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THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE
ESTIMATION OF THE MEAN

By Y. S. Cuow! anD K. F. YU?

Columbia University and Yale University

Let {X,, n = 1} be a sequence of independent identically distributed random
variables with mean p and unknown variance o®. We want to estimate y by X,
with a loss function of 6*%(X, — u)* + An, where 8§ > 0 and A —» 0 +. For , =
o(A7'/? and m(log \) ' — — as A — 0+, set T= inf{n = m:n"' Ty (X, — X,)
+ b, = A" a,}. If a,n™®® — 1 and 0 < b, — 0 as n — =, we prove that T is
asymptotically risk efficient, that is, as A — 0+, E[(2A"%0%) 7' (6® % (X7 — p)* +
AT)] — 1. When the X,’s are normal, the asymptotic risk efficiency of T was
established by Starr. By introducing the delay factor n,, we are able to drop the
condition of X,’s being normal.

1. Introduction. Let X;, X, - -- be independent observations from some population with
mean g and variance ¢°. With a sample (Xi, ---, X,) of size n, we want to estimate the
unknown mean p by X, with a loss structure

L, =0%®%X, — )’ + An,

where X, =n"' Y%, X,, § > 0 and A > 0. The risk

o2
R.,=EL,=—+ An
n

is minimized by taking a sample size no, where
A% = no < [A"%6°] + 1, Ry, = 21%6° + OA\)  as A — O+.

But if o is unknown, there is no fixed sample size procedure that will attain the minimum risk.
Robbins ([10], 1959, for § = 1) proposed to replace o” by its estimator

Vao=(n— D73 (X — X)
and to determine the sample size by
T =inf{n=m:n=\"*V?
=inf{ n=m: V, < An?%},

where m = 2 and to estimate u by X7.. Let Ry~ = ELr. The performance of 7’ is usually
measured by

(i) the risk efficiency: R, /Rr, and

(ii) the regret: Rt — R,

Let the observations come from a normal population and § = 1. Using the loss structure

L¥ = A"((X, — w)? + An).

Robbins [10] obtained some numerical and Monte Carlo results which suggested the bound-
edness of the regret, and Starr [11] established that, with R} = EL¥ and R% = EL%, R, /Rr
= R} /R% — 1 as A — 0 (asymptotically risk efficient), if and only if m = 3. As A — 0, Starr
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and Woodroofe [12] found that the regret is bounded if and only if m = 3. Woodroofe [13]
proved that if m = 4, then

ET' =X""%0 + %o % — % + o(1),
R% =212+ Y% + o(1),

where » is a constant which can be computed. All these strongly indicate the good performance
of the sequential procedure for the normal case. But is this procedure good in general? Let
PXi=1)=p=1-PX1=0),0<u<l,and §= 1. Then form =2

Rr = E((Xr — p)* + AT")

= f (Xm — p)> dP
X,=1,---,%,

m=1}

= (1 - " >0,
and Ry, = 2(\u(1 — 1))"/* — 0 as A — 0. Hence limy_.oR.,/Rr = 0 and 7" is not asymptotically

risk efficient.
To remedy the situation, Chow and Robbins [6] proposed the stopping rule (with § = 8 =

)
T=inf{n=2:V, + n? < A\/n¥%), B>0,
by introducing the term n™*. How good is the performance of the sequential procedure T'? In

this note, we shall prove the following theorem which shows that, no matter what the
population is, T is asymptotically risk efficient as A — 0.

THEOREM. Let X, Xy, X, + - - be independent identically distributed random variables with
EX = pand Var X = o® € (0, ). For § > 0, let a, and b, be sequences of constants such that
a.n™? — 1and 0 < b, = o(1) as n — . For A > 0 and n, = 1, define

T=T=inf{n=n:n" Y% (X, — X)* + b, = AY%a,)}.
Then,

@) If m=o0oA""?) as A — 0, then limy.oA"*T = ¢° a.s., and lim\_oEQ\2T) = o°,
(ii) If E| X|” < oo for some p > 1 and —K log A < ny = o(A""?) for some K > K, , then as
A— 0,

Rr (0”7 %(Xr—p)?+ AT
E = E 2)\1/205 e d 1

It should be pointed out that a key tool in proving this theorem under the mere assumption
of a little bit more than the second moment on X is Lemma 5, whose proof will be given in
detail in the next section. ‘

2. Proof of the theorem.
LemMa 1. Let {T = Ty, 1 = A > 0} be a family of random variables such that P(T = 1) =
L. If for some 0 <y<1,p>0,8>0

(1) PMT<y)=0oM*) as A—0,
then {(\*T)™, 1 = X > 0} is uniformly integrable.

