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APPLYING ASYMPTOTIC SHAPES TO NONEXPONENTIAL FAMILIES
By GIDEON SCHWARZ

Hebrew University, Jerusalem

Fortus’ generalization of asymptotic shapes of optimal testing regions for
composite hypotheses does away with the restriction to exponential families
originally imposed by us. Here we survey his work critically, and suggest some
improvements that may be crucial for its practical applicability to parametric
problems, and point out its shortcomings for nonparametric ones.

1. Introduction: asymptotic shapes and Fortus’ generalization. Asymptotic shapes were
introduced in an earlier paper (1962). They arise as follows. First, when a statistical hypothesis
H, is to be tested against an alternative H;, on the basis of sequentially sampled independent
observations that cost ¢ units each, the optimal procedure is related to the posterior stopping
risk R. When the latter reaches a value less than ¢, the optimal (Bayes) procedure will
obviously call for stopping; for “separated” hypotheses, we have shown also (for some ¢ and
K) that as long as R exceeds K c log (1/c¢) where ¢ < co, the optimal procedure leads to taking
another observation. For these facts, that can be conveniently expressed as inclusions of events

1
{R < ¢} C {optimal procedure stops} C {R =K clog E}’

no further assumptions are required.

For the second step, the distributions of the observations were assumed to form a (k-
dimensional) exponential family. For this case, the three events forming the chain of inclusions
above can be interpreted as sets in the (k+1)-dimensional space of S(X1) +- .-+ S(X.), the
(k-dimensional) sufficient statistic of the first n observations, with » itself forming the k+first
coordinate. It was then shown that, as ¢ — 0, the two sets at the ends of the chain grow at the
rate of log (1/¢), and if this growth is counteracted by shrinking them at that rate, both tend
to the same limit-set, and hence, the same holds for the optimal stopping set sandwiched
between them, if it too is rescaled by shrinking it log (1/c)-fold. The limit-set is the asymptotic
shape, and blowing it up back to log (1/c¢) times its size yields an approximation to the optimal
stopping set. In terms of the generalized likelihood ratio statistic A, for testing H, against its
complement, the approximate stopping region is the set where at least one of Ao and A,
exceeds 1/c.

Recently Fortus (1979) attempted to do away with the restriction to exponential families.
As those are characterized by the existence of a vector valued statistic that is sufficient when
summed over the observations, Fortus chose a function valued statistic to play a similar role:
the log likelihood function. In the linear (co-dimensional) space of these functions, with one
dimension added for n, stopping regions and regions of constant posterior risk are well defined.
The concept of shrinking (by log (1/c¢)) is meaningful here as well, and so asymptotic shapes
are obtained, and the approximate procedure that results from replacing the actual shape by
the asymptotic shape is defined by Fortus just as in the exponential-family case, and can be
expressed in terms of A¢ and A; here as well.

An important improvement added by Fortus to his generalization, is the proof of local
uniformity of the convergence of the scaled region to its asymptotic shape.
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2. Interpreting the convergence and its uniformity. In the exponential case, when the
stopping risk R is regarded as a function of £ = S(X;) +- - -+ S(X,) and n, the domain of this
function consists properly of those pairs (2, n) which are attained by some possible sequence
Xy,-++,X,. It is convenient to extend R to all pairs where its formula is meaningful. We (1962)
mentioned one part of this extension (the inclusion of noninteger n values) but failed to
mention that in some cases, such as for integer-valued S, we assumed R to be defined as if also
S were real valued. Fortus (1979) proceeds likewise.

Only with the domain thus extended is the geometric description of the various regions and
shapes valid, and this must be kept in mind when one attempts to evaluate one characteristic
feature of the asymptotic shapes method: as n tends to infinity, the mean sufficient statistic T,
(equal 2/n in the exponential case and the log likelihood divided by n in Fortus’ case) is held
fixed.

For the convergence of the scaled regions to the asymptotic shape, the fixing of T, is merely
a technical device, made appropriate by the fact that the regions grow in all directions at the
same asymptotic rate of log (1/c) when ¢ tends to zero. However, when the asymptotic shape
is to be used in a real problem, where ¢ is small but positive, T, will never be fixed as n
increases, and the justification of using the approximate procedure depends on two further
results. One is the local uniformity in 7, of the convergence. This result is new in Fortus
(1979) even for the exponential case. But, to utilize the local uniformity in 7, for an evaluation
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of the asymptotic procedure, T, must be shown to remain in a set for which the uniformity is
valid, as sampling proceeds.

