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THE ADMISSIBLE BAYES CHARACTER OF SUBSET SELECTION
TECHNIQUES INVOLVED IN VARIABLE SELECTION, OUTLIER
DETECTION, AND SLIPPAGE PROBLEMS

By RoNaLD W. BUTLER

The University of Texas

We demonstrate the admissible Bayes character of two residual error
criteria for subset selection of independent variables in normal multivariate
regression models. In particular, suppose a linear model includes the indepen-

. dent variable list X, and suppose all additional independent variable subsets
of size s (fixed) from list Z are under consideration for inclusion in the model.
Let X be the regression error covariance matrix and £(2) the usual unbiased
estimator of = which assumes a model fitting the variables in list X(X U &,
where & C Z of size s). Then two best subsets of Z of size s may be characterized
as minimizing tr £7'8, and I2y| /| £| over all subsets & of size s in Z. We
show that the significance tests for including-excluding these two best subsets
are admissible proper Bayes rules for fixed effect variables in list Z. If Z is
allowed to encompass random and mixed effects, then the latter test is
admissible proper Bayes in a class of location and scale invariant tests. Special
cases of the general selection problem include multiple outlier detection and
slippage tests where the best subset criteria above lead to Studentized residual
outlier and slippage detection criteria. These tests are derived using models
which explain outliers and slippage as locational biases and/or inflated vari-
ances.

1. Introduction. This paper demonstrates the admissible Bayes character of two
selection criteria for independent variables in normal multivariate regression models. In
particular, suppose a linear model includes the independent variable matrix X. Let the
columns of n X m matrix Z represent m additional independent variables that are under
consideration for inclusion in the model. Suppose X is the regression error covariance
matrix, and £ (&) is the usual unbiased estimator of £ which assumes a model fitting X
(X and Z; where ¥ C {1, ---, m} of fixed size s < m, and Z, is the n X s matrix of
Z-columns indexed by #). Then two best subsets of s variables in Z may be characterized
as minimizing
(1.1) tr27'8,  and |24]/|Z]

over all subsets C {1, -« - , m} of size s. We show that the significance tests for including-
excluding these two best subsets are admissible proper Bayes decision rules for fixed effect
variables in Z. The proof of these results follows the approach of Kiefer and Schwartz
(1965). If the choice of independent variables is allowed to encompass random and mixed
effects in Z, then the latter test is shown to' be admissible proper Bayes when restricted to
a class of location and scale invariant tests.

In the case of univariate multiple regression, criterion (1.1) has been used almost
exclusively to determine the best subset of s independent variables. For other criteria see
Allen (1971, 1974), Schmidt (1973), and Stone (1974). Apparently the justification for this
use has been based on the fact that if the true model can be selected from the matrix Z,
then it is determined by the pair (% s) with smallest s for which E(6%) attains its minimum.
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Now this use can be justified, at least for the choice of the best & of fixed size s, on the
admissible Bayes character of the related significance test.

Although the amount of computation necessary to minimize (1.1) is much greater than
that required by forward selection and backward elimination techniques, the latter have
been found in general to be unsound as demonstrated in Lindley (1968) and Hocking
(1976). Fortunately, reasonably efficient software has been developed to minimize (1.1) in
univariate regression by Beale, Kendall, and Mann (1967), LaMotte and Hocking (1970),
and Newton and Spurrel (1967). For additional references and a general survey of variable
selection techniques see Hocking (1976).

Special cases of this general selection problem include outlier detection in the normal
multivariate regression model and the related problem of slippage detection. By using
special independent dummy variables in the variable selection problem, the final sections
show the admissibility of Studentized residual outlier detection criteria and their related
slippage tests. These tests are derived using models that explain outliers and slippage with
locational biases, inflated variances, or a combination of the two.

2. Notation. Throughout this paper we will be concerned with the following model or
a special case thereof:

2.1) Y ioixty = Xnxp) Oty + Zinsmy* Aimxcry + Enxch)

where X and Z are fixed, © and A are fixed parameters in Section 3, and either fixed or
random normal effects in Section 4, and the rows of E are independent with joint density

2.2) f(E|X) o< |Z]| " %etr —(Z'E'E)

where etr(-) = exp{tr(-)}. Let Y = (yy, -+, y,)’and E = (e}, --- , €) so that e, -+, €,
are i.i.d. with law MVN.(0, = > 0), where % is dimensionality and = > 0 denotes positive
definiteness. Let A = (81, - -+, 8,) and Z = (zy, - - , Zn).

