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ASYMPTOTIC LOWER BOUNDS FOR RISK IN ROBUST ESTIMATION*

By RUDOLF BERAN

University of California, Berkeley

Robustness and efficiency of a parameter estimate T’ can be assessed by
comparing the fitted parametric distribution Pr with the actual distribution,
which is assumed to lie near the parametric family { Py:0 € ©}. Asymptotic lower
bounds are established for the minimax risk over distributions near the parametric
model, taking as loss function a monotone increasing function of the Hellinger
distance between the actual distribution of the sample and the fitted distribution
determined by 7. The set of marginal distributions considered in the minimax
calculation is a subset of the Hellinger ball of radius O(n~'/?) centered at Py, n
being the sample size. When the loss function is bounded, the lower bound on
maximum risk can be attained asymptotically. However, an estimator of § which
is asymptotically minimax for bounded loss functions may be far from optimal
when the loss function is unbounded. Such divergent behavior is exhibited, for
instance, by the sample mean in nearly normal models.

1. Introduction. A basic question for the theory of robust estimation in parametric models
is this: what is being estimated robustly when the postulated parametric model does not
contain the actual distribution of the sample? In a few special cases, such as estimation of
location in symmetrically contaminated symmetric distributions, an obvious answer exists.
More generally, we may assert that the parameter estimate itself determines what is being
estimated outside the parametric model (cf. Huber (1972), Hampel (1974), Bickel and Lehmann
(1975)); however, it is not entirely clear then how robust estimates are to be compared or
interpreted outside the parametric model.

An alternative view of estimation takes as a fundamental goal the estimation of the actual
distribution of the sample. A parameter estimate determines a fitted parametric distribution,
that member of the parametric family which is identified by the parameter estimate. The fitted
parametric distribution is regarded as an estimator of the actual distribution. In this view:

(i) Parameter estimates are interpreted primarily as the parameter values which identify the
fitted distribution,;

(ii) Questions of efficiency and robustness are addressed by comparing the fitted parametric
distribution with the actual distribution.

Some consequences of this attitude toward robust estimation are explored in this paper.

Let { P5:0 € ©} denote the parametric model for a sample of size n; let T, be an estimator
of §; and let Q" be the actual distribution of the sample. In principle, the adequacy of P%, as
an estimator of Q" can be measured by the risk Eg-w[d(PT,, Q™)], where d is a metric on the
set of all probabilities and w is nonnegative, monotone increasing. While exact calculation of
such general risks is usually not feasible, it is possible to study their asymptotic behavior under
sequences of distributions {Q"; n = 1} which are not too far from the sequence { P§; n = 1}.
Such a study is carried out in this paper, assuming independent 1dent1cally distributed
observations and taking Helhnger metric as d.

The main result obtained is an asymptotic lower bound on the minimax risk which
generalizes the Fisher information bound of classical asymptotic estimation theory. (For the
latter bound, see Chernoff (1956), page 12, who states a form attributed to Stein and to Rubin;
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also Héjek (1972) and Le Cam (1972). Koshevnik and Levit (1976) extend the information
bound to certain nonparametric estimation problems.) As in the classical problem, the lower
bound established in this paper sets an absolute standard against which practical robust
estimators can be compared. When the function w is bounded, the lower bound on maximum
risk can be attained asymptotically. However, an estimator of § which is asymptotically
minimax for bounded w may be far from optimal when w is unbounded. Such divergent
behavior is exhibited, for instance, by the sample mean in nearly normal models. A discussion
of what this result means is given at the end of Section 2.

2. The main results. The following notation provides a useful language in which to
express the assumptions and results of this paper. Let II be the set of all probabilities on a
space & with o-algebra <. Define a set H as follows (cf. Neveu (1965), page 112, Koshevnik
and Levit (1976)): A typical element of H is a pair (£, P), usually written £(dP)"?, such that P
€ II and ¢ is a random variable in Lo(P). For simplicity, the element 1(dP)"? is written as
(dP)*2. Suppose that £(dP)"%, 1(dQ)"/* are elements of H and that p = 27(P + Q). Define the
inner product

e oy _ £ 172 _d_Q 1/2
@n (€£@P)"%, n(dQ) ") J £n(d“ & du
and, for arbitrary real a, b, the linear combination
dP\'"”?
22) at(dP)"* + bn(dQ)"* = (a«f (d—“) + bn<d—Q> )(du)l/ 2

The corresponding norm || - || on H is given by

I£@P)"*||* = (£(dP)"%, £(dP)"?)

