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We consider sequential observation of independent random variables Xj,
.+ ., Xn whose distribution changes from F to G after the first [Nf] variables.
The object is to detect the unknown change-point quickly without too many
false alarms. A nonparametric control chart based on partial weighted sums
of sequential ranks is proposed. It is shown that if the change from F to G is
small, then as N — o, the appropriately scaled and linearly interpolated graph
of partial rank sums converges to a Brownian motion on which a drift sets in
at time 6. Using this, the asymptotic performance of the one-sided control
chart is compared with one based on partial sums of the X’s. Location change,
scale change and contamination are considered. It is found that for distribu-
tions with heavy tails, the control chart based on ranks stops more frequently
and faster than the one based on the X’s. Performance of the two procedures
are also tested on simulated data and the outcomes are compatible with the
theoretical results.

1. Introduction. An important problem in industrial quality control is to detect
changes in the distribution of sequentially observed independent random variables (rv’s)
X,i=1,2, ... . The existing literature mainly deals with a change in the mean of normal
rv’s or a change in the probability of Bernoulli trials. If the mean changes from a knov.n
o to u; after some unknown point, then the simplest procedure to detect such a change is
to stop at the smallest n for which S, =Y (X; — po) falls outside some specified limits.
For the one-sided version of this method Page (1954) proposed a variation which stops as
S, — min;<x<,S gets large. Bather (1963) and Shiryaev (1963) obtained optimum stopping
rules in the Bayesian formulation of the problem.

The present paper develops a nonparametric procedure for detecting a change in the
distribution without any knowledge of the initial distribution. In the area of nonsequential
inference about change-points, Chernoff and Zacks (1964), Gardner (1969), Hinkley (1970),
Sen and Srivastava (1975) and P. K. Bhattacharya and Brockwell (1976) have studied the
change in mean of a univariate normal distribution, Kander and Zacks (1966) have
considered a change in a single-parameter exponential distribution and P. K. Bhattacharya
(1978) has considered the problem for an arbitrary multi-parameter family of distributions
satisfying some regularity conditions. Nonparametric methods based on ranks for detecting
a location change in the nonsequential case have been proposed by G. K. Bhattacharya
and Johnson (1968), Sen and Srivastava (1975) and Darkhovskv (1976). Likewise, sequen-
tial ranks will play a key role in a nonparametric sequential approach. The type of change
to be considered here will be quite general. Location change, scale change and contami-
nation are special cases. However, it will be assumed that a small change in distribution
(in a sense to be defined later) takes place after a large number of observations. The main
concern of this paper is to study the asymptotic behavior of cumulative sums of sequential
ranks under these assumptions. In the nonsequential parametric case, P. K. Bhattacharya
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and Brockwell (1976) and P. K. Bhattacharya (1978) have investigated the behavior of the
maximum likelihood estimator of a change-point from such an asymptotic point of view.
For each positive integer N, let {X/", 1 =j = N} be a sequence of independent rv’s of
which the first [Nd] have continuous cumulative distribution function (cdf) F and the
remaining N — [N@] have continuous cdf Gy, where 8 € (0, 1], F and G are unknown. The
rv's XV, j=1,2, - .. are observed sequentially and the object is to stop soon after Xine+1,
keeping the probability of stopping before Xing small. We assume that N is large and the

change from F to Gy is small in the sense that

év= f F(x)dGn(x) =% + 8NV2 + o(N?), §>0,

1)
ay =2 f F(x)Gn(x)dGn(x) =% + O(N?),

By = f F%(x)dGn(x) =% + O(N7Y?).

For simplicity, we shall write X/ = X;, Gn = G, év = &, an = a, By = B and [Nf] = N8
when there is no danger of confusion. '

This model arises in the following context. A machine produces items from which
random samples of size 1 are taken at frequent intervals and X, is observed on the jth
sample. X; has cdf F until and unless a small disorder in the machine changes the
distribution to G which is close to F as in (1). If the sampling cost is also small, then the
sampling interval can be made small and a large number of observations are available
before any disorder occurs. The condition § > 0 in (1) means that the observations after
change will tend to be larger than those before change and for that reason, a one-sided
stopping rule based on cumulative sums of sequential ranks will be considered. For § # 0,
a corresponding two-sided rule will be appropriate. The reason for considering a finite
sequence {X,, 1 =j = N} is that the machine is assumed to be routinely adjusted at certain
intervals even if no disorder has been detected, and § = 1 means no disorder takes place in
the entire interval.