ProoFr. Since ()\ﬁT)ApIp\ﬁsz] = y_p and by (l), E(}\ﬁT)ApI[m'IzY] = A_BPP(}\ﬁT < y) =
o(l), as A — 0, {A\*T)™", 1 = A > 0} is uniformly integrable.

LeMMA 2. Let X, X1, Xs, - - - be independent identically distributed random variables with
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EX = € (0, ®) and E(X")? < « for some p = 1. Assume {a.} and {b.} are constants such that
as n— ©, b, = o(1) and n"*a, — 1 for some o > 0. Assume nj to be a positive integer-valued
Sunction of A, o and p, with ny = OA™"*) as A — 0. For A > 0, put

T=Th=inf{n=ny:n"'S, + b, < Aa,},

where S, = Y- X,. Then {(\/°T)”, 1 = A > 0} is uniformly integrable.

ProoOF. We can assume p = 1. Define 7 = inf{n = 1:S, < 2n} and let 71, 75, - - - be the
copies of 7, and t, = 71 + - - - + 7,. Then S, < 2t, and since E(X™)? < 0, Er” < o0. (See [8]).
By Doob’s martingale theorem {(n~'t,)”, n = 1} is uniformly integrable. Choose a positive
integer n; such that a, > % n® if n = n;, and choose M such that M = 2(2 + ¢) and M = An§,
where ¢ = supp=1 | b.|. Put

@) g=[A"M)"]+ L
For A >0,and g = ny, t, = ¢ = n) and
2(2+c)}\<M}\ A

l!_< o
=

N 2-r2-93

>

t(;lqu+blq$2+CS 55}\0;(].

Hence T =< ¢, a.s. By (2) the uniform integrability of {(n't.)?, n = 1} implies that of {(A"/"1,)?,
1 = A > 0}, and it follows that {(A/*T)”, 1 = A > 0} is uniformly integrable.

LemMA 3. Let X, X1, Xz, - - - be independent identically distributed random variables which
are bounded from below with EX = p € (0, ). Let Y, Y1, Y3, --- be independent identically
distributed bounded random variables with EY = 0. Assume {a,} and {b,} are constants such
that as n — o, b, = o(1) and n™*a, — 1 for some a > 0. For A > 0, let

T=T=inf{n=n:n"' Y X, — Y2+ b, <Aa,),
where ny = —K log A for some K > 0. Then for p > 0, there exists K, , > 0 such that if K > K, ,,
{(AY*T)™, 1 = XA > 0} is uniformly integrable.

The proof involves bounding the probability of (A\'/*T < ) for y € (0, 1) in the right order
of A. This can be done by a truncation argument and then applying the Kolmogorov’s
exponential bound. The details are omitted.

LeMMA 4. Let Z, Z,, Z,, - -- be independent identically distributed random variables with
variance Var Z = ¢, which is positive and finite. Assume {a,} and {b,} are constants such that
asn— o, b, = o(l) and n"*a, — 1 for some a > 0. For A > 0, let

T=T=inf{n=m:n"' Y (Z. — Z,)* + b, < Aa.},
where n\ = —K log A, for some K > 0. Then for p > 0, there exists K, ,, > 0 such that if K > K, ,,,
{(AY*T)™, 1 = A > 0} is uniformly integrable.
Proor. ForM>0,put Z, = (Z, A M) v (;-M) for each n = 1, and choose M such that
Var Z, > 0. For A > 0, define
N=Nv=inf{n=n:n"' T (Zi = Z})* + b, = Aa,).

