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SOME E-OPTIMAL BLOCK DESIGNS

By GREGORY M. CONSTANTINE

Indiana University, Bloomington and University of Illinois at Chicago Circle

When a BIBD or a Group Divisible design with A; = A; + 1 is extended by
certain disjoint and binary blocks the resulting structure is proved E-optimal.
A BIBD abridged by a certain number of such blocks is also shown E-optimal.
These optimality results hold over the class of all block designs (with the
respective sets of parameters). Proofs rely mainly on averaging information
matrices, which proves useful in many settings related to design optimality.

1. Introduction. We are given v varieties labeled 1, 2, - . ., v. These v varieties are to
be compared via b blocks of size & each, with 2 < v. Any arrangement of the v varieties in
the b blocks is called a design. A design can also be thought of as a £ X b array, d, with
varieties as entries and blocks as columns.

Let Q.5 denote the collection of all designs with parameters v, b, and k. The usual
additive model specifies the expectation of an observation on variety ¢ in block j as a; + 8,
where a; is the unknown effect of the ith variety and ; is the (unknown) effect of the jth
block. The kb observations are assumed uncorrelated with common variance o (usually
unknown).

The information matrix for the variety effects, when the design d is used, is known to
be

C, = diag(ra, - -+, ra) — k" '"NaNy

where ry; is the number of replications of variety i in d and N = (nqy), with ng,; signifying
the number of times variety i appears in block j. For convenience we denote Yo- naiu
by Aa;. The v X v matrix C, contains all the relevant statistical information relating to the
variety effects. It is well-known that C, is nonnegative definite, has nonpositive off-diagonal
elements and has row sums zero for all d € Q. 4.

For a design d € Q. let 0 = pgo < pa1 < --+ = pa,—1 denote the eigenvalues of its
information matrix C,. We call a design d connected if its information matrix C; has rank
v — 1. A design d is called equireplicated if ry; = - - - = ra. A block of d is said to be binary

if it consists of distinct varieties; d is said to be binary if all its blocks are binary.

A design d* € Q.4 is called E-optimal if py«1 = pqr for all designs d € Q4% The
following well-known lemma (see Kiefer (1959) and Ehrenfeld (1955)) gives statistical
meaning to an E-optimal design.

LEMMA 1.1. A design d* is E-optimal if and only if the maximal variance among all
best linear unbiased estimators of normalized linear contrasts is minimal under d*.

2. On averaging and convexity. Due to Lemma 1.1 our aim becomes that of finding
a design d* € Q. for which ps-1 = ps1 holds, where d ranges over all of ,, . Because of
the large variety of information matrices this comparison becomes difficult, even though
a choice for d* is usually available. To make the comparison possible we rely on an
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intermediate device, an averaged version C, of the information matrix C4, which usually
shrinks the spectrum of C; and allows a successful comparison. Before we show how C; is
derived from C; we need another lemma.

Let A be a v X v nonnegative definite matrix with zero row sums and {o;} a collection

. - 1
of n permutations on the symbols 1, 2, ..., v. Define A= - Yoy A% where A= P,AP],

with P; representing the v X v matrix representation of ¢;. Denote by p,—1 = +++ = g1 = po
=0and fly-1 = -++ = = [lo = 0 the eigenvalues of A and A respectively.

LEmMMA 2.1. A is nonnegative definite with zero row sums, Trace A = Trace A, u; <
/Il and Mv—1 = ﬁv—l'

Proor. The first two statements are immediate. The last two inequalities follow easily
after observing that p; = min, x’Ax/x’x, where the components of x sum up to zero, and
that p,—1 = max, x’Ax/x’x, with no restriction on x. This concludes the proof.

A is called an average version of A. Schur-convex functions defined on the nonzero
eigenvalues of A and A satisfy inequalities as above (see Magda (now Constantine) (1979),
Lemma 3.2.1).