REMARK 1. Large N can be related to a small change in distribution in the following
manner. Suppose we want to detect a change for which [ FdG — % = ¢. We then want N
= O(e?). For example if F(x) = ®(x), G(x) = ®(x — p), where ® is the standard normal
cdf, then for small , [ FdG — % = p/(2v/r ). To detect y = 0.1, if we take N = 1000, then
(1) is satisfied with 6 = 0.892.

In sequential analysis the usual ranks have been used by Wilcoxon, Rhodes and Bradley
(1963), Savage and Sethuraman (1966) and later by Sethuraman (1970) for the two-sample
problem. For a nonparametric control chart we shall use sequential ranks, which were first
considered by Parent (1965).

DEFINITION. The sequential rank of X, among Xj, - - -, X, is defined by
(2) Ri=1+3Y ulX — X)),

where u is the indicator function of (—oo, 0].
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Parent proved that sequential ranks from ii.d observations are independent, the ith
being uniformly distributed on {1, ---, i}. Thus if

(3 Zi=i'[R—(+1)/2, Si=YuZ,

then for i = N@, the Z; are independently distributed with mean 0 and Var(Z) = (1 — i %)/
12 and though the behavior of Z; for i > N6 is quite complicated, the mean of Z; is clearly
positive for i > N6. Hence it is reasonable to use Si, 1 < & < N, for detecting disorders in
the following manner.

Consider the normalized and linearly interpolated continuous time version of {Si, 1 <
k = N} given by

4) Sn(t) = (12/N)*{Sivg + (Nt — [Nt]) Zings1}, 0=t=1

NoNPARAMETRIC CONTROL CHART. On the cartesian plane let the horizontal axis
denote time, 0 = ¢ < 1, and draw a horizontal line called the control limit at a distance
¢ > 0 from this axis. The graph of Sy(¢), plotted sequentially in relation to the control limit
as each new X; is observed, is a nonparametric control chart. Observation is terminated
and a disorder is announced as soon as a point on this control chart falls above the control
limit.

In order to determine the constant ¢ for the control chart and to study its properties
when an actual change in distribution occurs, we shall derive the weak limit of the
stochastic process {Sy(¢), 0 < ¢t < 1}. This limit, as stated below, is the main result of this
paper.

THEOREM 1. Let Z, S, and Sn(t) be as in (3) and (4). Then, with respect to uniform
convergence in C[0, 1], {Sn(t), 0 = ¢t = 1} converges weakly to {X(t),0 <t < 1} given by

(5) X(¢) = B(t) + V12 66 log(t/6) I;s (), 0<t<1,

where B(t) is standard Brownian motion and 8 > 0 is determined from (1).

The proof of this theorem will be accomplished in Section 3 and the Appendix after
obtaining some basic properties of sequential ranks in Section 2. The asymptotic behavior
of the nonparametric control chart is then understood by analyzing the properties of the
following stopping rule for the process X (¢) described in Theorem 1, which we shall refer
to as the Logarithmic Stopping Rule because of the logarithmic drift in X (¢).

LoGARITHMIC STOPPING RULE: Stop at the smallest t for which X (t) = c.

On the other hand, suppose the original observations have finite variances both before
and after change. Let Mr and ¢% denote the mean and the variance of F and define Mg
and o% likewise. Suppose the change from F to Gy is such that (1) holds andvVN Mg, —
Mpy)/or = A > 0 and oG, — or as N — . In such a case if Mr and o% of the initial
distribution are known, then a control chart based on the cumulative sums N/* Y%, Z#
with a control limit ¢ can be used, where Z} = (X; — Mr)/or. Let

6) SH(t) = N2 (XA Z¥ + (Nt — [Nt Zvas ), 0=<t=<1.
Then it is easy to see that {SX(¢), 0 < ¢ =< 1} converges weakly to the process
(7) X*(¢) = B(t) + A(t — 0) Lo (2), 0=t=l,

where B (t) is standard Brownian motion and A is as given above. The asymptotic behavior
of the control chart based on the normalized continuous time version S¥(¢), 0 = ¢ =<1 of
N~YV2¥%, Z¥ 1<k =N, is then understood by analyzing the properties of the following
stopping rule based on X *(¢) which we shall refer to as the Linear Stopping Rule because
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of the linear drift in X*(¢).
LINEAR STOPPING RULE: Stop at the smallest t for which X*(t) = c.