We assume the idealized setting where X is known to be relevant in the regression and
all other relevant variables along with others are included in the pool Z. It is also assumed
that the choice of variables from Z is relevant to all # dimensions of Y. This is not a
restrictive assumption, however, since uninvolved dimensions may be added to the regres-
sion by conditioning as shown in Section 7.

Let ¥= {i(1), - -+, i(s)} C {1, - -- , m} index a subset of variables of size s, and suppose
Zy= (), o+, Zuw) s n X s, Bp= (B, +++, 8u9) is s X b, and X = (X, Zo) is n X (p +
s) and of full rank p + s for any & Let

M=I-XXX) X My=1- XAX/Xs) Xy,
S=YMY = (n-p32 Sy=YMY = (n—p — 5),,
A ’ -1y é{y’ ’ —1v7/
0=XX)"'XY <A (/)) = (X X)) XY,
and E=Y-Xx6 B,=Y-X6,- Z,A,.

Square roots of positive definite matrices will be the unique symmetric positive definite
ones. With an abuse of notation, the function L(- | -) will refer to the likelihood of an
arbitrary first argument given parameters in the second argument. Statements which are
true with probability one will simply be stated as true so that the final Bayes decision
rules are true with probability one.

In the special univariate case,

Yoxt) = Xnsip)* Opx1y + Zinxmy* Simx1) + €wmxyy
where € = (e, - -, ) is i.i.d. 410, 0?), and
6*=yMy/(n — p) and 6% = y'M,y/(n — p — s).

3. Variable Selection in Model I. In the following analysis, assume A represents
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some fixed unknown parameter matrix and the “true” model is a special case of (2.1)
including either s or O of the variables from the pool Z. The multidecision question we
wish to consider is the following: Which s variables of Z (if any) best describe (in terms of
an admissible decision rule) the model that has generated our data? An answer to such a
question makes no claim to determining s, the number of variables in the true model.
However, it does reduce the selection process considerably, and suggests the statistics upon

which the choice of s should be based. This decision problem has ’:) + 1 possible
hypothesized states that may be denoted as

H02A=0
3.1) ' Hy: 8, %0 if i€y
=0 if ig¥

for all subsets Sof {1, -- -, m} of size s. It is also required thatn =p + & + s.
We shall let Do(D,) be the decision that H«(H,) is true and assume a zero-one loss
function according to whether we hit-miss the correct decision.

THEOREM 3.1. Let Py=tr(£7'2,) and Ay = | £/ | E| for any S of size s. Then for
model (2.1) and any ¢ > 0, the decision rules

DO lf IninyPyZ C

(3.2)
Dy* lf Py* = IninyPy< C
and
D() lf m].nyAyZ C
(3.3)

Dy if Ay =mingAy<c

are admissible proper Bayes decisions. Rule (3.3) requires the additional assumption
that n — p — k — 2s = 0. Both of the rules results from classes of prior distributions with
properties (1) and (2).

(1) Equal prior weight is given to all hypotheses in {Hy: #% = s}.

(2) The conditional prior density of (Z,MZy)"*As = py given Hy is the same for all
& [See (3.12) and (3.16).]

(3) For (3.2) the prior distribution on Ay, ©, and X given Hy is constrained to b° —

wZL'sMZ,Ay> 0, for arbitrary constant b > 0. This suggests high discriminatory power

between H, and Hy« near H,. [See (3.15).]

The best variable subsets, ¥* and ¥*, are the same if either s = 1 or k = 1. In the
univariate case * = &* is the Swhich minimizes 6%/6°.

ProoF. With zero-one loss function, the Bayes rule is to decide the hypothesis with
maximum posterior probability. Therefore, we decide

D, if Pr(Ho|Y) > max,Pr(Hs|Y),
(3.4)
Dy if Pr(Hy |Y) = maxePr(Hy|Y) > Pr(Ho|Y).

Such posterior probabilities may be evaluated by integrating the likelihood functions with
respect to prior measures on the parameters. Using property (1) for the priors, then
Pr(Hy,|Y) o< ®(Y | Hy) where

(3.5) O(Y|Hy) = J L(Y|%, ©, Ay, Hy) dII(Z, ©, Ay| Hy),
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and Pr(Ho|Y) o< po®(Y | Ho) where
(3.6) ®(Y|Hoy) = fL(YIE, O, Hy) dII(Z, © | Hy)

and po > 0 is a constant.

The quantities (3.5) and (3.6) are evaluated using priors on the parameters that were
developed by Kiefer and Schwartz (1965) in the context of testing the two decision problem
Hg vs. Ho. In this paper, they also derive a test statistic for the multidecision problem of
classifying a population. We extend these techniques further to include the multidecision
model (3.1).

