so that

(14) 0Qs(k+2)'F*((k+2)'1+28) ) <1-8
=8Qs(k + 1)T'F*((k + 1)7'(1 + 28)7Y).

Observe that as 8 approaches one, the chosen value of % approaches infinity, since F*(z)
> 0 for all 2> 0. From inequalities (13) and (14) it follows that for B sufficiently close to
one, or equivalently for & sufficiently large,

p=1l—Q1+8)k+1)7L
For B this close to one define p = ug(F') by
p=1—QQ+8*+1"

and for other values of 8 let ug(F') = vg(F). Then ps(F) < vs(F) and further, from inequality
(14), for B sufficiently close to one

0Qs(1 — w2+ —p) F*(1-wE2+8-p ' 1+20)7")<1-4

Also
24+86—p)=1+28
and so
8Qs(1 — p)(1 +28) "F*((1 — ) (1 +28) ) <1 —§B.
Thus

1+ 28

lim supg.1(1—8)"F*((1— w)(1 + 26)7%) < 50,

from which assertion (5) follows. 0

REMARK 3.4 The bounds obtained in Theorems 3.1 and 3.3 also apply to rather more
general bandit processes. Consider, for example, a bandit process in which the rewards
(R(0), R(1), - - -) are a sequence of independent bounded random variables with common,
but unknown, distribution function H. Without loss of generality we can assume the
rewards lie in the interval [0, 1]. Suppose that the initial state of the bandit process is a
prior distribution for H, and let

F(z) = Prob{ f 6 dH(9) < z}

where the probability is evaluated with respect to the prior distribution for H. Let vg be
the Gittins index of the bandit process in its initial state. Then there exist upper and lower
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bounds, As = v = g, satisfying relations (3) and (5) respectively. To establish the upper
bound consider an informative arm which reveals the distribution H after the first pull,
and proceed as in the proof of Theorem 3.1. To establish the lower bound let R’(¢) be a
Bernoulli random variable with mean R(¢), and observe that the lower bound can be
achieved using stopping times based solely upon the sequence (R’(0), R’(1), ---). Note
that these bounds apply even if continuation of the bandit process at time ¢ supplies more
information about H than just R(¢). For example in a sequential clinical trial there might
be more than just two possible responses to a treatment, and a patient’s response might be
just part of the information about the treatment acquired from observation of that patient.
We shall not pursue the point further; the results to be obtained in the next section depend
not just upon the bounds on the Gittins index, but also upon the way the Gittins index
alters as new information becomes available.

REMARK 3.5. Upper and lower bounds on vs(F') follow from Theorems 5.1 and 5.2 of
Berry and Fristedt (1979); see their Example 5.3. Their upper bound corresponds to the
Gittins index of a bandit process which behaves as does a Bernoulli bandit process except
that upon the occasion of the first failure the true value of the parameter becomes known.
The upper bound of Berry and Fristedt is thus sharper than that obtained in Theorem 3.1.
Our upper bound will however be sufficient for our purposes. It is determined by a slightly
simpler implicit relation (viz. equation (4)) and generalizes to the situation described in
Remark 3.4. The family of lower bounds derived by Berry and Fristedt correspond to
stopping sets of the form

Dr={(s, f): f>0,s <k}

and are not sharp enough for our purposes.
The function F*(z) varies regularly with exponent p(0 < p < ) if it can be written in
the form

F*(2) = 2°L(2)
with L slowly varying at the origin (Feller, 1971). Thus if

dF(2) _ (a+b+1)!

dz a!b! 2l -2)°

corresponding to a Beta distribution with parameters (a, b) then F*(z) varies regularly
with exponent b + 1.

THEOREM 3.6. If F*(z) varies regularly with exponent p then for any fixed 8 > 0 and
all B sufficiently close to one
1=B)y"<1—wF)<(@1-pB)"°

where .
k= (p+ 1)L

PRroOF. Since F*(z) varies regularly with exponent p,
2P < F*(2) < z°7"
for any fixed n > 0 and all z sufficiently small. Now from Corollary 3.2
lim infs (1 — B)7'(1 — »)F*(1 — ») > 0.
Thus
lim infz1(1 — B) 7' (1 — »)**'™" >0

for all fixed n > 0, and the first inequality of the theorem follows.
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From Theorem 3.3
lim supg_1(1 — 8) "' (1 — »)F*((1 — »)(1 —¢)) <
for any fixed ¢ € (0, 1). Thus
(1 — &) lim supp_1(1 — B8)7'1 — »)""" <

for any fixed n > 0, and the second inequality of the theorem follows. [

4. The least failures rule. In this section we shall consider a multi-armed bandit in
which each of the n constituent bandit processes is a Bernoulli bandit process with initial
state F. We can write the state of the multi-armed bandit at time ¢ as x(¢) = (s1, fi, sz, f2,
-+, S, fn), where s; (respectively f,) is the number of successes (respectively failures)
observed so far on arm i. Write vg(s, f) for the Gittins index of an arm in state o°¢F.