In Section 4, the performances of the above Linear and Logarithmic Stopping Rules are
compared both theoretically and empirically. There it is seen that for distributions with
heavy tails, the nonparametric control chart works better than the chart based on S%(¢)
in the sense that it stops more frequently and more quickly.

REMARK 2. In practice, random samples are often taken in batches of m > 1. In such
a case sequential ranks of a batch of m observations would depend on their arbitrary time
ordering. However, for large N, such arbitrary time orderings will have a negligible effect
on the nonparametric control chart. To see this, consider the ith batch of m observations.
Between any two time orderings of these observations, the maximum discrepancy in
32 Zmii—1y+7 18 =2 (f — 1) {m (i — 1) +j} . Hence the maximum discrepancy in Sn(t) due
to arbitrary time orderings within batches is

(12/N)2 ™ ¥ 7 (F — D{m(@E — 1) + /37" = (3/N)"*(m — 1)[m + log(Nt/m)],

which tends to 0 as N — o,

2. Properties of sequential ranks. The following lemma strengthens Parent’s
(1965) result that for i.i.d observations the sequential ranks are independent.

LeEMMA 2.1. The random vectors (Ry, -+ - , R;) and (R4, - - - , Rn) of sequential ranks
are independent whenever i < [ N].

Proor. Fix i = [IVA]. Observe that the vect~r of sequential ranks (Ry, - - - , R;) is in one-
one correspondence with the vector of usual ranks (R, - - -, R;). It is, therefore, enough
to show that (Ry, - -, Ri) and (Rivy, «- - , Rw) are independent. But this follows because
Xi, -+, X; are ii.d and independent of (X1, ---, Xn), so that the joint distribution of
X1, - - -, Xyis invariant under any transformation of the sample space which permutes the
first i coordinates and leaves the remaining N — i coordinates unchanged.

An immediate consequence of Lemma 2.1 is that Ry, - - - , R(ng are mutually independent
and for i =< [Nf], R, is uniformly distributed on (1, - - -, i}.

The relevant results on means, variances and covariances of sequential ranks are given
below,

LEMMA 2.2. (i) For i = [N#], E(R;) = (i + 1)/2 and Var(R)) = (i* — 1)/12.

(ii) For i > [N6], E(R;) = (i + 1)/2 + [N6](¢ — %) and Var(R)) = (i — 1)/12 + [NO1*(¢
-2+ B—a—1/12) + [NO](2(6 — B — @) + [NO] i(— £+ a — 1/6).

(ili) For i < j and i = [N8], Cov(R;, R)) = 0, and for [N8] < i < j, Cov(R;, R)j) =
[NO](—2¢% + 5¢ — 3a) /2.

Proor. (i) and the first part of (iii) are immediate from Lemma 2.1 and the remark
immediately following it. To prove the remaining parts, express R;, R; by (2) and find
E(R)) and Var(R,) from E(R;|X;) and Var(R;|X,), and Cov(R;, R)) from E(R;|X,, X)),
E(R,| X;, X)) and Cov(R;, R;| X., X)), observing that for [N6] < i < j, X; and X; both have
cdf G. O

For Z; defined by (3), we now use (1) to obtain:

E(Z)=0 and Var(Z)=(1-i?/12 for i=[N6]

E(Z) = N'286i"*(1 + 0(1)} and Var(Zy) = (1 — i3)/12 + 0(N~"?) for i > [N6],
@) Cov(Z,Z)=0 for min(, )< [N6].

Cov(Z, Z) =0(N"%  for min(, ) > [N6].
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Finally, we give some results about conditional expectations of sequential ranks given
the original observations.

LEMMA 2.3.

@+1)/2 if i=[Nflandj>i

(T+1)/2 + [N —1/2) if i>[Nflandj>i

1+ (j— 1)F(X) if i=j=<I[N6]

ER.|X) =) 1+ [NOIFX)) + ( — [N6] - DGX,)  if i=j>[N6]
i+1)/2+1/2 - F(X) if j<i=[N8f]

([NO] —1) §+ 1 —[NF] —1)/2+ 2 — G(X) if j=<[Nfl<i
[NO1E+ (i — 1 —[NO])/2 + 3/2 — G(X)) if [NO]<j<i.