In order to specify dI1(Z, O, Ay | Hy) we first need to transform the data and consider
the canonical form of the likelihood under He.. This is done in order to isolate parameter
Ay as the mean of a subset of the transformed data (see Anderson (1958), p. 224). Let V
= (V1, V3, V3) be an n X n orthogonal matrix depending on &such that

Vi=MZ,(Z,MZ,)""? is nXs
and
V.=XX'X)""? is nXxp.

Then transform U; =V Y for i = 1, 2, 3 so that

EU) = (ZyMZy)"? Ay = ps is sXk,
(3.7)
E@U,) = X'’X)"?0 + (X'X) ' X'ZsAs=v, is pXk,
and
E(Us) =0 is m—p—s)XEk.

From this canonical reduction, updating formulae for including additional variables in the
model are easily derived in the appendix for later use.

In order to compute ®(Y | Hy) in (3.5) we use the canonical form of L(Y | £, ©, A, Hy)
under He. This is allowable since if U’ = (U4, Uj, Ujs) = Y’V then

L(Y|Z, 0, Ay, Hy) o |Z | %etr —%(E'E'E)
= |Z|™%etr —%(Z'(U — EUY'V'V(U — EU))
o< L(U|Z, py, vy, Hy).

To compute ®(Y | Hy) in (3.6) we can use the canonical form of the likelihood for any &

Now it is possible to specify the priors that result in rules (3.2) and (3.3). For both rules
the priors under H, will be specified on X, p., and verather than X, O, and A,

Note that S = U; Us and S = U} U, + Uj Us (see also the Appendix), so that both
decision rules do not depend directly on U, and U, does not vary with & This suggests
using prior distributions on X and »esuch that the same factor of U, enters into ®(Y | Hy)
and ®(Y | Hy) for all & This has the effect of eliminating U, and consideration of the
nuisance parameter O from the decision problem. Such priors are used for both decision
rules and are given in Lemma 3.1 of Kiefer and Schwartz (1965) as follows: Suppose =™*
= C + AA’ with prior probability one, where C > 0 is 2 X k with some prior distribution
and A is & X s with prior density to be specified later. Also let dI1(vs|C, A, Ay, Hy) be
such that with prior probability one

(3.8) vl = AT,

where I is p X s and consists of conditionally i.i.d. row vectors given C, A, and H, each
having law MVN,(0, B™") where

(3.9 B=I-A'(C+ AA)'A.
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The independence of the columns of I'” results in the conditional independence of the
columns of »% given C, A, and Hy.

This collection of conditional priors has the effect of giving © a different distribution
under each Hy even though H,makes no reference to ©. While such a property is hardly
desirable, the choice of priors by Kiefer and Schwartz was not intended to express prior
beliefs. The Bayesian framework is simply used to demonstrate the admissibility of (3.2)
and (3.3).

Under the canonical reduction above for any %, E(U; | Hy) = (X'X)"?0 = v»o. Under H,
and given C and A, we let dI1(»| C, A, Ho) = dIl(v4| C, A, Hy).

The effect of such priors on the calculations in (3.5) and (3.6) may be viewed through
their effects on L(U; | »y; Hy) integrated over I'. Since

(3.10) f L(Uz|v4 A, C, H,) dTI(T|C|, A, Hy) o | C|”2 etr{—(CU3Uy)},

then this is the only factor contributing to Pr{H|Y} from U,. Factor (3.10) does not
depend on #and appears in the computation of Pr(Hy|Y) for any ¥and Pr(H,|Y) so that
U, and ». are effectively removed from consideration.

To show that criterion (3.2) is Bayes, consider the following additional priors on s and
X taken from equation (4.1) of Kiefer and Schwartz (1965). Under H,and H, let

(3.11) Tl'=C+ AA’

and under Hlet

(3.12) pe= (Z,MZ,)"*Ay= DA’E

for random %2 X s matrix A and arbitrary constant & > 0. Now, under the various

hypotheses, let the priors on A given C be absolutely continuous on ks-dimensional space
with densities

(3.13) dII(A|C, Hy) o< |C|" P92 C + AN’ |~ P 2etr[ b2 {A’(C + AA’)} /2] dA
and
(3.14) dII(A|C, Hy) o< |C| " P~972|C + AA’| P72 dA.