LeEMMA 4.1 (Bellman). For alls, f € Z.
vp(s, f) <wp(s + 1, f) VB € (0, 1).

Proor. See Bellman (1956, Theorem 2), or for a recent generalization Berry and
Fristedt (1979, Theorem 4.1). O

REMARK 4.2. Lemma 4.1 in conjunction with Theorem 2.2 establishes that a 8-optimal
policy for the multi-armed bandit has the stay-on-a-winner property (cf. Berry, 1972) for
all B € (0, 1).

LEMMA 4.3. If F*(2) varies regularly then for all s, f € Z,, n > 0, there exists B < 1
such that

va(s + n, f+ 1) < (s, f) VB € (B, 1).

Proor. If F*(z) varies regularly with exponent p then (0°¢/F)*(z) varies regularly
with exponent p + f. Similarly (0°*"¢/*'F)*(z) varies regularly with exponent p + f + 1,
whatever the value of n. The result thus follows from Theorem 3.6. 0

REMARK 4.4. Observe that the constant B in Lemma 4.3 depends upon the values s,
f and n. Indeed the rather coarse bound »4(F) = [} z dF(z), obtained using the stopping
time 7 = 1 in definition (2), shows that for fixed s, f the constant B in Lemma 4.3 can be
forced arbitrarily close to one by choosing n sufficiently large.

Call a policy 7 a symmetric Markov policy if 7.(i|A(t)) depends on ¢ and A(¢) only
through x(¢), so that we can write m.(i| A(t)) = #(i| x(¢)), and if

(S;, fl) = (Sj, f}) :W(iISI, fl; Tty fn) = W(j’31, fl) ) fn)

Theorem 2.2 shows that from amongst the symmetric Markov policies there exists one
that is B-optimal: call it 7;. We shall no longer require the subscript ¢ on 7, and hence no
confusion should arise. Recall that =; is shorthand for the collection of distributions
(m5(x), x € X") where mg(x) = (m5(i]|x), 1 =i =< n).

Let

S] = {l fl = minlsjsn f:,},
S = {i:i € 81, s; = maxjes, s}

Let m be the cardinality of S.. Define a symmetric Markov policy m.r, called the least
failures rule, as follows:

WLF(SI) fl) M) fn)=m_l lESz,
=90 otherwise.
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The next theorem establishes that the B-optimal policy 7z tends to a limit rule as
approaches one, and that the limit rule is the least failures rule.

THEOREM 4.5. If F*(z) varies regularly then
T —> TLF as B—1
in the sense that for each (s, fi, -+, f.) € Z2" there exists B < 1 such that
7g(s1, fi, + o+, fu) = wLr(s1, fi, o005 fo) VB € (B, 1).

Proor. Consider a particular state (si, fi, - -+, fz). Theorem 2.2 together with Lemma
4.3 establish that for 8 sufficiently close to one the distribution mg(si, fi, «--, fz) is
concentrated on the set S;. Theorem 2.2 together with Lemma 4.1 then imply that
ms(s1, fi, -+, f.) is concentrated on the set S.. The symmetry of =z ensures ms(si,
fi, +++, f») is uniform on the set S, and hence identical to 7 r(s1, fi, « -+, fr)-

REMARK 4.6. Remark 4.4 shows that the convergence obtained in Theorem 4.5 cannot
be uniform over states (si1, fi, -, f»). Define

C,e= {(81, fl, sy, fn) : 77/3(5‘1, f1, seey, fn) = (1, fl, ety fn)}

Then the B-optimal policy 7; agrees with the least failures rule until the state of the multi-
armed bandit leaves the set C;. Let T} be the first stage at which this occurs. Since only
a finite number of states are accessible within a finite number of stages, by making 8
sufficiently close to one it is possible to ensure that the minimum possible value for T'% is
arbitrarily large. This defines another sense in which the B-optimal symmetric Markov
policies tend to the least failures rule as the discount factor approaches one.