ProoF. Forj> i, R;is independent of X}, so E(R;|X;) = E(R;) and the first two cases
follow from Lemma 2.2. For i = j, E(R;| X)) = 1 + Y4} E(u(Xy — X)) | X;] and the next two
cases follow because E[u(X; — X)) | X;] is F(X;) or G(X;) according as k < [N@] or k > [N@].
For the remaining cases, j < i and so

E(R,|X) =1+ ¥izh E[u(X, — X)] + E[u(X; — X) | X)] + Sidn E[u(Xx — X)]

from which the lemma follows.

3. Convergence of finite-dimensional distributions (fdd) of {Sx}. In this section
we prove that the fdd of {Sn(¢)} given by (4) converge to those of {X(¢)} given by (5). This
convergence, stated as Theorem 1A below, constitutes half of Theorem 1 stated in the
Introduction. The other half, viz. the tightness of {Swn(¢)}, will be established in Theorem
1B.

THEOREM 1A. For arbitrary positive integers d, d’ and for arbitrary 0 < ti < ... <
th=0<t1<..-<tzg=1,
(Sn(t1) — p(t1), - -+, Snlta) — p(ta)) =£(B(t), - -+, B(&)),
where
9) w(t) = V12 86 log(t/6)Iren(8), 0<t=<l.
Since | Z;| = 1/2, the linear interpolation term of Sy(t) may be disregarded in proving

Theorem 1A. Replacing [N{] by Nt for notational simplicity, we then have Sn(t) =
(12/N)V2 ¥ Z,.

The following elementary facts are needed in this section. For 0 < s < t = 1, as
N — o,

S Nnerr i1 = log((t/s) + o(1)
(10) NI 1 -3E i) =t+0(1)
NIy =3I i) =t — s — s(TXner1 171 + 0(1).

These are obtained by approximation of integrals by Riemann sums and rearrangements
of terms by interchanging order of summation. From (8) and (10) we obtain

(11) ESn(t) = u(t) + o(1) and Var Sn(t) =t + o(1),

where pu(t) is given by (9).
Since the Z; are dependent for i > N6, we shall approximate Sn(¢) by

(12) An(t) = 12/N)?An: where A, =YY% E(S:|X;) — (k — 1)E(Sk)

on # < t = 1. A process analogous to (12) has been used by Reynolds (1975) in a similar
situation. For each ¢, An(t) is a sum of independent rv’s, but for ¢ < £;, An(tz) is obtained
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in a more complicated manner than by addition of new independent summands to An(¢;).
By Lemma 4.1 of Hajek (1968),

E[Sn(t) — An(®)]? = 12N"'[Var Sy, — Var An],
which tends to 0 as N — o by Lemma 2.3, (10) and (11). Hence

LEMMA 3.1. Sn(t) — An(t) = 0 in probability.

Finally, we analyze the increments of {An(¢), 0 < ¢ =< 1} in the following lemma, which
is obtained by using Lemma 2.3 and rearranging terms.

LEMMA 32. Letl=t, <t <--- <tg=1. Then for arbitrary l,, ---, la,
1 L{(ANn(t)) — EAN(t)) — (An(tr-1) — EAN(t,-1)))
= (12/N)*[~(T%1 LAw) Y9 HX;)

- Zg;ll e, {Zg=s+1 lr}\Nr - ls(]- - Zfitls l_l)}H(‘X!)

J=Nt,_,+1

+ X, (1= Z5THHX)] + op(D),

J=Ntg_
where Ay, = Y%, 1 i ' forl=r=d, H(X,) =F(X;) — % for1=<j=< N6 and HX;) =
GX;) —%for Ng+1=<j=<N.

ProoF oF THEOREM 1A. For each N, the d’ increments before § and the vector of d
increments after 6 are based on

Y2, B L e B, Loy SN Ziy
which are mutually independent by Lemma 2.1. It is, therefore, enough to show
(13) Sn(t;) — Sn(ti-1) =« N(O, t; — /1) for 1=sr=d’,
and
(14) 1 L{(AN() = p(t) = (An(t-1) = plt-1))} =2 N(O, Tiey 8t — tr-1))
forall (&, -- -, 14) # (O, - - -, 0), because then by Lemma 3.1 and the Cramér-Wold Theorem,
{Sn(tr) — Sn(tr-1), 1=r=d’; (Sn(t) —p@t)) — (Sv(t-1) — p(t)), 1= r= d}
> {[IF1 N, ¢ — ti1)} X {I[%1 N(O, £, — t,-1)},

which should be the case for standard Brownian motion. Since Sy (%)) — Sn(¢/-1) is the
normalized sum of independent Z; and | Z;| < %, (13) is immediate. To prove (14), use
EAnN(t) = u(t) + o(1) to write the left-hand side of (14) in the form