For interior parameter points of an exponential family, the required behavior of T, is
guaranteed by the law of large numbers: there 7, is the mean of n independent identically
distributed vectors S(X), with finite moments of all orders; consequently it converges almost
surely to its expectation. In Fortus’ case, T, is function valued, and even pointwise, T,(6) may
not converge. For E( T, (6)) is the Kullback-Leibler distance between the uniform distribution
and the distribution under 6, and this distance may be infinite. In such a case T, will not stay
in a bounded set, and the uniformity will not apply.

We therefore add one condition to Fortus’ assumptions: for Xi,...,X,, ...independent,
distributed according to one of the distributions in the parameter space, the mean log likelihood
Tn(0| Xy, . . ., Xn) stays almost surely in a set (of functions) that is bounded (in the metric
suplexp f — exp g|); or equivalently, the set

{exp(Tn(0| Xy, . . . ,Xp)) — exp(Tm(@| X1, . . . . X))}

is almost surely bounded.

Whenever this condition holds, Fortus’ description of the approximation as “reason-
able. .. for small ¢” can be justified by applying his uniformity result. For the practical
application, there is still the question how small is “small”.

3. The second order correction to the size. At the end of his paper, Fortus quotes Fushimi
(1967), who found in numerical examples that for ¢ = 10~® the approximation is still far from
reasonable. The limitation imposed thereby on the application is seen to be less severe if one
considers that c is the cost of an observation in units of the penalty for a wrong decision, and
that ¢ = 107%, e.g., corresponds to sample sizes of the order of magnitude of log 10°, which is
less than 20.

Fushimi proceeds to find a second order correction for the one-dimensional normal case,
with linear loss; subsequently we generalized it to other one-dimensional exponential families
and other loss functions (1969). In one sense these results are incomplete: the second order
corrections for the two regions that flank the optimal region in the chain of inclusions in
Section 1 differ from each other asymptotically by log log (1/c), and therefore the optimal
region cannot be approximated by this method any closer than log log (1/c). This is also the
order of magnitude of the correction term, so not much seems to be gained by including it.
Still, using it one can approximate the optimal stopping region with an error term equal to %
log log (1/¢) + O (1), while without it, the error contains higher multiples of the log log term,
i.e., at least % log log (1/c) in the case treated by Fushimi. Since the regions are in (Z,n)-space,
the error mentioned above corresponds to an error proportional to log log (1/c) in sample size,
or to ¢ log log (1/c) in cost. In either description, the relative error is asymptotically }log
log(1/c)/log(1/c). For the one-dimensional case with losses proportional to the squared
distance from the indifference region, the relative error would be five times as large, if the
second order correction were ignored (see figure).

For applications, the second order correction ‘is clearly of crucial importance. Since it varies
with the dimension of the exponential family, no one form will do for the general case. In fact,
since it grows proportionally with the dimension, it appears most necessary, yet least accessible
when the dimension becomes § infinite, as it may be under Fortus’ assumptions. It can be
salvaged, however, if we retain an assumption of finite-dimensionality less stringent than that
of an exponential family. In the latter, the dimension of the parameter space is also the linear
dimension of the log densities. The second order correction terms generalize under some
regularity assumptions to the case where the parameter space is Euclidean k-space, as we now
proceed to exemplify by the case k = 1.

So, we let @ be real valued, and strengthen Fortus’ continuity assumption by requiring the
likelihood function to be unimodal and to possess bounded second derivatives, a condition
that holds automatically in the exponential case. Also, we assume the hypotheses to be half-
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lines separated by a finite interval (6o,61), and the loss function to be bounded, and to behave
like |6-6,° just outside the interval. Finally, we assume an a priori density, bounded between
positive numbers in every finite interval.

Under these assumptions, the evaluation of the second order correction in Schwarz (1969)
goes through, and yields for the size factor by which to blow up the asymptotic shape

1 1 1
logz— (p+ 1 ii)loglogz .

Thus corrected, Fortus’ generalization yields an approximation applicable in the case of a
parametric family. For nonparametric problems, though formally correct, the approximation
cannot be corrected, and without a correction it remains too rough to be of any practical
value.

For exponential families, the gap between the constant-risk bounds of the Bayes regions
has been eliminated by Lorden (1967, 1977, 1980) who showed that for appropriate M*, the
Bayes procedure does not stop as long as R exceeds M*c. This determines the correct sign
preceding the % in the last formula to be a minus, and reduces the relative error to O((log
¢)™"). Hopefully this result, that is best possible if full dependence on the prior is avoided,
can also be extended beyond exponential families.
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