In order to show that a design d* is E-optimal, by Lemma 2.1 it is enough to show that
the minimal eigenvalue of some averaged version of C; does not exceed the minimal
eigenvalue of Cy-. Kiefer (1975, Proposition 1) relied on averaging information matrices to
prove the universal optimality of a design with a completely symmetric information matrix
of maximal trace. For certain optimal candidate d* the matrix C,- consists of diagonal
blocks of completely symmetric matrices (i.e., matrices with their diagonal entries equal
and all the off-diagonal entries equal) and off-diagonal blocks consisting of matrices with
equal entries. We would like our averaged versions of C; to have the same shape for an
easy comparison (for details see Magda (1979) and Constantine (1980)).

Let iy, i3, - - -, ip be a subset of the varieties 1, 2, . . ., v. We say that we average C, over
the varieties i1, is, ---, i, if we take in Lemma 21 A = Cyand P; (i =1, 2, - .-, p!) the
v X v matrix representation of the symmetric group on the symbols i, iz, - - -, i, extended

by identity to the rest of the varieties. We usually average separately over two (and
sometimes more) disjoint subsets of 1, 2, ..., v. If we average separately over m such
disjoint subsets of sizes p;, 1 < i < m, we would have p:!p.!-.-p,! permutation matrices
to use in Lemma 2.1. They would correspond to the matrix representation of the direct
sum of the m symmetric groups of the disjoint subsets under consideration. When the m
subsets partition the set of the v varieties, this averaging process transforms Cy into a
matrix C,; which consists of completely symmetric blocks along the diagonal and blocks
with equal entries elsewhere. Computing the eigenvalues of Cy is often a tractable task and
in view of Lemma 2.1 these eigenvalues help us relate a (hopefully E-optimal) design d*
to an arbitrary design d. We now find out what they are.

Whenever the dimensions are clear from the context we simply write I for the identity
matrix and J for a (not necessarily square) matrix with all its entries 1. The vector with all
its entries 1 is denoted by 1.

LEMMA 2.2. The matrix C4 obtained by averaging an information matrix Cy sepa-
rately over varieties 1,2, ---,pandp + 1,p + 2, ---, v is of the form

oy [@+ar-ar  -pJ
Cd=z _ _
-BJ (b+ I —vd

with the submatrix in the upper left-hand corner of dimension p X p. kCq has eigenval-
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ues: @ + a of multiplicity p — 1,6 + 3 of multiplicity v — p — 1, uf of multiplicity 1 and
0 of multiplicity 11 =p<v —1).

The proof becomes straightforward after adding 8J to 2Cyq.

3. Some E-optimal block designs.

3.1 E-optimality of extended and abridged BIBD’s. Suppose that the parameters v,
b and k satisfy the divisibility conditions necessary for the existence of a BIBD. Let A =
bk(k — 1)/uv(v — 1) and r = bk/v. We are interested in the optimal block designs based on
v varieties and & + m blocks of size k£ (< v). For m < v/k the answer pertaining to
E-optimality is comprised in the following:

THEOREM 3.1. Let 0 =<m < uv/k be an integer. Whenever a balanced incomplete block
design extended by m disjoint binary blocks exists it is E-optimal among all designs.

Proor. Let d be an arbitrary design in Q. p+mx. We are to compare ps with pg-1, where
d* is a BIBD extended by m disjoint and binary blocks. By adding A<J to £C,- we facilitate
the finding of its eigenvalues; the minimal nonzero eigenvalue of C;+ turns out to be

rtk—1)+ A

vA
7 (= T)-

Hd*1 =
This quantity does not depend on which BIBD is used or which disjoint binary blocks are
added. A direct attack on comparing ps and pg-1 yields little success because of the large
number of possibilities for C4. This is why we resort to an averaged version C, of Cy and
use it as a convenient intermediate comparison.