Put X, = (Z/ — EZ})* and Y, = Z} — EZ;. Then X, and Y, are bounded, and by Lemma 3,
{(AY*N)™, 1 = A > 0} is uniformly integrable if K > K, ,. But by a result due to Chow and
Studden [7],

M(Zi = Z0) =Y (Zi— Z0)%

Hence N < T, and then {(AV*T)™, 1 = A >0} is uniformly integrable.
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LemMa 5. Let Y1, Ya, - - be independent random variables with EY, = 0 for each n = 1.
Assume that for some p = 2, {| Ya|", n = 1} is uniformly integrable. Let %, be the o-algebra
generated by {Yy, Yz, --+, Yo} for eachn= 1, % = {¢, L}, and let {M(D), b € B} be Fu-
stopping times with B C (0, ) such that {(b~*M(b))"”*, b € B} is uniformly integrable. Let W,
= Y, Y,. Then {| b™"*Wuw) |*, b € B} is uniformly integrable.

Proor. Foreach b € B, let M’ = M’(b) = M(b) A N, where N = [Kb] for K= 1. Put M,,
= M’ A n. Since {| Y.|?, n = 1} is uniformly integrable, for any § > 0, there exists a positive
constant K, such that

sup=1 E| Yalyv,1=k1— EYulyy, =kl <8.

Put X, = Y"I[IY,.IEKJ - EYnI”yn]zK]] and Z, =Y, — X..
Then

I X, = Y Xidpr=i,
and
Y Zi =Y Ziiw=a
are martingales. By a result of Burkholder, Davis and Gundy [2], for some constant A > 0,

Elzgl X, Ip = AE(E:Q=1 E(X?I[M’zi]/ «97:"1))"’/2 + AE(SuPizl | le I[M’zz])p

3) < AE(Y Iiw=nEXD)P? + AE(Y1 E| X Iiar=i)
< ASE(M')P"* + ASE(M’)
< 2A48E(M")""*,
Similarly
E|YM, Z, |7 <= 2P PAKY T E(M') P,
Therefore

supsepE| b2 Y M) X;|P < 248 supsepE(b M)
which can be made arbitrarily small; and
supresE| b2 Y M) Z,|PH < 2PPAKEV KPP < w,
Hence
C)) (|72 3X |7, bE B)
is uniformly integrable. Now
) Wy = Y1 Yolimeoyrzi)
=YL Yilme=a + it Yilimeza.
As in the derivation in (3),
E|YEna Yilprw=n|" < AE(T =N+ Iimn=a EYD)? + AE(sup.=n| Yil" Iiw=i)
<24 sup,=1E| Y, |? (M(b))"* dP

M(b)=N
= o(b""?)

uniformly in b as K — oo. This, together with (4) and (5), completes the proof that
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{|67*Wanw |7, b € B}
is uniformly integrable.
PROOF OF THE THEOREM. Obviously T <  as., and as A — 0, T — o a.s. By the strong
law of large numbers,
T'YE (X — Xr)?+ br—> 0>  as.
Therefore A'/°T?*° — 62 as., and hence AT — ¢° a.s. Define
r=n=if{n=n:n"" YL (X, — p)?+ b, < AY%a,).

Let A’ = A% Then n, = O(\’ ") and by Lemma 2 {A/*r, 1 > A > 0} is uniformly integrable.
Since T'< 7, {A"?T, 1 = A > 0} is uniformly integrable; consequently E(A'>T) — ¢° as A —
0. This proves (i). For (ii), since E| X|* < « and n, = O(A™"%), by Lemma 2, {(A\?7)?, 1 =
A > 0} and hence {(A?T)?, 1 = X > 0} are uniformly integrable. By Hélder’s inequality,
Lemmas 4 and 5

= EV N SL (K= m|PEVATY ™ - 070

E|A\*EL (Xi—#))2<

1 -
1, )
= 0(1)-o(1) = o(1),
where p + g = pq. Hence by Lemma 5,
AAI/Z(XT —,U,)Z - (}\1/4 17;1 (X — #))2<X_;TZ _ oAza) + OAZB(AIM iT;I (X — ,U,))Z

is uniformly integrable; consequently, together with Anscombe’s theorem [1],
AV Rr — 1) 5 N, 1),  as A— 0,

and (i), we have

. R .
llIII)\_,o -—T = llmAﬂoE

o

o2 ¥ Xr — W) + AT
A28 =1

REMARKS. It should be noted that if the type of distribution for the population is known,
then by direct computation, n, can be replaced by a fixed positive integer so that the conditions
of Lemma 1 hold. In particular, the case when the X,’s are normally distributed is certainly
subsumed under our general results for asymptotic risk efficiency.
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