These densities are integrable when n — p — & — s = 0. Let C have a Wishart (I, £ + s)
law under all hypotheses. Excluding the contribution from U, and after integrating over
A and C then

Pr{H,|Y)oc|S| ™ %etr {(-%b%(S'S,)}
Pr(Ho|Y) o< po| S|~*?

so that (3.2) is a Bayes rule.
The distribution on C > 0 is required in order that the prior support on Ayand 2 under
His not degenerate. These priors are supported on

and

(3.15) TN AAN =37 - 2TV ALZLMZALE T /B2 > 0,

or when 52X — ALZ/MZ,A,> 0. Note from (A2) of the Appendix that the covariance of
the ith and jth columns of Ay is (Z “MZy) " 's,, where (0;) = X so that the support of A,
and X is a Studentized region less than b*I,.

We now show that rule (3.3) is proper Bayes when n — p — & — 2s = 0. Priors dI1(v,| C,
A, Ay, Hy) are as before in (3.8). The priors on Ayand X given Heare taken from expression
(4.4) in Kiefer and Schwartz. Let ' = C + AA’ where dII(C| Hy) = dII(C| Hy) is the
Wishart (I, n + s) density for any & Let dIl(us| C, A, Hy) be such that

(3.16) pe=DA'S
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where D is s X s and cunsists of i.i.d row vectors each of law MVN(0, B™!), where B is
given in (3.9). Let

(3.17) dII(A |C, Hy) o< |C|"P~*7R2|C + AA|~"P~2 dA

and suppose dII(A | C, Hy) is given in (3.14). The requirement that n —p — 2 — 2s = 0 is
necessary for the integrability of (3.17). Then we may compute (3.5) and (3.6) by completing
the square on D, and integrating successively dD, dA, and dC so that

(3.18) Pr(H,|Y) <|Sy|™* and Pr(Ho|Y) o po| S|/

and (3.3) is a Bayes rule. 0
In contrast to decision rule (3.2), the support of the prior distributions leading to rule
(3.3) includes the entire parameter space.

4. Variable Selection in Model IT and Mixed Models. Now let the parameter A be
a random variable that allows for normally distributed random effects in the design. The
model we assume here allows the parameters in # and A to be either fixed or random
effects. This was not possible in Section 3 because of the type of prior distributions assigned
to the parameters under each hypothesis. We again consider the selection of s (if any)
independent variables from the pool Z in the hypothesis framework of (3.1), where now
each 8; = 0 must be qualified as true with probability one.

For this model the admissibility of selection criterion (3.3) is again demonstrated using
Bayesian techniques. This admissibility property is restricted to hold over the class of
decision rules that are invariant to the following transformations:

1. Translation of Y by a matrix of column vectors, each in the column space of X.
This allows invariance to the rescaling of independent variables known to be contained in
the true model. ‘

2. Non-singular £ X % transformations of the rows of Y which includes rescaling of the
data Y.

Rule (3.3) results from random effects and priors with these properties:

1. Equal prior weights are given to all hypotheses in {Hy: #% = s}.

2. IfAy=(b.1), -+, 8.9) and 8% = (8/u), - - -, 8i(5)) is 1 X ks, then the distribution of
8y, given £ > 0 and Q > 0 which is s X s, is MVN.(0, Q ® X).

3. The variance-covariance scalars of Q are assigned conditional priors such that the
distribution of Q(Z/MZ,) under H. is the same for all ¥ Such priors make E (2| X, H.)
independent of %; thus 2 is made a useful benchmark for comparing the various £ over
all & This result follows by noting that

E®Z|Z Ay, Hy) =2 + ALZMZA,/(n — p) so that
4.1
@ E|Z,Q H) = (1 + tr QL/MZ,/(n - p)}=

and therefore the prior mean of 2 is the same under each H..

THEOREM 4.1. Let Ay = |£,|/|£|. Then, under model (2.1), hypothesis framework
(3.1), and mixed model assumptions on © and A, the rule
Do lf minyAyZ c
(42) D(c/' lf Ayﬁ = min;,»Ay< c

is admissible Bayes in the class of invariant decisions characterized above.

ProoF. Suppose y=A,X 2= (g, --.,g)iss X kand gt = (g}, ---, gk) is 1 X ks.
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Then the prior distribution of A,given His such that {g, - - -, g:} are i.i.d. with MVN,(0,
Q) law. This distribution will be used below.

If a decision rule is to be invariant to the transformations above, then it must be a
function of the maximal invariant. In our invariant Bayes approach, this justifies the use
of the likelihood for the maximal invariant rather than Y. The use of the maximal invariant
likelihood function also results from the assumption of Jeffreys’ (1937) invariant improper
prior dII(Z, O | Hy) = dII(Z, O | H) o< | Z|**V/2 We denote the maximal invariant as v’
= (vi, +++, Vrp-z), Which is 1 X (n — p — k)&, and derive it below.