- [ear

In particular, | (dP)"/* — (dQ)"/? || is the Hellinger distance between the probabilities P, Q € I1.
The elements £(dP)"? and n(dQ)"? of H are said to be equivalent if || £(dP)"? — n(dQ)"*| =
0. The set H of equivalence classes in H forms a Hilbert space with the above inner product
and norm.

Let {P§ = Py X Py X -+ X Py n-times: § € O} be the parametric model for a random
sample of size n. Suppose that Q% = 0, X Qr X -+ X Q, n-times is the actual distribution of
the sample. Both {Ps: @ € ©} and {Q.: n = 1} are probabilities on (%, «/). Let T, be any
estimator of § based upon a sample of size n. The risk of T, is

249 Ru(Tw, Qn) = Equw[ || (dP%,)"” — (dQ1)"* 1),

where w is real-valued, nonnegative, and monotone increasing. Of primary interest here is the
asymptotic behavior of the minimax risk infr,supg, R.(T», @), computed over sets of Qn
which shrink to some Py in a suitable manner as sample size n increases. The main assumptions
to be made concern the parametric family {Ps: § € ©}, the alternative dlstnbutlons {Qnn=
1}, the function w, and the estimators {7T: n = 1}.

Local contamination models, under which Q, shrinks to the parametric model Py at rate
n~'2, have been used in robustness studies by several authors (cf. Huber-Carol (1970), Jaeckel
(1971), Beran (1978), Rieder (1980), Bickel (1978)). Over such shrinking neighborhoods of P,
both bias and variance of an estimate of § remain comparable in magnitude; neither explodes
relative to the other as in the fixed neighborhood asymptotics due to Huber. Thus, it becomes
possible to analyze bias and variance simultaneously. For further discussion and history, see
the review paper by Bickel (1978). Differences between this paper and the work cited above
include the following:

(i) Both the estimate space and the parameter space here are sets of probability measures,
rather than subsets of a Euclidean space. The risk (2.4) is an abstraction of mean squared error

2.3)
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which expresses the view that the parameter of interest is the actual sample distribution Q7
and the estimate of this parameter is P7, .

(ii) This paper studies limiting behavior of minimax risk, rather than minimax behavior of
asymptotic risk. The latter seems meaningless unless uniform convergence to the asymptotics
can be established.

(iii) The particular local contamination model that will be used in this paper is weaker
than those in the papers cited above.

In principle, there exists a hierarchy of possible local contamination models, loss functions,
and corresponding asymptotic minimax estimates. This paper investigates one extreme—a
light contamination model. Work carried out since this paper was submitted shows that within
a very similar framework, but with heavier local contamination models, we can derive as
asymptotically minimax estimates many of the familiar robust estimates (Millar (1979)) and
also some adaptive robust estimates (Beran(1979)).

Assumption 1. The parameter space © is an open subset of R*. Let L3(Ps) be the set of all
k-dimensional column vectors whose components belong to Ly(Ps). The mapping § — P, has
the following properties:

(i) for every 8 € O, there exists 79 € L5(Ps) such that, for every ¢ in a Euclidean
neighborhood of 6,

23) [ (@Ps)""* — (dPe)""* = (& — O)me(dPe)"* || = o(|& — 8|);

(ii) for every 4 € O, the Fisher information matrix

(2.6) 106)=4 f nems dPg

is nonsingular.
From (2.5), it follows easily that [ 13 dPs = O for every § € ©.

Assumption 2. Let B be any subset of {£ € La(Py): [ £ dPs = 0} which is strongly compact
in La(Ps). {Qn(h, £): h € R*, § € B, n = 1} is a family of probabilities on (%, &) with the
following property: for every sequence {(ks, £&») € R* X B; n = 1} which converges strongly to
some (h, £) € R* X B,

@7 limy oo | 2" {(dQn (B, §0))"* — (dPs,)'"*] = £(dPs)"*|| = 0,

where 6, = 6 + n"2h,.

