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SUMS OF RANDOM VARIABLES INDEXED BY A PARTIALLY
ORDERED SET AND THE ESTIMATION OF INTEGRAL
REGRESSION FUNCTIONS'

By F. T. WRIGHT

University of Missouri-Rolla

The estimator proposed by Brunk for the indefinite integral of a regression
function defined on the unit cube in 8 dimensional Euclidean space is studied.
It is shown to be strongly uniformly consistent if the errors satisfy a first
moment type of condition and an almost sure rate of convergence of order
O((n/logzn)"'"?) is obtained.

1. Introduction. Let {¢.} be a sequence of points in A, a subset of Rg (the B-
dimensional reals), and let {X,} be a sequence of independent random variables which are
centered at their means. We think of X, as associated with ¢, fork =1,2,.... For A C R,
define S,(A) = Y (r<nyea) Xr with S,(4) = 0if A N {t,, &, ..., t.} = O. Let < denote the
usual coordinate-wise partial order on Rg, let # denote the collection of subsets of the
form {s: s < t} with t € Ry, and let S.(#") = maxweyS.(W).

We are interested in the almost sure convergence of S,(#")/n to zero, as well as rates
of this convergence, because such results provide information concerning the strong
consistency of an estimator proposed by Brunk (1970) for integral regression functions.
For 8 = 1, Brunk (1970) has proved the almost sure uniform consistency of this estimator
if the errors satisfy the r-order Kolmogorov condition. Lemma 2 of Hanson, Pledger and
Wright (1973) combined with Brunk’s work, shows that the r-order Kolmogorov condition
can be replaced by a first moment type of assumption. (See the hypothesis of Theorem 1
of this paper.) Makowski (1976) demonstrated the strong consistency of the 8-dimensional
analogue of Brunk’s estimator assuming the r-order Kolmogorov condition, and in Theo-
rem 3 we show that the first moment condition mentioned above is also sufficient in the
multivariate case. Makowski (1973, 1976) has also obtained an almost sure rate of
convergence of order O(n/logzn) "/ %*?) where logsx = log log x. It is shown here that the
exponent can be decreased to —' and that the moment assumption can be weakened. (In
the case 8 > 1, he has assumed that the errors have a moment generating function; but a
second moment type of condition is sufficient.) The weak consistency properties of the
estimator have been studied by Pledger (1976). He considered arbitrary 8 and triangular
arrays of observation points.

The strong law needed to prove that the estimator is consistent was established by
Smythe (1978). It is interesting to note that this result has no restrictions on the sequence
{t}. In Wright (1978), a similar strong law was established for S,(¥) = max;c+Sn(L)
where Zis the collection of lower layers. (A set L C R is called a lower layer provided ¢
€ L and s < t imply that s € L.) However, because of the less restrictive nature of the
elements of %, assumptions on the placement of the ¢, are needed to show that S.(¥)/n
converges to zero almost surely. (Smythe (1978) also considers S,(¥)/n and gives a very
elegant proof of some of the results in Wright (1978).) In this note we prove a law of the
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iterated logarithm type of result for S,(#") and consider its implications in the estimation
of integral regression functions.

2. Asymptotic behavior of S,(#"). We suppose that the sequence {X,} is domi-
nated in the following sense: there is a probability distribution function G(x) for which

(1) P[|Xk|2y]sJ’ dG(x) fork=1,2,...and y=0.

|x|=y

The following result is a restatement of Theorem 2.1 of Smythe (1978).
THEOREM 1. If [Z, |x|dG(x) < x, then S,(#")/n — 0 a.s.

We now prove a law of the iterated logarithm type of result for S,(#"). Let o3 denote
the variance of X, andset s2 =6l +...+ o2 forn=1,2,....

THEOREM 2. If [*. x’dG(x) < » and if s%/n is bounded away from zero, then
P[lim Sup,—»S.(¥")/(2s2log; s2)"*=1] =1

The following result is used in the proof of Theorem 2.