REMARK 4.7. The least failures rule is a slight variation on the play-the-winner rule,
introduced in connection with two-armed bandits by Robbins (1952). The play-the-winner
rule is equally likely to pull arm 1 or 2 at time ¢ = 0, and thereafter stays with arm 7 if a
success has just been achieved with that arm and pulls the other arm otherwise. For an n-
armed bandit the obvious generalization is the cyclic play-the-winner rule: this is equally
likely to pull any of the n arms at time ¢ = 0, and thereafter stays with arm i if a success
has just been achieved with that arm and pulls arm i + 1 otherwise, where arm n + 1 is
identified with arm 1. A variaticn of the cyclic play-the-winner rule is mentioned by Sobel
and Weiss (1972). This labels the n arms in a random order at time ¢ = 0, and reorders the
n arms according to the number of successes (using randomization for ties) after every
complete cycle of n failures, one from each population. This variation is precisely the least
failures rule.

Let R,(t) = R,(x.(t), x.(t + 1)) be the reward received on pull ¢ + 1 of arm i. To facilitate
the simultaneous discussion of more than one policy we shall henceforth define all random
events on a common probability space, with a sample point w of this space determining the
sequences (x,(¢), t=0,1, --.), 1 =i < n, and hence the sequences (R,(¢),t =0, 1, --.),
1 =i < n. The behaviour of a multi-armed bandit can thus be regarded as a function of the
sample point w and the policy adopted. If (R(¢),t=0,1, ---) and (R'(t),t=0,1, -.-) are
the sequences of rewards obtained from a multi-armed bandit under the least failures rule
and the cyclic play-the-winner rule respectively then it is readily shown that

ST R(t) — i R'(t) |=n—1 T=1

(for all w). In this sense there is little difference between the least failures rule and the
cyclic play-the-winner rule.

REMARK 4.8. Under the least failures rule the number of consecutive successes
preceding each failure on arm i has a geometric distribution with mean 6,(1 — ,) . Hence,
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from the strong law of large numbers,

. 1o 1 L6
llInT_.m—T—, Z;ol R(t) = ( ;‘.1 1= 0;) i=1 a.s.

and so
1

1
(15) IMT_,m E[—T-‘ tT=—01 R(t) ‘ 01, 02, LCIUN onj] =< ;‘=1 1— 01) ?—1

1-6;°

The limit (15) is a weighted average of 61, 6;, - - -, 6, and is less than max(é, 6, -- -, 6,)
except when max(6;, 6, -+, 6,) =1 or 6, = 6, = ... = §,. Despite this we shall see that
as B8 approaches one, the performance of a B-optimal policy as judged by the expected
average reward criterion approaches the best possible, namely max(4,, 6;, ---, 6,). We
shall establish this as a consequence of the structure of a 8-optimal policy, which we now
investigate.

The next lemma establishes the obvious result that if an arm is pulled often enough its
Gittins index will converge to whatever the (fixed) value of 3.

LEMMA 4.9. Let (x(t), t =0, 1, - --) be the sequence of states obtained if a Bernoulli
bandit process is continued at times t = 0, 1, - - .. Then with probability one

vg(x(t)) — 6 as t— oo,

where 8§ is the parameter of the Bernoulli reward sequence generated by the bandit
process.

Proor. A lower bound on the Gittins index is obtained using the stopping time 7 = 1
in definition (2); this gives
1

(16) vp(Ge) = J’ 2dG(2) = g,

say, where we identify the state x(t) with a distribution G;. An upper bound is provided by
the informative arm used in the proof of Theorem 3.1: from equation (4)

(17) As(G:) = vp(Gy),
where A = Ay4(G:) satisfies

1 1
1- ,3)[)\ - J z th(z)] = ,BJ’ (z — A) dG(2).
0 A

From inequalities (16) and (17)
g&=<A

and hence
1

(18) 1-BA-g)=8 f (z — &) dGi(2).

&

Now with probability one G: converges weakly to a degenerate distribution with unit mass
concentrated at 4 as ¢t — «. Thus

g— 0 a.s.
and from inequality (18)
A— 0 a.s.

The desired result then follows from the bounds (16) and (17). O
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REMARK 4.10. Consider again a multi-armed bandit in which each of the n constituent
bandit processes is a Bernoulli bandit process with initial distribution F, and assume till
the end of this remark that F has no atoms. This assumption ensures that 6., 6, - - -, 8, are
distinct (with probability one, a phrase which will be omitted henceforth). It then follows
from Lemma 4.9 that a B-optimal policy pulls just one arm infinitely often. This conclusion
also follows from the important work of Rothschild (1974), at least when F has a continuous
density (Rothschild’s results also deal with the case where the arms may be dependent).
Let

T% = inf{T : 3I such that ms(I|x(t)) =1 vVi=T}.