A construction for such a family of probabilities {Q.(h, £)} is described in Proposition 3 of
Section 3. An important implication of (2.7) is lim.« || (dQn(hr, &))" — (dP5)"*||* < 2; that
is, the two probabilities do not separate as n increases.

Assumption 3. The function w: [0, 2] — R*, the extended nonnegative half-line, is
monotone increasing with w(0) = 0. Moreover, for every b = 0,

(2.8) Ko(b) = f w2 — 2 exp(— | z|?/8 — b*/2)]¢u(2) dz < oo,
where ¢ is the density of the standard k-dimensional normal distribution.

Assumption 4. The distributions of {n'/*(T, — 6); n = 1} under {P§} are tight.

This assumption is introduced because, for the loss functions considered in this paper
(unlike ordinary quadratic loss), it may not be clear that other kinds of estimators have larger

limiting risk. An alternative approach requires only that the {7} be random vectors with
values in @, but strengthens assumption 1 as follows:
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Assumption 1. The parameter space © is an open subset of R*. The mapping § — Py is a
diffeomorphism in the following sense: the mapping is one-to-one and

(i) part (i) of assumption 1 holds;

(ii) for every 8 € @, there exists a; € L5(Ps) such that, for every probability P, in a Hellinger
neighborhood of Py and every ¢ € R,

(29) |9~ 0) = (c'os(dPs)""*, (dPs)"* — (dPs)'"*) | = o(|| (dPs)'"* — (dPs)"*|)).

Assumption 1’ implies assumption 1 and that it is always possible to set

-1
(2.10) 0y = [f NeNs dPo:l M6

in (2.9). To verify this claim, observe that, by projection
.11 09 = Ang + p,

where A is a k X k matrix, p € L(Ps), and the components of p are orthogonal in Ly(Ps) to the
components of 7. Substituting (2.11) and (2.5) into (2.9) gives

212 do—-0)= [C’A Jnmé dPe](¢—0)+0(|¢—0I)

for every ¢ in a neighborhood of 6 and every c € R*. Hence 4 [ n4ms dP, equals the identity
matrix for every § € ©. Nonsingularity of 4, hence of 1(8), follows; the choice p = 0 in (2.11)
gives (2.10).

The use of quadratic mean differentiability (property (2.5)) as a statistical regularity
condition is largely due to Héjek and to Le Cam; see for instance Hajek and Sidik (1967),
Héjek (1972), Le Cam (1970). Simple sufficient conditions for Assumption 1 may be found,
for example, in Lemma 1 of Beran (1977). In particular, these conditions are satisfied when
{Pg: 6 € O} is a canonical k-parameter exponential family and © is an open subset of the
natural parameter space (cf. Berk (1972) for relevant properties of exponential families). In
location models, Assumption 1 holds if P, has a density with respect to Lebesgue measure
which is absolutely continuous with finite Fisher information (Hdjek and Siddk (1967),
Chapter 6).

Sufficient conditions for Assumption 1’ are: the satisfaction of Assumption 1, one-to-
oneness of the mapping § — Py, and strong continuity in § of n¢(dPs)"/%. For then, the mapping
¢ — ((dPy)"%, no(dPg)*/?) is continuously differentiable in ¢ and the validity of (2.9) is a
consequence of the inverse function theorem. In particular, the canonical exponentially family
described in the previous paragraph satisfies Assumption 1'.

The main results of the paper are Theorems 1 and 2, stated below. Proofs of all results
described in this section are deferred to Section 4. For every £ € B, the strongly compact set
appearing in Assumption 2, let

(2.13) d$) = [j LY dPe] j £ng dPo
and let
(2.14) b* = maxees || (¢ — m6 dE))dPs)"*||* < oo

For every ¢ > 0, let S(c) = {h € R*: WI(8)h = c}.

THEOREM 1. Suppose Assumptions 1 to 4 are satisfied or that Assumptions 1’, 2, 3 are
satisfied. Then
(2. 15) lim.,. lim inf,, ,» inan SUP(h,¢) € S(c)<B RA(T,, Qn(h, §)) = Ko(b)

for b and Ki(b) defined by (2.14) and (2.8) respectively.
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The apparent complexity of the left side of (2.15) is not without purpose. Restricting (h, £)
to a compact S(c) X B makes it possible, in some cases, to check attainability of the lower
bound; letting ¢ — o leads to the explicit, relatively simple, expression (2.8) for the bound.
The first point is illustrated by the next theorem.