The matrix E = MY is invariant to the type 1 transformations given above. Let & be an
n X n orthogonal matrix such that

aMe = (I"‘P 0).

0 0
Then we may remove the singularities in E by transforming so that QB = (wy, -, Wi—p,
0,...,0). Let W = (Wyn_p—r+1, * * -, Wn—p) be k X k and non-singular with probability one.
Transform so that
(4.3) vi=Wlw, i=1.-.,n—p
and (Va—p—r+1, ***5 Va—p) = L. The v/s are invariant to type 2 transformations and it is
easy to show that v/ = (v, - -+, V,_,—) is the maximal invariant.

Straightforward Jacobian transformations can now be used to show that
(4.4) L(v|Ay, Hy) < j | T"7* exp[-%{TF (T'vi — 3:)’ (T'vi — q:) }] AT,

where T = WE2 q = E(W/| Ay, Hy)Z V2 = i*® row of ¥’MZsTs, and | T | = | det T|.

Quite a lot of tedious matrix algebra and transformations are required to arrive at
Pr(Hy|v, Q) from (4.4). It is expedient to simply describe the computations. Before
integrating d'T, express the exponential of (4.4) as a quadratic form in g Since the
exponential of dI1(As| Q, Hy) or dII(g.| Q, Hy) is also a quadratic form in g, then the
integrated likelihood over dg«is a normal integral which reduces to

(4.5) Pr(Hy|v, Q) < | QDy| " J' (T (|7 7* etr[—% {TT'W "B’ (I,
- ZDFZ)EW}1dT

where Dy=Z,MZs,+ Q. Now let G = TT’, H = h(T) be a 1 — 1 transformation, where
h is a differentiable transformation mapping %*-space onto k(k — 1)/2-space. Then by
Lemma 13.3.1 of Anderson (1958), p. 319,

j 19T/3(G, H) || dH o< | G |72,
Using this, along with the fact that (4.5) is a function of G only and not H, then (4.5) takes
the form of a Wishart integral over dG which integrates to
(46)  Pr(Hy|v, Q) < |QDy| W8 |~ P21, — S 'WZ,DHZLE |72
The posterior probability of Hy can be derived as 4
(4.7) Pr(Ho | v) o< po| W28 | ~*=P/2,

What remains is to integrate (4.6) over dI1p(Q| Hy). We assign a prior distribution to
Q under H, as follows. Let (Z;MZ,)"'Q ' = NN’ so that N is an s X s square root with
prior density

(4.8) dII(N | Hy) o< |I, + NN/ |~n-P=P/2gN
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that is integrable when n — p — k& = 2s. After some matrix algebra which involves using
(A.3) of the Appendix, then [ Pr(Hy|v, N)dII(N | Hy) takes the form of a multivariate
beta integral which integrates to

(4.9) Pr(Hy|v) o< |[W™28|~=P72(|§,|/| S|} ~-Pk-972

s0 (4.2) is an invariant Bayes decision rule. 0

Up to this point we have ignored £ > 0 because of our consideration of invariant
decision rules. Suppose prior information about X exists and we wish to include this
additional information in the decision rule and maintain our invariant approach. This may
be accomplished by assuming our prior information is based on hard data, S, =
Yi wiw?’, having a Wishart (Z, ») distribution that results from the i.i.d. sequence {w?9,
.+« , w9} having a.#(0, £) law. Such information may be incorporated into the likelihood,
by replacing the transformation (4.3) with

v.=Wlw; i=1...,n—p
0 __ —1x,0 . __
v, =W 'w), Jj=1 .- v

The net effect of this replacement is the substitution of S + S, for S and n + » for n in the
analysis.

COROLLARY 4.2. If, under the conditions of Theorem 4.1, additional prior information
regarding X is available in the form Sy ~ Wishart (=, v) independently of Y, then the
decision rule (4.2) with

As=|Ss+8)/(n+v—p—35) /|8 +S)/(n+v—p)|

is an invariant admissible Bayes rule.

While s has been fixed throughout this discussion, it may also be assigned a prior
distribution. Suppose s has prior support {0, 1, ---, so} and for fixed s make all the
assumptions that were necessary to obtain rule (4.2). Assume an hypothesis space which
includes UL, {Hy: #% = s} and a zero-one loss function. Then for any function « (s), the
rule which determines ¥ and s by maximizing

k(s) + (n—p—k—s)n[|S]/|S4]]

over all {#: #¥ = s} and s € {0, 1, ---, so} is an invariant admissible Bayes rule. A
suitable k(-) has not been investigated.