LEMMA. Let j, k and m denote B-dimensional vectors of positive integers, let
{Xr: K < m} be a collection of independent random variables, let

Sk = Zj«k Xj
and let

T, = maxk<<mSk

If a median of a random variable Y is denoted med (Y), then for any positive constant
C

P[T,, — med(T,) = C] = 2**'P[S;, = C],
where Sf is the symmetrized version of Sy for k << m.
Proor. If T, denotes maxi«n Si where the S} are independent replicas of the S, then
2) P[maxi«,St = C] = P[T,, — med(T,,) = C]P[T% — med(T%) < 0].

Paranjape and Park (1973) have shown that the first expression in (2) is bounded above by
28P[Sy. = C] and so the desired result follows.

Proor (THEOREM 2). Since S,(#") = X, + ... + X, the Hartman-Wintner law of
the iterated logarithm shows that lim sup,_. S.(#")/(2s2logss2)"/? = 1 a.s. and so we only
need to establish the reverse inequality. Hartman and Wintner (1941) have shown that
there are sequences of random variables {Z,} and {Y,.} and a sequence of real numbers
{ax} with X, = Z, + Y, + a, for all n; Y3, (| Yi| + |ax]) = o((n logen)Pas.; {Z,) is a
sequence of independent random variables which are centered at their means and satisfy
Kolmogorov’s condition, that is ess sup |Z,| = o(d2/log.d?)"?) with d2 =Y%-1 Var(Z:)
and dZlog, dZ/(sllog:s?) — 1 as n — o. Since s2/n is bounded away from zero
S.(W) = SP (W) + o((sZlogss?)/?), where SZ (%) = maxwey SE (W) and SZ (W) =
Y (k<nt,ewy Zi. The proof now proceeds as the proof of Kolmogorov’s law of the iterated
logarithm. (See, for instance, Loéve (1963).) So we must show that for any § > 0, Y,
P[S;, > (1 + 8)(2d2, logadZ,)/*] <  for a properly chosen subsequence n, with S, =
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max,<,, SZ(#"). For k fixed, a minimal 8-dimensional grid can be chosen so that the
points t, ts, . . ., £, are vertices of the grid. Label the vertices of the grid (1, jo, . . ., j) for
Ji=1,2, ..., m; where m; = n, for i = 1, 2, ..., B8 so that the vertices have the same
ordering with respect to << as the associated labels, (ji, ja, . . . , J5). Construct n, replicas of
this grid and label the vertices in the jth copy (Ji, j2, ..., Js J) forj=1,2, ..., n. So we
have constructed a (8 + 1)-dimensional grid. DefineXj,,, ,,., = Z, if ¢; is the vertex labeled
(J1, J2, - -+, Jp) and jg1 = j and define X, ), ,,., = 0 otherwise. Now with T'm,..m,,, defined
as in the lemma and mg.: = ns,

;lk = Tmlmzmmﬁﬂt

Noting that |[med(X)| = |[E(X)| +V2V(X) = (1 + V2) (E(X?)"? and applying Theorem 6
of Gabriel (1977) to obtain E(Tmm,..m,.,) = DE[(S% (Rs))*] with D a positive constant, we
see that med(Tmm,..m,,,) = o((dy, logzdy,)'?). So it suffices to consider

(3 P[Trmy.my, — Med(Trymy.m,,,) = (1 + &) (2d5, logod?) ']

with 8 > 0. Next we apply the lemma to show that (3) is bounded above by
28HIP[Ye, ZF = (1 + &)(2d2 log.d?)"*] where Z)is the symmetrized version of Z,. The
remainder of the proof is like the proof of Kolmogorov’s law of the iterated logarithm since
ess sup | Zx| = o((d?/log:d2)"?).

Theorem 2 extends the first two results in Makowski (1973) to the case 8 > 1 and is
“sharper” in that the exact value of the limit superior has been determined. Due to the
modified inequality by Paranjape and Park the proof is also less complicated.