THEOREM 2. Suppose Assumptions 1, 2, and 3 are satisfied, the function w is bounded, and
the estimator sequence {T,; n = 1} is such that, under Pg,

2.16) n(T, — ) = I"'(@)n 722 T 21 ne(x:) + 0p(1).
Then, for every c > 0,
2.17) limy o0 SUP(h) este1xB Ri(Tns Qnl(h, £)) = Ko(b).

Since (2.17) obviously implies that the limit of the left side, as ¢ tends to infinity, must
equal Ko(b), Theorem 2 provides conditions under which the asymptotic minimax bound of
Theorem 1 is attained. Note that an estimator sequence {7,; n = 1} which satisfies (2.16) is
asymptotically efficient, in the familiar senses, for the parameter 8 under the model {P,: 6 €
©}. Implications of the two theorems for robust estimation are illustrated by the following
examples; calculations underlying the examples are deferred to Section 4.

Example 1. Suppose w(z) = z on [0, 2] and Py is Ni(6, I), i.e., k-dimensional standard
normal translated to have mean 6. This normal model satisfies Assumption 1’ with n4(x) =
27Y(x — 0) and Fisher information matrix equal to the identity matrix. Theorem 1 applies with
lower bound

(2.18) Ko(b) = 2[1 — (4/5)*%exp(—b*/2)].

Note that Ko(b) approaches its maximum value of 2 if either parameter dimension k increases
or if contamination neighborhood “diameter” b increases. Since w is bounded and the sample
average T, = n~' Y%, x; satisifes (2.16), the sample mean is an asymptotic minimax estimator
of @ for the loss function determined by w, whatever the choice of B.

Example 2. Suppose w and P, are as in Example 1. Let {T,; n = 1} be a sequence of
location invariant estimators of 8 such that, under Pg,

.19 nA(Tn— 0) = n" 2 Y2 Y(xi — 0) + 0y(1),

where [ | ¥ | *px dx < o and [ Y¢x dx = 0, ¢ being the standard k-dimensional normal density.
This class of estimators includes the usual M, L, and R estimators of location. Location
invariance of T, entails the property [ ¥(x)x'¢x(x) dx = I, the identity matrix. (To verify this,
consider the effect of contiguous location shift alternatives upon the distribution of 7). Hence,
for every unit vector a € R*, [ (a'y)’px dx = 1, with equality for every a if and only if Y (x)
= x a.e. Equivalently, the eigenvalues {A;; 1 <j =< k} of [y ¢z dx are such that min; A; = 1,
max; A; > 1 unless y(x) = x a.e. By calculation,

(220)  liMyc SUPGr St Ru(Tns Onlh, £) = 2[1 — exp(=5%/2)- [k (1 + A;/4)™?]
for every ¢ > 0. The right side of (2.20) is strictly larger than (2.18) unless y(x) = x a.e.
Example 3. Let Py be Ni(6, I), let B = {0}, and define Q.(h, 0) = (1 — n %) Pyyn-1om +

n~?A(n’e), where A(z) is the unit mass located at z € R* and e is a fixed nonnull vector in R*.
By calculation, Assumption 2 is satisfied: for every convergent sequence {h, € R*; n = 1},

@21 lim, .. || n'/*[(dQn(hn, 0))'/ — (dPs,)"*] || = O,
where 6, = 6 + n~"/?h,. This implies that

222 lim, ... [| (dQ7(hn, 0))'/% — (dP5)'*|| = 0
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or, equivalently, that the variation norm of Q7(h., 0) — Pj, tends to zero as n increases. Hence,
the limiting distribution of an estimator under Q7(h,, 0) is the same as its limiting distribution
under Pg,.

Example 4. Suppose Py is Ni(6, I) and w(z) = —2 log(l — z/2) on [0, 2]. Then the risk
becomes

(2.23) Ru(Tn, Qn) = —2nEq;log[((dPr,)"?, (dQn)"*)]
and Theorem 1 is applicable with
229 Kob) = 47k + b

Since w is not bounded, Theorem 2 cannot be used here. Indeed, let B and Q.(h, £) be chosen
as in Example 3, so that b = 0, and let T, be the sample mean. Then, by calculation,

(2.25) limy, «SUphpesicxBRA(Tn, On(h, £)) = @

for every ¢ > 0.