Since mk < v there exists at least one variety in d which is replicated at most r times.
By relabeling if necessary, we can assume that r,; = r. Average C, over all the varieties
with the exception of 1. Denote the resulting matrix by Cs. We know from Lemma 2.1 that
C, is nonnegative definite and has row sums zero. Let the eigenvalues of C; be jig.-1 =

© = Ba1 = flao = 0. The same lemma states that ps1 < pa1. The (first) row having
rai(k — 1)/k on the diagonal of C,, has the remaining entries equal to — rai(k — 1)/
(k(v — 1)). As we pointed out in Lemma 2.2 with p = 1, C; has vra:(k — 1) /(k(v — 1)) as an
eigenvalue. We can now see that

- <Urdl(k_1)<vr(k—1)
PO - T k-1
_r(k—1)+)\
Tk

= #dt] .
This concludes the proof of the theorem.

The above theorem relates to instances when addition of disjoint binary blocks seems
to affect the E-optimality. It explains why a BIBD on 7 varieties and 7 blocks of size 3
remains E-optimal when extended with two disjoint binary blocks (because m = 2 < 7 =
v/k) but a BIBD on 8 varieties and 14 blocks of size 4 loses this property when two such
blocks are added. In this latter case m = 2 = % = v/k, a boundary situation not included
in the theorem. The strict inequality ;m < v/k is hence required. That a BIBD with v = 8,
b =14 and k = 4 is not E-optimal when extended by two disjoint binary blocks was pointed
out in Cheng (1979). Our Theorem 3.1 is related to Theorem 3.2 and the content of Section
5 of Jacroux (1980). His method of proof extends that of Takeuchi (1961).

The next result concerns bounds for the minimal eigenvalue of the information matrix
of a design. These bounds are expressed in terms of convenient parameters of the design.
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They often provide ways of detecting which designs are bad and sometimes suffice to
establish the optimal designs. We shall point out some such instances later.

In order to simplify the notation in the theorem that follows, let us relabel the varieties
in a given design d so that after relabeling r4; < ry2 < - -+ = rq.. Throughout this section
we assume that the replication numbers are ordered this way unless we specify otherwise.

THEOREM 3.2. In any block design d € Q. the following inequalities hold:

v . 1 .
(3.1) a1 = w=1D min <= (ra; — 7 z;b=1 néij)
(k — 1)vra:
(3.2) Pa1 = W
. k-1, 2
(3.3 Md1 = MiNo<p<p [T 1 Tai + rr—t Yizicj=n Mu}

Proor. We obtain (3.1) by averaging C, repeatedly over all but one variety and using
Lemma 2.2 with p = 1. The upper bound in (3.2) is in general less efficient than (3.1) and
is obtained from (3.1) by minimizing over integers¥ %, n%; subject toY %, nu; = ra. The
last upper bound, which is usually sharper than (3.2), follows from Lemma 2.2 withp = n
after averaging separately over 1,2, ..., nand n + 1, n + 2, - .., v. This ends the proof.

The inequality in (3.3) is related to a slightly more general inequality much the same
way (3.2) is related to (3.1). In the stated form it is however much simpler and readily
applies to the bearings that will follow; especially the case with n = 2, which gives:

k
(3.4) a1 =

Let once again, v, b, r, k£ and A satisfy the necessary conditions for the existence of a
BIBD. Our first use of these inequalities is in the proof of the following result:

THEOREM 3.3. When m(v/k* = m < v/k) disjoint blocks are deleted from a balanced
incomplete block design, the resulting structure is E-optimal over all designs.

Proor. Let v/k® < m < v/k be an integer. Denote by d* a BIBD with m disjoint
blocks deleted. Then d* has mk varieties replicated r — 1 times and the rest replicated r
times. By adding AJ to £Cy-, or otherwise, we obtain

kpgi=vA—k(=r—-1)(k—1) +A—-1).
Let us partition the collection of designs £ s—m., in the following way:
Si={d:ran=r—-2}
Se={d:ras=r—1 forall i and there exist
Yai, ra2=r—1 with Aga=A-—-1)
S;={d:rsi=zr—1 forall { and whenever
rai, 7g =r —1 we have Ay = A}

It is easy to check that the three S/’s partition £, - +. Moreover in any design d € S> U
S at least mk varieties are replicated exactly r — 1 times (or else we would have r,; <
r—2).