3. Integral regression functions. Let A be the closed unit cube in Rg, let u(-) be a
real valued Borel-measurable function defined on A, let F(-) be a probability distribution
function with support in A, and for a, b, € Rg with a << b let [a, b] denote {¢ € Rp: a <
t < b}. For t € A, the integral regression function has been defined by M(¢) = [joqu(s)dF(s).
Let {¢.} be a sequence of observation points in A, let {Y,} be a sequence of independent
random variables with E(Y,;) = pu(¢x) and let F,(-) denote the empirical distribution
function of ¢, £,, . . ., ¢,. Brunk (1970) proposed M, (t) =Y (r<nt,<yy Yr/n as an estimator of
M(t). If the X, of Section 2 are set equal to Y, — pu(t:), the theorems established there
provide results concerning the consistency of M,.(t). So we suppose that G(-) is a probability
distribution function which dominates the sequence {Y: — u(tx)} as in (1). As before s% =
Y1 Var(X,).

Let A = by, ..., tig, b, tisr, ..., tg) — ults, ..., tio1, @, Ly, ..., tg) be the ith
coordinate difference operator and for j = 1,2,...,8let 0 =uo<...<u, = 1bea
partition of [0, 1]. If for a fixed constant C

4) N0 YN0 - Teo | A gy - - - AL plty ..., )| =C

uﬁ_,ﬁ,u/j',ﬁﬂ
for all such partitions of [0, 1]® and if the % dimensional analogue (1 < k < f) of (4) holds
for every function derived from p by fixing B — k of the variables ¢, . . ., ts, then p is said
to be of strictly bounded variation. Hobson (1927, Sections 253 and 254) discusses two
definitions of bounded variation for functions of two real variables. The definition given
here is an obvious generalization of the stronger of the two.

THEOREM 3. If u(-) is continuous, [* | x| dG(x) < x, and F, converges uniformly to
F, then supiea | Mn(t) — M(t)| — 0 a.s.

Furthermore, if 2. x*dG(x) < o, s2/n is bounded away from zero, u is of strictly
bounded variation on [0, 1], and lim sup._... (n/log:n)"? supsea | F.(t) — F(t)| = M, for
some real number M, then there is a real number M* for which

lim Supn—« (n/10g2n)"? supsea | Mo(t) — M(t)| < M* a.s.
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Proor. Clearly, supeea | M,(2) — M(2)| is bounded above by

Sup:ea

M,(t) — f w(s)dF,(s)
[0,

+ supcea

J’ u(s)an(s)—f w(s)dF(s)
[04]

[0]

and the first expression in (5) is max(S.(#"), S;”(#"))/n, where S (%") is defined like
S.(#") except X is replaced by —X,. Hence, Theorems 1 and 2 show that it behaves as
specified.

The proof is completed by showing that the second term converges to zero at the proper
rate. While we only give the proof for 8 = 2, the proof for 8 # 2 is analogous. With ¢ =
(t1, t2) fixed we consider a partition of [0, ¢] determined by 0 = up < s < ... < up =t
and 0 = vo < U1 <...< U = to. The Lebesgue-Stieltjes integral [io u(s)dF(s) can be shown
to be the limit, as the norm of the partition converges to zero, of

o Yhmo Flus, v)[p(is1, vjs1) + pw, 0) — p(@ir, 0) — p(w, V,41)]

+ Zf:ol F(u, t)[p(w,, t2) — p(thss, t2)]
+ 27;5 F(tl’ UJ)[:“‘(tly vj) - I-L(tl, Uj+1)] + F(tl, tz)ﬂ(tl, tz).

Since a similar statement holds for [jo, u(s)dF,(s), by using the conditions on u(-) and
| Fn(¢) — F(t)| it can be shown that

(n/logzn)"? supeea | f1o. #(s)dF(s) — [ro, n(s)dF,(s)| < oo,

and the proof is completed.

Using the techniques presented in Brunk (1970), one could obtain consistency results in
the independent observations regression model by applying Theorem 3. We refer the
interested reader to Brunk (1970), Makowski (1973, 1976) and Pledger (1976).
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