Thus, for one natural loss function, the sample mean is an asymptotic minimax estimator
in nearly normal distributions (Example 1) and strictly dominates, asymptotically, other M, L
or R estimators of location (Example 2). For another loss function, however, the sample
mean’s maximum risk can tend to infinity as sample size increases (Example 4). Underlying
this divergent performance is the boundedness or unboundedness of the loss function. Under
a nearly normal distribution, the sample mean has small probability of being a wild estimate
and large probability of being a relatively good estimate. Hence, its risk is relatively small
when the loss function is sufficiently bounded, but can be large when the loss function is
“unbounded.

Interpretation of these results must take into account the relative smallness of the contam-
ination neighborhoods used in this study. More pessimistic local contamination models, such
as the Hellinger ball, or Kolmogorov-Smirnov ball, or Cramér-von Mises ball centered at P,
and of radius O(n~"/?) would be expected to identify different, more pessimistic, estimates as
asymptotically minimax. (See Millar (1979), Beran (1979) for results along these lines obtained
since this paper was submitted.) Apart from suggesting questions that need further investiga-
tion, the present results provide a theoretical background for Stigler’s (1977) finding that the
sample mean compares favorably with other robust estimates when applied to some real,
roughly normal sets of data.

3. Ancillary results. The first two propositions developed in this section are needed for
the proofs of Theorems 1 and 2. The third proposition constructs a family of probabilities
{QOn(h, £)} which satisfies Assumption 2 of the previous section.

Consider the problem of estimating the parameter ¢ € R* from one observation on the Nx(1,
I) X v distribution, where » is a probability on R which does not depend on ¢. Let R and R*
denote, respectively, the extended real line and the extended nonnegative half-line. Suppose
that the loss incurred when ¢ is estimated by s € R* is u(|s — ¢|?) and that the function u
satisfies the following requirements: u: R* — R* is monotone increasing with 4(0) = 0 and

@3.1) J’u(|z|2)exp(—|z|2/2) dz < oo,

Let #* be the Borel sets of R*. A randomized estimator of ¢ is described by a Markov
kernel D:%* x R**! - [0, 1]. Given an observation x € R*, y € R from the Ni(t, I) X v
distribution, D(4; x, y) is the probability that the estimate of ¢ lies in the set 4 € #*. The risk
of the randomized estimator under the loss function and model described above is

(32 r(D, 1) = f [f u(|s — t|*)D(ds; x, y)]tbk(x — 1) dxv(dy).
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For ¢ > 0 and a € R*, let M(c, a) be the set of all probabilities on (R*, #*) which are supported
on {t € R* |t — a|* = c}. The following result is a modification of the usual minimax theorem
for estimation in the normal location model.

PROPOSITION 1.  Under the assumptions of the preceding two paragraphs, for every a € R*,

(33) lime e SUPreM(c,a) infp f I’(D, I)?T(dt) = lim., infp SUPreMic,a) f I’(D, I)ﬂ(dt) = ro(u),

where ro(u) = Su(| z|®)¢r(2) dz. Thus,
(34 limc,e infp SUP|t—ap=c 7(D, ) = ro(u)

for every a € R*.

PROOF. Suppose, initially, that u is bounded. Let  be any probability on (R*, #*), let

h(x) = f Dr(x — 1)m(df)

3.5)

w(dt, x) = K (0)w(x — f)m(dt),
and let
3.6) o(s, x, m) = J u(| s — t|®)m(at, x).

Note that p is the posterior risk of the estimate s given an observation (x, y) from the Nx(t, I)
X v distribution. Rearranging the order of integration in (3.2) yields

(3.7 j r(D, t)yn(dt) = J o(s, x, m)D(ds; x, y)h dxv(dy).

The nonrandomized estimator x is e-Bayes for ¢ among all randomized estimators (cf.
Wolfowitz (1950), Blyth (1951)); thus, for every € > 0 there exists a probability A on (R*, #*)
such that

(3.8) infp J’ HD, HA(dt) > ro(u) — €/2.

Let A. € M(c, a) denote the restriction of A to the set {t € R*:|t — a|* = ¢}. It is readily
verified that
(3.9 lim, .. sup; | p(s, x, Ac) — p(s, x,A)| =0
for every x € R*. Equations (3.7) and (3.9) yield

(3.10) lim.... supp ‘ f (D, HA(dl) — f (D, HA@r) | = 0.