5. Outlier Detection. This section demonstrates the optimality properties of various
outlier detection criteria that are based upon the Studentized residuals. These properties
will follow from the two previous sections when outlier detection is shown to be equivalent
to the selection of special independent dummy variables. This fact has also been used by
Dempster (1969) for the computational elimination of individual data points.

We consider model (2.1) and let Ho: A = 0 represent the situation where no outliers are
present in the model. Let s be the number of suspected mavericks, and suppose n — p — &
—s=0and all (n — s) X p submatrices of X are of full rank p. By taking m = n and Z =
I. in (2.1), then H. represents the situation where each data point in {y;: i € &} has a
distinct nonzero bias term added into the model, so that #C {1, ..., n} indexes a subset
of outliers. Under Hy the addition of 8. effectively eliminates {y: i € &} from the
estimator £, so that £,= £(/%) is the usual unbiased estimator of = fitting the independent
variables of X without using { y:: i € &}. The results of Theorem 3.1 yield the following.

COROLLARY 5.1. Suppose data is derived from model (2.1) as above and either there
are s spurious observations caused by biases in location or none at all. Then decision



968 RONALD W. BUTLER

rules (3.2) and (3.3) with
Po=tr£78(/%) and As=|2(/9)|/|2]

are admissible proper Bayes outlier detection rules. Both rules result from a class of
priors with these properties:

(1) Equal weights are given to all hypotheses in {Hy: #% = s}.

(2) The prior density of M(¥)"/?Ay given Hy is the same for all & where M(¥) = (M,;:
;,jE ).

(3) For the test based on {P}, the prior distribution on Ay, ©, and X given Hy has
support such that b*X — A,M(¥)A,> 0 for arbitrary b > 0.

The outlier model for this corollary uses a separate independent dummy variable for
each possible outlier present and therefore allows for the possibility that there are
unrelated causes for multiple outliers. This model was first suggested by Dixon (1953) as
Model A.

Special cases of these detection criteria have been proposed by various authors. The list
below identifies the author with the model and form of A, that was considered.

TABLE 5.1

Author Normal Model Criterion

Wilks (1963) iid. multivariate 1202y 1712
any k and s

Grubbs (1950) iid. univariate 6%/ / 62
k=1anys

Thompson (1935) i.i.d. univariate (. — 7)%/6?
k=1s=1

Gentleman and Wilk (1975) 2-factor ANOVA 6%(/%)/6?
k=1 anys

Srikantan (1961); Beckman univariate regression (3. — x,’é)z/ {1 - AwoY

and Trussell (1974) k=1s=1

Here A; = i*" diagonal element of X(X'X)'X’.

In the detection of a single outlier, s = 1, various optimality properties related to
Corollary 5.1 have been shown. Uniform invariant admissibility of the tests above has been
shown in the case of Wilk’s model (s = 1) by Karlin and Truax (1960), for Thompson’s
model by Paulson (1952) and Kudo (1956a), and for Srikantan’s model by Ferguson (1960).

Suppose now that mavericks originate from some common source and it is reasonable
to assume the same bias for each outlier. Then a single constant parameter may be used
to explain all s possible outliers in the model (2.1). This can be carried out with dummy

variables by letting Z be n X : and consist of columns that include all permutations of

s ones and n — s zeros. Then, we are interested in selecting only one variable from pool Z
so that s = 1.
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COROLLARY 5.2. Suppose data results from the model (2.1) with X =(1, ---, 1) an
n X 1 location vector. Let there be s spurious observations of equal bias or none at all.
Then rules (3.2) and (3.3) are identical, A is a strictly decreasing function of

6.1) (=92 (Fo— )
where Yo = Y.cry./s and this test is admissible Bayes.

The univariate case of (5.1) is one of the detection criteria suggested by Thompson
(1935). Its invariant admissibility was shown by Murphy (1951) for a one-sided significance
test.

Suppose now we assume that mavericks are caused by an inflated error variance as
suggested by Dixon’s (1953) Model B. Then with m = n and Z = I,,, the results of Theorem

4.1 apply.

CorOLLARY 5.3. Under model (2.1) and the Model B assumption that inflated
variances cause mavericks, the rule (4.2) with Ay = |£(/%)|/|2| is an invariant
admissible Bayes rule in the class of decision rules defined in the last section.

This decision rule results from the random effect 8. having a MVN (0, Q ® ) law which
inflates the covariance of y. from Is ® X to (Is + Q) ® X. In addition, the variance-
covariance scalars of Q are assigned priors such that the distribution of QM(%) under H
is the same for all &

A related optimality result has been shown under Model B for s = 1. Ferguson (1960)
has shown that in the case of an i.i.d. multivariate sample, the test for a single outlier is
uniformly invariant admissible.