I by H(X) + 0,(1),

where by, and H(X;) are given in Lemma 3.2. But the H(X;) are independent with mean
0, variance %2 and | H(X;) | =< 1, so that

SN b H(X;) /limyoe (1271 27:; b3,)Y2 >4 N(O, 1),

J=1

and by Lemma 3.2 and (10), limy_, 127" Zj":‘; b= 3% I4t, — t,—1). This completes the
proof.
The other half of Theorem 1 is stated below, but its proof will be outlined in the

Appendix.

THEOREM 1B. The sequence {Sn(t),0 =1t =<1} is tight.
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4. Properties of the nonparametric control chart in some special cases. In
this section F and Gy have finite variances of and 0§, satisfying limy_.. oc, = or and their
means My and Mg, satisfy lim,_... VN (Mg, — Mr)/or = A > 0. We shall use Theorem 1 to
compare the performance of the nonparametric control chart with that of the one based
on S%(¢) given by (6) when N is large. This is done by comparing the constant boundary
crossing behaviors of the process X(¢) of Theorem 1 and the process X*(¢) given by (7).
The control limit ¢ is chosen so that the probability of false alarm is held at a preassigned
level a. For asymptotic purposes, we need

P{maxo<;<1 B(t) = ¢} = 2P{B(1) = ¢} = a,
so that ¢ = @' {(1 — a)/2}, where ® is the standard normal cdf. Define
W(t) = ¢ — V12 80 log(t/0) I, 11(t),  W*(t) = ¢ — At — 0) Iy, 1y(8),
where § is given in (1) and A is as described above. Then the stopping rules stated in
Section 1 are equivalent to:
LocariTHMIC STOPPING RULE: Stop at the smallest t for which B(t) = y(t).
and

LINEAR STOPPING RULE: Stop at the smallest t for which B(t) = y*(t).

The two rules can be compared through the probability of stopping before time 1 or by
the conditional expectation of the stopping time given that a stoppage has occurred. For
this, we compare Y(¢) and y*(¢)on 8 < ¢ < 1, and we observe that three cases may arise. In
the following, ¢/(8) and ¢y*'(8) are right-hand derivatives.

Case 1. Y(t) > y*(¢) for all 8 < ¢ < 1. This holds when ¢/(8) = y*'(0), i.e.,
(15a) Vizeat=1.
In this case, the linear stopping rule performs better in both ways, so that the nonpara-
metric control chart is asymptotically less efficient.

Case 2. There is a point a € (6, 1) such that Y(z) < y*(¢) for all § < ¢ < a and Y(t) >
y*(¢) for all a < ¢ < 1. This holds when both ¥/(6) < ¢*/(8) and y(1) > ¢*(1) hold, i.e.,
(15b) 1< V126071 < (1 —6)/{810g(1/6)}.

This case will subdivide into further cases where one or the other stopping rule may stop
before time 1 with a higher probability, but the logarithmic stopping rule has the advantage
that it performs better in terms of early stopping because of the advantage that J/(¢) has

over Y*(t) immediately after 6. If the constant a is close to 1, then the nonparametric
control chart certainly looks more attractive.

Case 3. Y(t) = y*(¢) for all § < ¢ < 1, the only possibility of an equality being at ¢ = 1.
This holds when (1) < ¢y*(1), i.e,,
(15¢) V12 8A7 = (1 — 6)/{8 log(1/6)}.
In this case the logarithmic stopping rule performs better in both ways, so that the

nonparametric control chart is more efficient.

REMARK 3. It is interesting to note that classification into the above three cases is
determined solely on the basis of the criterion ¢/(8)/¢*'(0) = JViz s ~! which is the ratio
of the Pitman efficacy of the Wilcoxon test to that of the ¢-test for comparing the



NONPARAMETRIC CONTROL CHART 551

observations before and after change nonsequentially (see Lehmann (1975), Theorem 11,
page 372). The relevance of the ¢-test in comparing ¥’ X; and Y Ni%1® X, € > 0, is obvious.
On the other hand, for small ¢, YN%¥ i 'R; is approximately a linear function of the
Wilcoxon statistic computed from Xj, - -+, Xng and Xng+1, -+ -, Xng+e .