Thus, by (3.8) and (3.10), for every € > 0 there exists c(€) > 0 such that for every ¢ = c(e),

SUPreMic,a) mfnj r(D, t)ym(dt) = infp f r(D, H)A(dr)

3.11)

> ro(u) — €.
Consequently,
(3.12) lim inf. .. SUpreMca) infp J’ r(D, Hym(dt) = ro(u)

for every a € R*.
Observe that (3.12) remains valid when u is unbounded. For in this case, (3.12) holds for
g = u \ d, where 0 < d < o, and the left side of (3.12) is then monotone increasing in d while
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limg e ro(ita) = ro(u). Hereafter, the boundedness assumption on u made at the start of the
proof will be dropped.

Let Do be the Markov kernel describing the nonrandomized estimator x. Evidently, for
every ¢ > 0 and every a € R,

SUPreM(c,a) infp f r(D, t)ﬂ(dt) < infp SUPreM(c,a) J I'(D, t)‘ﬂ'(dt)

(3.13) < infp supye—ap=c 7D, )
= Sllp|¢_a|25c I'(Do, t) = ro(u).

The inequalities (3.12) and (3.13) imply the assertions of the proposition.
Let {Qx(h, £)} be a family of probabilities which satisfies Assumption 2. The log-likelihood
ratio of Qr(h, £) with respect to P is defined, up to a P§ null-set, by

3.149) Lu(h, &) =Y log[ P,

where Q. is the part of Q, which is absolutely continuous with respect to Py. Asymptotic
behavior of L.(h, £) under Pj is described in the following result.

PROPOSITION 2.  Suppose (2.5) and Assumption 2 are satisfied. Let {(hn, &) € R* X B; n
= 1} be a sequence which converges strongly to (h, £) € R* X B. Then, under P},
(3.15)  Lu(hn, &) = 2072 Ty [Wme(x:) + £(x:)] — 2 || (h'me + £)(@Ps)? |2 + 0,(1).

PrOOF. Assumption 2 and (2.5) imply
(3.16) limy o [| "2 [(dQn(hn, £:))"* — (dP5)""*] = (H'mo + £)(dPs)"*|| = 0.

The result follows from (3.16) by a familiar argument (cf. Hdjek and Sidak (1967), page 205).
A family of probabilities {Q.(h, £)] which satisfies Assumption 2 can be constructed in the
following simple manner. Let a,; n = 1} be a sequence of nonnegative constants such that

(3.17) lim, o @, = ®,  lim,..n 2@, =0
and, for some § > 0,

(3.18) sup» (4n%a,) <1 - 4.

For every (h, £) € R* X Ly(P,) such that §£ dP, = 0, let

=¢ if |§|=a.
(3.19) wn(€) _ ansgn(§)  otherwise
and let

(3.20) gnlh, §) = wa®) - f Wa(§) dPosnr.

Define Q.(h, £) by

don(h, §)

(3:21) dPyin-1r2h

=1+ 2n""2 qu(h, §).
It is easily checked that the {Qn(h, £)] are probabilities on (%, ).

PROPOSITION 3.  Suppose that (2.5) is satisfied. Then the family of probabilities {Qn(h, £)}
defined above satisfies Assumption 2.

Proor. It suffices to show that for every sequence {(h., £.) € R* x B} converging
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strongly to (h, £) € R* X B,

(3.22) lim, ... j [an((ﬁQ'f}':———&:-@)l/z - 1) = gn(hn, &)]2 dP, =0,
where 8, = 0 + n~'2h,,

(3.23) imysos || Gnlhn, £ )(dPs,)'"* = gu(hn, &:)(dPs)*|| = O,

and

(3.29) lim, o, f [gn(hn, &) — £T° dPs = 0.