Let d be a design in S,;. Using (3.2) we have
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(k—l)vrd1<(k—1)v
kv—1) ~ k(v-—=1)
_(k—l)vr_ (k— 1o v)\_ (k—1) Bé._
“%e-D ‘re-p-% % %!

k-1
= [Lg+1, since 2( 7 )21 for k=2.

(r—2)

Ra1 =

This shows that d* is E- better than any design in S;. Suppose d is a design in S;. Relying
on (3.4) we obtain

g < =)

(rd1 + rdz) + }\4125 (k — 1)(7‘ -1) + A—1= k,udq.
Finally, for a design d € S; we use (3.3) with n = mk and the fact that v/k* < m <

v/k as follows. Average C, separately over mk varieties replicated exactly » — 1 times and
their complement, to obtain

(@+a)l—aJ -BJ
C,=

—BJ (b+9I-7J

;]| =

where the upper diagonal block is mk X mk. The mk varieties replicated r — 1 times (that
we averaged over) have been lined up in the first mk positions in Cy. Since each diagonal
entry in the mk X mk upper diagonal block in £C, is at most (r — 1)(k — 1) we have a <
(r — 1)(k — 1). On account of the fact that d € S; we easily conclude that a = A. The row
sums are zero in Cy,s0 (r — 1)(k— 1) =a=(w—-mk)B + (mk— Da=(v—-mk) +
(mk — 1)\. Rewriting, we obtain

B=((r—1)(k—1)— (mk— DN (v— mk)?
=A—(k=1w-—mk)™

We have v8 < vA — v(k — 1)(v — mk)™' < vA — k = kpgy+ if and only if v = mk®. Hence if
v/k* = m < v/k we have v8/k < vA/k — 1 = pq-1. Let i1 denote the smallest eigenvalue
of Cu (apart from the eigenvalue 0 associated with the eigenvector 1). SincevB/k is an
eigenvalue of C, (see Lemma 2.2) we can utilize Lemma 2.1 to conclude the proof as
follows:

Pl = flar = = Rd1-

vB
k

Let us point out that a BIBD with any number of disjoint blocks deleted is always
E-optimal over S; U S,. The first part of the above proof accounts for this. It is known
that v/k disjoint blocks can be deleted from any resolvable BIBD. Hence the upper bound
on m in the theorem can be attained.

When for some set of parameters more than one nonisomorphic BIBD’s exist, and
chances of loss of blocks are considerable, a BIBD with as many disjoint blocks as possible
ought to be chosen for the experiment. In case a certain number of disjoint blocks are lost,
the remaining structure is still E-optimal.

3.2 E-optimality of some extended group divisible designs. Suppose now that the
parameters v, b and % are such that a group divisible design d* exists, with the intragroup
parameter A» exceeding the intergroup parameter A; by one. It is known (and not very
hard to show) that kuq-1 = r(k — 1) + A, where r is the replication number of any variety
in d*. Let d € Qs be any design. In case d is not equireplicated, an easy computation
based on (3.2) shows that d* is E-better than d. For an equireplicated design d the bound
in (3.4) can be used to reach the same conclusion. This shows that a group divisible design
with A, = A; + 1 is E-optimal among all designs with the same parameters v, b and k. This
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is also a consequence of our next theorem. The result was first proved by Takeuchi (1961)
using a different technique. It has since then been extended by Cheng (1978) to a large
class of optimality criteria when d* has two groups. We shall also extend Takeuchi’s result
but in a different direction. First we need to introduce some new terminology.