We shall now examine three types of changes in the context of some well-known
distributions and will classify each situation in one of the above cases by means of Vi2

AL

4.1 Location Change. Suppose F has density f for which [ f%(x) dx < «. Let Gn(x)
= F(x — pN7/?), u. > 0. Then A = por'. Moreover,

En= f FdGy = % + ,U,N_l/2 f hn dF, where Ay = H#N—I/Z,

X+0 .
Hyx) =07 {F(x +0) — F(x)} = 07" j f(y) dy.

By the Cauchy-Schwarz inequality Hj(x) < 07" [ f2(y) dy, so that
x+6 Yy
f Hi(x) dx=<67" J’ dxj Ay dy=6"" f A() dyJ’ dx = f () dy
x . y—0

for all 6. Hence [ A%(x) dx < [ f*(x) dx for all N. Using the Cauchy-Schwarz inequality
again, we have [ An(x) dF(x) = [ f %(x) dx < o for all N. Theorem 4.2, page 64 of Hajek
and Sidak (1967) can now be used to show that limy_... [ An(x) dF(x) = [ f*(x) dx. Thus
(1) holds with 8 = u [ f%(x) dx (the other parts of (1) being verified in the same way), so
that the criterion is given by V12 8A7' = V12 oF [ fi(x) dx. We now look at two special
cases.

Example 1. If Fis N(0, 1) in the location model, then V1205 J¥2(x) dx = 3/m)? < 1.
Thus for all 8 € (0, 1), (15a) is satisfied and Case 1 holds. However, since (3/7)2 is close
to 1, the nonparametric control chart is not much worse than the one based on S*(¢)
unless 6 is very small. -

Example 2. If F is a t-distribution with n df in the location model, then the criterion

of classification is
2
)
12 I‘(n + l)
2 b

w(n - 2) n
F(E)

which is to be compared with g(8) = (1 — 8)/{0 log(1/8)}. For selected values of n and 6,
A(n) and g(#) are tabulated below in tables 1 and 2.
Comparing A(n) and g(6) we now see that

(i) For 3 < n = 10, either (15b) or (15c¢) is satisfied, so Case 2 or Case 3 holds. For each
of these values of n, Case 2 holds for smaller values of § and Case 3 for larger values of 6.
Thus for small n, when the distributions have heavy tails, the nonparametric control chart

A(n) = V12 o J' Fix) dx =

TABLE 1.
A(n) for Selected Values of n.
n 3 4 5 6 7 8 9 10 15 20

A(n) 1.38 1.18 111 1.08 1.06 1.04 1.03 1.03 1.00 0.99
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TABLE 2.
g(0) =(1-6)/{01log(1/60)} for Selected Values of 0.

[4 125 .25 .33 .50 .55 .60 .66 .75 875 .90

g(6) 3.37 2.16 1.82 1.44 1.37 131 1.23 131 1.07 1.05

is clearly better for larger values of § and has the advantage of early stopping even for
smaller values of 6.

(ii) For n = 15, (15a) is satisfied, so Case 1 holds. In these cases, the control chart
based on N2 Y&, Z* is asymptotically better.

The results of simulation also exhibit this pattern.

4.2. Scale Change. Suppose F has density f for which [ | x| f*(x) dx < », and My and
[ xf*(x) dx are both positive. Let Gn(x) = F(cyx) where cy =1 — pN~Y2 4> 0. Then A
= uMro¥F', and by arguments similar to those used in the case of location change, we get
8 = u [ xf*(x) dx. Thus the criterion of classification is V12 8A™ =v12 orM# [ xf*(x) dx.

Example 3. If in the scale model, F'is a gamma distribution with density
f(x) = {(A*/T(»)}x" 'exp(—Ax), x>0, v>0,A>0,

then V12 oz M7 [ xf3(x) dx = (12/»)*T'(2»)/ {((T'())?2*} = k(»), say. Since k(») increases
with » and lim, .. 2(») = (3/7)'/% < 1, (15a) is always satisfied, so Case 1 holds. However,
k(v) is close to 1 for most values of », so the comment made in the context of a location
change in a normal distribution also applies here.