By (2.5) and the definition of ¢, the term on the left side of (3.23) is O(n~"/%a,), which
tends to zero as asserted because of (3.17).
Next, observe that

f [Wn(gn) - §n]2 dPy = 4 f §3, dPa
(3.25) el
=<4 sup: £} dP,,

|6xl>a,

which tends to zero as n increases because of (3.17) and uniform integrability of the {£.}.
Hence

(3.26) lim,_, f [Wn(:) — €12 dPy = 0.
Since §£ dPy = 0, (3.26) implies that lim, .. §Wwa(£:.) dPs = 0. Moreover
3.27) ' f Wn(én) d(Ps, — Pg) | < au || Py, — Po| var
= O(n""?a,),
the last step using (2.5). Thus, in view of (3.17),
(3.28) lim, .o J Wn(én) dPg, = 0.

The limits (3.26) and (3.28) imply (3.24).
Verification of (3.22) rests upon the Taylor expansion of (1 + z)"/2 for z = —1. When z =
2n7"2q,(hn, &), this expansion gives

dQn(hn, &)\
(3.29) nl/z[(—%ﬂ) - 1] = Gullin, £ ) + 1
where
(3.30) Irn] = 2707 %g5(hn, £2)8 72

=n""2a,|qn(hn, )| 87>
because of (3.18). Applying (3.17) and (3.23), (3.24) to the right side of (3.30) yields (3.22).
4. Proofs of the main results. This section contains proofs for Theorems 1 and 2 and for

the examples of Section 2. Some of the arguments were suggested by the work of Hajek (1972)
and of Le Cam (1972).

Proor oF THEOREM 1. It suffices to prove the result for bounded and continuous w, since
the general case then follows readily (cf. discussion after (3.12)). Suppose that the theorem is
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false under Assumptions 1 to 4. Then, there exists ¢ > 0 and a sequence of nonnegative
constants {c;; j = 1} such that lim; ... ¢; = o and
.1) lim inf, ... infr, supmgesxa Ru(Tn, Qn(h, £)) < Ko(b) — €

for every j = 1. Fix j. By going to a subsequence (depending on j), we may assume, without
loss of generality, that

4.2) ’ infr, supnpesic)xs Ru(Tr, On(h, £)) < Ko(b) — €/2
for every n = 1. Hence there exists a sequence of estimators {T,; n = 1} such that
3) Rul(Tn, Qu(h, £)) < Ko(b) — /4
for every (h, £) € S(¢;) X B and every n = 1. Observe that
Ru(Tn, Qn) = Equwl || (dP%,)* — (dQ2)"*||*]
= Eqyw{2 — 2{((dPr,)"”%, (d0x)"*)}"]
@44 = Eqpw[2 = 2{1 — 27"||(dPz,)"”* — (d0x)"*|1*}"]
= Equw[2 — 2 exp{—27'n|| (Pr,)"* - (d0.)"*|I*}]
= Eppw(2 — 2 exp{=27'n || (dPr,)"* — (d0n)"*||*}Jexpl La(h, §)],

where L,(h, £) is the log-likelihood ratio defined in (3.14).
Recall the definitions (2.13) and (2.14) of d(£) and b2 Let & € B be such that

@.3) b* = || (%o — mb d(§0))(dPo)"* ||

existence of & is assured by the strong compactness of B. Write do = d(£) and 7o = & — 75 do.
The latter equation gives an orthogonal decomposition for & in Lz(Ps). By Proposition 2,
under Pg,

La(h, &) = 2n72 Ty [h'ne(x:) + £o(x:)] — 2| (W'me + £0)(@Ps)* || + 0p(1)
@4.6) =207 Tl (b +do)no(x) = 27'(h + do) I6)(h + do)
+ 2072 Ty ro(xi) = 267 + 0,(1)

for every h € S(c;)).

Let Y, = IV¥0)n"*(T, — ), t = I'*(0)(h + do), a = I'"*(8)do, Z, = I7V*(0)2n"/* T2,
no(x:), and V, = b~'n""2 Ti; 7o(x;). Under {P3}, the distributions of {(Z., V»)} converge
weakly to the standard (kK + 1)-dimensional normal distribution, while the distributions of
{Y.)} are tight on (R*, #*) because of Assumption 4. By going to a subsequence, we may
assume without loss of generality that (Y., Z,, V)= (Y, Z, V) under {P}}, where (Z, V) has
the standard (k + 1)-dimensional normal distribution and Y has a distribution on (R*, #*).
Then, by (4.6),