Then T% < ®, and, from time ¢ = T3 onwards, the S-optimal policy s pulls just one arm,
say arm I. Let

P;} = P(6; = max(b,, 0>, ---, 6,) |01, 0y, -+, 0,)
and let
X(T§) = (x:(t1), xa(t2), « - -, Xaltn)),

so that ¢, is the total number of times the policy 7z pulls arm i, for i # I. Assume now that
F*(2) varies regularly, and consider the effect of letting 8 tend to one. From Remark 4.6
it follows that Ts — o, and hence #, » . Thus, from Lemma 4.9 it follows that P; — 1.
Now if (R?(t), t =0, 1, --.) is the sequence of rewards obtained using the policy 7,

1
limr—. E [-T- ST RA(2)

6,0, ---, 0n] = Py max(6,, 6>, - -, 6,),

and so as B approaches one the performance of m; as judged by the expected average
reward criterion approaches the best possible.

The B-optimal policy 7; can be regarded as having three regimes. Between times ¢ = 0
and ¢ = T} it corresponds to the least failures rule. Between times ¢ = T} and ¢ = T3 it
moves further and further away from the least failures rule, and from time ¢ = T3 onwards
it pulls just one arm, judged in some sense to be the best. Observe that although the end
of the first regime T} is a stopping time for the Markov process {x(¢), t =0, 1, --+}
generated by the multi-armed bandit under the policy 7z, the end of the second regime 7'
is not. Indeed at no time ¢ = T is it possible to determine from {x(¢),t=10,1, ..., T}
whether or not the third regime has started. This analysis makes clear that the least
failures rule should not be expected to perform well under either a discounted or expected
average reward criterion, since it corresponds to just the first ‘information gathering’
regime—the third, and most rewarding, regime is lost under the limiting process of allowing
B to tend to one.

REMARK 4.11. Assume now that F*(z) varies regularly but allow the distribution F(z)
to have atoms. There is thus a positive probability that two or more of the parameters 6,
6, - - -, 6, are equal. If §; # G; then there is probability zero that the S-optimal policy will
pull both arms ¢ and j infinitely often. In the event that §; = 6; the B-optimal policy may
pull both arms i and j infinitely often either with positive probability or with zero
probability—examples can be constructed to illustrate each of these two possibilities. Thus
the third regime of the policy may take a more complicated form, with a subset of the
arms each being pulled infinitely often. Nevertheless it is still straightforward to show that
as B approaches one the performance of 7z as judged by the expected average reward
criterion approaches the best possible. Hence we have the following result.

THEOREM 4.12. If F*(z) varies regularly then

1
limg ,; limz .o E[?‘ Tt RE(t)

01,6, ---, ﬂn] =max(fy, 0, -+ -, 0,).
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REMARK 4.13. Robbins (1952) proposed another rule for the two-armed bandit, a slight
adaptation of which can be described as follows. Choose an increasing sequence of integers
0 = ao, a;, - -- such that

G —a=n r=0,1, ...

limr_mo<&> = o0
r

At stagest=a,,a,+ 1, ---,a, + n — 1 pull arms 1, 2, ..., n respectively, for r =0, 1,
-+ +. At any other stage pull an arm for which the ratio of successes to trials is maximal. If
(R”(t), t =0, 1, --.) is the sequence of rewards obtained from the multi-armed bandit
using this policy then, following Robbins (1952),

and

1
limz e T L R”(t) = max(y, 6, ---, 0,) a.s.

from the strong law of large numbers applied to each of the sequences (Ri(¢), t = 0,
1, .-.),1 <i=<n,and hence

limz.. E [% SE R (¢)

01, 02, ey, 0,1:] = max(ﬂl, 02, ceey 0n)
Thus this rule performs optimally according to the expected average reward criterion.

REMARK 4.14. Throughout this paper it has been assumed that F(z) < 1 for all
2 € (0, 1), and many of the results depend upon the additional condition that F*(z) varies
regularly. If

sup{z: F(z) <1} =60*<1

it is still possible to obtain bounds on vs(F') similar to those described in Section 3 but the
least failures rule is no longer the limit rule for the multi-armed bandit. This follows from
Theorem 3.1 of Berry and Fristedt (1979) since if

S

*
s+f>0

then o°6F is strongly to the right of F and so
(0’6 'F) = vs(F) Vg € (0, 1).

In contrast, it is readily shown that the conclusion of Theorem 4.12 holds with no condition
on the distribution function F.

REMARK 4.15. In his work on the finite horizon two-armed bandit Berry (1972)
includes a conjecture which can be phrased as follows: if the number of failures differs
between the two arms then for a distant enough horizon the optimal policy will choose the
arm with the smaller number of failures. Despite the close relationship between Cesaro
and Abel summability there seems to be no immediate link between Theorem 4.5 and
Berry’s conjecture. The observation contained in Remark 4.14 suggests however that some
restriction on the function F may be necessary for Berry’s conjecture to hold.
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