Given a partition of the v varieties and a set of blocks, we say that the set of blocks is
compatible with the partition if none of the blocks contains varieties from two (or more)
elements of the partition; i.e., if the partition is P = { P;, Ps, -- ., P,} and the set of blocks
isT'= {B,, By, ---, B,}, then I" and P are said to be compatible if P, n B;= ¢ or P, n B;
= Bjforalll1 =i=<tand1=</=u. We are now ready to enunciate the following theorem:

THEOREM 3.4. A group divisible design with m groups and \» = A1 + 1 extended by
less than (v — m)/k disjoint and binary blocks compatible with the partition provided by
the groups is E-optimal among all designs.

Proor. The reason we need compatibility is to keep the off-diagonal entries of 2C,-,
where d* is the conjectured E-optimal design, differ at most by 1. This is important since
ua1 is dependent upon the off-diagonal entries of Cq, as (3.3), (3.4) and Lemma 2.2 show; it
is also in agreement with a conjecture of John and Mitchell (1977) regarding a possible
description of complete classes of optimal designs.

Let d* € Q.. be a group divisible design with m groups of size n and A, = A; + 1
extended by a set of s (s < (v — m)/k) disjoint and binary blocks compatible with the
partition provided by the groups. Denote by d° the group divisible design to which these
blocks have been added and let r be the replication number of any variety in do.

Let us find ps+1 - Cy4+ can be obtained from Cq. (the information matrix of d°) by adding
to it the information matrix of the set of disjoint and binary blocks that we have added to
de. As any information matrix, the matrix that we add is nonnegative definite. Hence Cj-
= Cy., ie., Cq- — Cy. is nonnegative definite, and therefore (see Bellman (1970)) pq+ =
(r(k = 1) + A1)/k = pa.:. On the other hand, since we add less than (v — m)/k disjoint
binary blocks to do, there are at least two varieties replicated r times in d* and contained
together in A, blocks. By averaging separately over two such varieties (without loss 1 and
2) and using (3.4) we obtain.

(k—-1)

ka1 = (rav + raz) + Aaiz=r(k — 1) + Ay,

Hence pq+1 = (r(k — 1) + Ay /k.
Let S., Sz, and S; denote the subsets of 2, defined as follows:
Si={d:raa=r—1},
Se={d:ras=r for all i and there exist rqi, rqo=r with Ay <A},
Sa={d:ra=r for all i and whenever rg,rqg=r we have Ay = Aq}.

Q...+ 1s the disjoint union of S;, S, and S;.

We show that d* is E-better than any design d in S, by using (3.2) as follows:

(k= 1Nvrar _(k—1v
=

-1 (v=1

=r—-DE-DA+@-1DN=rtk—1)+X\

Rua < (r—1)

= kg,
Let d be any design in S,. By (3.4) we immediately conclude that
k—1
kuar = ( ) (ra1 + raz) + Aque=r(k = 1) + Ay

= Rpg-.
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In case d € S;, d contains at least v — sk varieties replicated r times. Average Cy
separately over v — sk varieties replicated r times (lined up in the first v — sk positions of
C.) and their complement. Denote the averaged version so obtained by C,. Then
~ (a+a)—ad -BJ
Cy=

;| =

—BJ b+ ) —5d
with the upper diagonal block of dimension (v — sk) X (v — sk). By the fact that d € S; we
know that @ = A, and @ < r(k — 1). Wherefore,

rtk—1)=a= (v—sk—1)a+skf
= (v — sk — 1)\, + skB,

which gives

b= (rlk— 1) — (v— sk — DAy = oA, — 2021
sk sk
Since s < (v — m)/k = v(n — 1)/kn we have
-1
U}\z—%svxz— =r(k—1)+)\1=kud‘1

and hence (by Lemma 2.1 and Lemma 2.2)
R
Ha1 = —kﬁ = Md1.

This concludes our demonstration.
Arguments similar to the ones applied thus far lead us to Theorem 3.1 of Cheng (1980).
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