Example 4. If in the scale model, F is a log-normal distribution with parameters m
and s? i.e., F is the cdf of exp (X) where X is N(m, s?) then [ xf2(x) dx =(2sv7)"", so that
V12 op M7 [ xf3(x) dx = V3(ws?)*(exp(s®)—1)% For large s? this criterion exceeds
£(6) unless 6 is too small, so that (15c) is satisfied and Case 3 holds. For example, for
s? = 8 and @ = %, the criterion takes the value 2.4648, while g(6) = 1.8205, which makes
the nonparametric control chart more efficient. The results of simulation for these values
of parameter are discussed in Section 5.

4.3 Contamination. F and H are continuous cdf’s with finite variances. Suppose My
> Mr, [ FdH > % and let Gn(x) = (1 — uN"?)F(x) + uN"?H(x), 0 < 1 < 1, be obtained
by contamination of F by the contaminating distribution H. Then A = u(My — Mr)or" and
(1) holds with 6 = u(f FdH — %), so that the classification criterion is Ji2 At =
V12 op(f FAH — %) (My — Mg)™.

Example. If Fis N(0, 1) and H is N(1, 1) in the contamination model, then [ FdH —
% = .23958 by numerical integration, and the criterion takes the value .82993. Thus (15a)
is satisfied and Case 1 holds. Since the criterion is close to 1, the comments made in
connection with location change of a normal distribution applies here.

5. Simulation Results. In a small-scale simulation study, 200 runs of N = 900
observations were generated in each of several different situations and were subjected to
both the nonparametric control chart using S; given by (3) and the one using S = Y&,
(X: — MF)/or. Let T and T* denote respectively the smallest & needed for (12/N)*/2S, and
N7'2S¥ to exceed c, which was taken to be 1.645 to set the false alarm probability at the
asymptotic level a = .10. In case of no crossing, define T"and T* to be N + 1. We discuss
the results of our simulation in terms of
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p = proportion of runs with 7' =< 900, and
E(T) = mean T for all runs with 7' < 900

for the nonparametric control chart and p* and E(T*), defined analogously for the other
control chart.

For a location change by an amount uN** = % from a ¢-distribution with 8 df, the
nonparametric control chart performed better when the change took place at 8 = .62 with
P = .390 and E(T) = 703.7 against p* = .360 and E(T*) = 739.0 for the other chart. For
the same amount of location change from ¢; at an earlier point 8 = .33, the nonparametric
control chart maintained its superiority in early stopping by E(T') = 625.4 against E(T*)
= 671.7, but did worse in terms of frequency of stoppage by p = .525 against p* = .715. For
the same amount of location change from N(0, 1), the nonparametric chart was clearly
worse. For 8 = .33, it scored p = .705 and E(T) = 633.7 against p* = 965 and E(T*) =
579.6. The nonparametric chart was also found superior for detecting a scale change by cn
=1— uN""% = % from a log-normal distribution with s* = 3. Even for an early change at
6 = .33, it scored p = .480 and E(T) = 623.9 against p* = .240 and E(T*) = 637.9. The
above results, though based on rather limited simulations, illustrate the three cases
discussed in the previous section.

6. Acknowledgment. Thanks are due to Lee Applebaum for programming the
simulations and other numerical work in Section 4. Helpful comments by a referee are also
gratefully acknowledged.

APPENDIX
OUTLINE OF THE PROOF oF THEOREM 1B. Since Sy(0) = 0, by Theorem 12.3 of
Billingsley (1968), it is enough to show that the moment condition
(16) E(|Sn(tz) — Sn(t1) |*) < c(te — t1)?

holds for all N, 0 < ¢; < £, = 1 and for some ¢ > 0. Use | Z;| = % throughout the proof. For
Nt — Nt; = 1, (16) holds trivially with ¢ = 9, and for Nt, — Nt; > 1, (16) is implied by

17 E(EWal 7y < 2N, — )2

k=[Nt;]+1

Expanding (Zi’!‘& - Z,)*, it is seen that the nontrivial terms to consider are E(Z2Z,Z,,)
a 1

are E(Z,Z,ZnZ,) for k # | # m # n, because the number of the other terms are O(N?).