It is interesting to note the relationship of our Model B development in Section 4 with
the Bayesian outlier procedures of Box and Tiao (1968) for 2 = 1. They assume the model
Y = X0 + € and that each ¢ can be drawn from one of two sources—a central model
A0, %) and an alternative model .#(0, r%6?), r > 1 and fixed, with probabilities (1 — «) and
a respectively. Using such a model with Jeffreys’ priors on # and o, yields an expression for
Pr{H,|v, Q = (r* — 1)Is} in (3.15) of Box and Tiao that agrees with our (4.6) taken with
k=1,Q = (r* — 1)Is, prior weight Pr(Hy) o< a®(1 — a)"%, and Z:MZ, = M(¥).

When additional information about X is available in a hard data form, then Corollary
4.2 may be applied. Under the model of Thompson for which s = 1, then this result
demonstrates the invariant admissibility of the criteria of Quesenberry and David (1961).

If mavericks are caused by both a bias in the location and an inflation of variance then
the invariant admissibility of Corollary 5.3 still holds. This is because the likelihood
component responsible for the variance inflation and the prior on the bias are independent
and in the Bayesian development become unidentifiable. Under Hy, if 8+ is the bias with
prior MVN(0, P ® X) and £.is the likelihood component responsible for the inflation so
that £, has law MVN(0, Q ® Z), then their independence and unidentifiability allow the
assumption of random effect 8.+ £, ~ MVN(0, (P + Q) ® X). Priors like (4.8) are assigned
to P + Q and the optimality follows. Kudo (1956b) has shown the invariant admissibility
of Thompson’s criterion when mavericks result from a bias and a decrease in variance.

Even though the priors of Corollaries 5.1 and 5.3 are design dependent, their use may
not be so unreasonable. In these two results M(&)"/?A, and QM(¥) given H. both have
prior distributions which do not change with % Since the diagonal elements of M(¥) are
larger for the more internal values of the independent variables, then these priors shift the
support of Ay and Q closer to the origin for the more internally located subsets &% A priori
then, we are more likely to decide D, if % is more externally located in terms of the
design. The desirability of such a property may be inferred from (Hogg (1974), p. 915):

It should be observed, however, that if the outliers occur with the more
interior values of the independent variables, their influence on least squares
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is minimal. On the other hand, outliers occurring with extreme values of the
independent variables can be very disruptive.

Thus the priors favor Dy for the more disruptive subsets <.

One final comment remains regarding what Pearson and Chandra Sekar (1941) and
Murphy (1951) call the masking effect. Such an effect may occur when an outlier detector
with s = 1 fails to reveal any outliers because of a mutual masking effect caused by
multiple outliers in the data. Because the outlier problem has been shown equivalent to
the selection of special dummy variables, this masking effect may be equated with the
problems incurred in the stepwise inclusion of variables. Further discussion of the problems
that occur in the sequential elimination of outliers is given in McMillan (1971) and
McMillan and David (1971).

6. Slippage Tests. Closely related to outlier tests are the location and variance
slippage tests. These tests are simply outlier detection tests where the possible outlying
subsets are the strata of some fixed partition of the data. Such tests were first considered
by Mosteller (1948), Paulson (1952), and Kudo (1956a) for location slippage, and by
Cochran (1941) for variance slippage. Their formulations involve testing the equality of
the strata populations with the alternative that one of the strata populations has slipped
away from the others which remain identical.

These tests can be formulated as variable selection tests that use special independent
dummy variables and allow only for the selection of certain variable combinations. For
both location and variance slippage models, we assume that {1, - - -, n;} indexes stratum
1 with each datum having mean y; and covariance 2, > 0, {n, + 1, -- -, n; + n.} indexes
stratum 2 with mean p, and covariance Z; > 0, etc. Let there be m strata of sizes ny, - - -,
nn, so that Yn, = n.

For location slippage, £; = - .. = X,, and the hypotheses of interest are
HO:"1= cee ="m
(6.1)
Hipi= - =pii=pin1=+" =pn# W
fori=1, ..., m. Assume the model (2.1) with X = (1, .- -, 1)’ an n X 1 location vector and
A= (8, ---,8,), an m X k parameter matrix. Let Z consist of m column vectors such that

the ith column is an indicator vector for the ith stratum. Then the variable selection tests
in (3.2) and (3.3) with s = 1 result in the locational slippage tests proposed by Paulson
(1952) and Karlin and Truax (1960).