Using Lemma 2.1 and (8), we now see that the main thing is to prove that for some ¢ > 0,

YNt I+ 1= kot I ms [Ny E(Z}Z\Zy,) < cN%(t; — t,)*

and
YN 1=kttt mot (NG B ZpZ1ZmZ,) = cN%(t; — )%,

for which it is enough to show that

(18) E[{R,, — (s1 + 1)/2)* [I=2 {Rs, — (s: + 1)/2}] = O(N?)
and
(19) E[H?=1 {Rs,— (5. +1)/2}] = O(N?)

hold for all distinct integers si, sz, S3, sS4 between [N] + 1 and N. Finally, by using E(R;)
— (i + 1)/2 = [N8](¢ — %) = O(N'?), Var(R;) = O(N?) and Cov(R;, R;) = O(N'?) for
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i, j > [IN@], it is seen that (18) and (19) are implied by
E[[[: (R, — ER)] = O(N),
E[[]& (R, — ER,)] = O(N?),
E[(R, — ER,)*(R,, — ER,,)] = O(N*),  and
E[(R., — ER,))* T2 (R, — ER,)] = O(N?) _

for all distinct integers si, sz, S3, sS4 between [N6] + 1 and N. Writing R; by (2), these
relations are established by repeated smoothing taking appropriate conditional expecta-
tions. The details have been given by Frierson (1977).

REFERENCES .

BATHER, J. A. (1963). Control charts and the minimization of costs. J. Roy. Statist. Soc. Ser. B, 25
49-80.

BHATTACHARYA, P. K. (1978). Estimation of change-point in the distribution of independent random
variables. Unpublished manuscript.

BuATTACHARYA, P. K. and BROCKWELL, P. J. (1976). The minimum of an additive process with
applications to signal estimation and storage theory. Z. Wahrscheinlichkeitstheorie und
verw. Gebiete 37 51-75. .

BHATTACHARYA, G. K. and JOHNSON, R. A. (1968). Nonparametric tests for shift at unknown time
point. Ann. Math. Statist. 39 1731-1743.

BILLINGSLEY, PATRICK (1968). Convergence of Probability Measures. Wiley, New York.

CHERNOFF, H. and ZAcks, S. (1964). Estimating the current mean of a normal distribution which is
subjected to change in time. Ann. Math. Statist. 35 999-1018.

DARKHOVSKYV, B. S. (1976). A nonparametric method for the a posteriori detection of the ‘disorder’
time of a sequence of independent random variables. Theor. Probability Appl. 21 178-183.

FRIERSON, DARGAN, JR. (1977). A nonparametric approach to sequential detection of small changes
in distribution. Doctoral Dissertation. Univ. Arizona.

GARDNER, L. A. (1969). On detecting changes in the mean of normal variables. Ann. Math. Statist. 40
116-126.

HaJ£k, J. (1968). Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math.
Statist. 39 325-346.

HaJEK, J. and SIDAK, Z. (1967). Theory of Rank Tests. Academic, New York.

HINKLEY, D. V. (1970). Inference about the change-point in a sequence of random variables.
Biometrika 57 1-17.

KANDER, Z. and ZAcks. S. (1966). Test procedures for possible changes in parameters of statistical
distributions occurring at unknown time points. Ann. Math. Statist. 37 1196-1210.

LenmManN, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San
Francisco.

PAGe, E. S. (1954). Continuous inspection schemes. Biometrika 41 100-114.

PARENT, E. A, JR. (1965). Sequential ranking procedures. Doctoral Dissertation, Stanford Univ.

ReynNoLDs, M. R, Jr. (1975). A sequential signed-rank test for symmetry. Ann. Statist. 3 382-400.

SAVAGE, 1. R. and SETHURAMAN, J. (1966). Stopping time of a rank order sequential probability ratio
test on Lehmann alternatives. Ann. Math. Statist. 37 1154-1160.

SEN, A. and SRIVASTAVA, M. S. (1975). On tests for detecting change in mean. Ann. Statist. 3 90-108.

SETHURAMAN, J. (1970). Stopping time of a rank order sequential probability ratio test on Lehmann
alternatives II. Ann. Math. Statist. 41 1322-1333.

SHIRYAEV, A. N. (1963). On optimum methods in quickest detection problems. Theor. Probability
Appl. 8 22-46.

WIiLcoxoN, FRANK, RHODES, L. J. and BRADLEY, R. A. (1963). Two sequential two-sample grouped
rank tests with applications to screening experiments. Biometrics 19 58-84.

DIVISION OF STATISTICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA UNIVERSITY OF NORTH CAROLINA AT WILMINGTON
Davis, CALIFORNIA 95616 P. 0. Box 3725

B WILMINGTON, NORTH CAROLINA 28401