COROLLARY 6.1. Under model (2.1) and the multivariate locational slippage frame-
work given above, the rule (3.3) where

Ai=n(F:— §)EUF:i - §)/(n — n),
(6.2) y. = ith stratum mean, y = grand mean,
and
(n=12 =3 (yi-Py:i—§)
is an admissible Bayes rule for the slippage problem in (6.1).

The balanced case of this test where n; = n/m = r was shown to be uniformly invariant
admissible by Karlin and Truax (1960) and the same was shown for the balanced univariate
case by Kudo (1956). Pfanzagl (1959) considered a locally optimum slippage test for the
unbalanced univariate case. His treatment, however, was based on A; =n¥(3: — 7)?/6* so
it does not agree exactly with (6.2).

Slippage tests against alternatives which allow for S-strata slippage of equal (unequal)
amount are possible by applying Theorem 3.1 with s = 1 (s > 1). Such tests have been
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proposed by Doornbos (1966) for the general case and by Ramachandran and Khatri
(1957) when s = 2 and slippage occurs both upwards and downwards.

Theorem 4.1 allows the variance slippage problem to be considered in the balanced
case where n, = n/m = r. In this problem the hypotheses of interest are

HyXi=..-=3,

(6.3)
Hl:21= s =zz—-l= (1+q)_1zi=2t+l= eoe =2m

fori =1, --., m where ¢ > 0. We use model (2.1) with X =0, A = (01, +++, Qn, 81, -+,

on),and Z = (I, &1, - -+, &€n), where £, is an n X 1 indicator variable for stratum i. The

subsets from which we may choose include (91, -+ -, 9,, 82, ++ -, 8n), Mrs1, + -+, N2r, 81, 83,
ccy Bm)a ey, ("(m—l)ry 0y Nmry 81, R Y 8m—l)-,

COROLLARY 6.2. Under the variance slippage model described above, the test (4.2)
with A, = | £|/|L.|, where

$ = within sum of squares over all strata
and
2, = X — within sum of squares of the ith stratum

is an invariant admissible Bayes rule for hypotheses (6.3).

Proor. In order that the covariance matrix of each datum in a slipped stratum is the

same, Q must be taken as
_ ql, 0
- (% o)

where ¢ > 0 and Q2 > 0 is (m — 1) X (m — 1). The prior distribution on Q given in (4.8)
may be used with N = (Z/MZ,)"?Q % 0O
In the univariate case this test is the same as Cochran’s (1941) test and is based on

(6.4) max;62/ Y2 67

where 67 = error mean square for the ith stratum. The uniform invariant admissibility of
(6.4) has been shown by Truax (1953).

The variance slippage test in Corollary 6.2 is invariant admissible for both location
slippage and variance inflation. The justification of this is given in the previous section.
Theorem 4.1 can also be used to construct variance slippage tests which allow for multiple
strata slippage.

7. Concluding Remarks. The choice of variables, outlier detection, and slippage
problems that have been considered, assume that all £ dimensions are involved in the
selection process. If not, the information available in the uninvolved components should
be added into the normal regression through the use of conditional densities. Specifically,
let 1 and 2 index those portions of the data that are relevant and irrelevant in variable
selection, so that

(Y1, Yz) = X(O1, 62) + Z(4, 0) + (Ey, E»).

Then consider the likelihood in terms of the conditional distribution of Y: given Y.
multiplied by the marginal distribution of Y,. Since the distribution of Y, does not depend
on ZA then only the conditional density is relevant in the Bayesian development. This is
equivalent to starting with the model

(71) Y] = X(91 - 6222—21221) + Yzzgzlzm + ZA + E1|2

_[Zn Zpe
2‘<221 222)

where
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and the common row covariance of E; | is £1; —21,25 Z,;. Model (7.1) is model (2.1) with
Y: incorporated into X.

Finally, it seems that greater advantage could be taken of the equivalence of the three
problems above. For example, Kapur (1957) has shown the unbiasedness of one-stratum
slippage tests when more than one stratum has slipped. These ideas may be extendable to
the more general problem of forward selection and backward elimination of variables.
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APPENDIX

Formulae for updating a regression when including further independent variables

Transform Y by V so that
(A.1) minga, tr(Y — X0 — Z,A,) (Y — XO — Z,A,)

= minG,Ay'trzi;:l (Uz - EUL)/(Ui - EUL)

=U3U;
by (8.7). This minimum occurs at U; = pyand U; = »y. Then
(A2) UiUs =8,  A,= (Z,MZy)'ZLMY,
and

0,=0 — (XX)'X'ZA,.
Also since Y U/U, = Y'Y, then
(A.3) Sy=UsUs = Y'Y — UiU; — UU, = S — B'Z(Z,MZy)"'Z,E.
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