4.7 Lo(h, £0) =py t'Z — 27| t|% + 2bV — 2b*
for every h € S(c;). Moreover, by (2.5) and (2.7),
n| (dPr,)""* = (dQu(h, &))" ||
4.8) = | {n"X(T» = 8) — (h + do)}'ne(dPs)""* — 7o(dPs)"*||* + 0,(1)
=p; 47| Y — 1|2+ b2
Applying (4.7) and (4.8) to (4.4) yields, for every h € S(c)),
lim infn s Ra(T, Qn(h, £))
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4.9 = Efus(| Y — t|*)exp(t'Z — 27|t + 2bV — 2b%)]
= f Elu(|Y — t|*)| Z =z, V = v]gr(z — (v — 2b) dz dv,

where
(4.10) uy(x) = w2 — 2 exp(—8'x — 27'b?)].

Let Dy(+; z, v) be a Markov kernel which represents the conditional distribution of ¥ given
Z =z, V = v. In the risk (3.2), take the N(2b,1) distribution for the probability » and the loss
function us in place of u. Then, (4.9) and (4.3) assert that

r(Dy, t) = f [ f us(| y — t|*)Di(dy; z, v)]d;k(z — )¢(v — 2b) dz dv

< Ko(b) — €/4

@.11)

for every ¢ such that |t — a|? < ¢;. Hence
4.12) infp SUP|—ajze, H(D, 1) < Ko(b) — €/4.

Set u = us — us(0) in Proposition 1, then add u,(0) to each side of (3.4). The result conflicts
with (4.12) because j was fixed arbitrarily and lim; . ¢; = . The contradiction completes the
proof of Theorem 1 under Assumptions 1 to 4.

The argument under the second set of assumptions is the same through (4.6). Since
{n"*(T. — 6)} need not be tight under {P3}, define a new estimator T} by the rule T} = T,
if n|| (dPr,)"? — (dPs)?||®> = C and T} = @ otherwise. For sufficiently large finite C, the
assumptions imply that

4.13) n| (dPr;)* — (@Py)*||* = C
and
4.149) Ru(T%, On(h, §)) = Ru(Thn, On(h, §))

for every n = 1 and every (h, §) € S(c;) X B. Moreover, (2.9) and (4.13) imply that the sequence
{n*(T% — 6)} is tight under {P3}. Replace T, by T# in (4.3), (4.4) and argue thereafter as in
the previous case, with T%, in place of T,.

PrOOF OF THEOREM 2. For every £ € La(Py), let 7(§) = £ — n d(£). It suffices to show that
for every ¢ > 0,

(4.15) limn ... SUppesexs | Ra(Tn, Qn(h, £)) — Ko(|| 7(¢)(dPs)'?||)| = 0;
for then, by monotonicity of w,
lim, .. SUppeseixs Ru(Tn, Qn(h, §)) = supen Ko(|| 7(€)(dPs)"*||)
(4.16) = Ko(supees || 7(€)(dPs)"*||)
= Ko(®), ‘

as asserted in the theorem.

Suppose (4.15) is false. Then, there exists a ¢ > 0 and a sequence {(h., &) € S(c) X B; n
= 1} such that the differences {4, = Ru(Tn, Qn(hn, ) — Ko(|| 7(£:)(@Ps)"?||)} do not
converge to zero. Consequently, there exists a subsequence {m} C {n} such that {4,.} does
not converge to zero and {(hn, {»)} converges strongly to some (h, ¢£) € S(c) X B. But this is
not possible.

To verify the last claim, suppose that {(h=, £&=)} converges strongly to (h, £). Then

@4.17) lim, Ko(|| 7(6m)(@Ps)"* ) = Ko(|l 7(€)(dPo)"* ).

Moreover, by Proposition 2 and contiguity, the distribution of m"*(T,, — ) under Q%(hn,
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£&,) converges weakly to the Nx(h + d(§), I ~1()) distribution. Hence,
m|| (dPr,)""* = (dQm(bm, £m))"* |I?
(4.18) = || {m" (T — 8) — (h + d(£))} n6(dPs)"* — 7(£)(dPs)""*||* + 0p(1)
=0ptmend | Z|* + || T(E)dPs)' |,

where Z has the standard k-dimensional normal distribution. Since w is bounded and has at
most a countable number of discontinuities,

limmRm(Tm, Omlhm, §m)) = limpm Equw[2 — 2{1 — 27" || (dP1,)"* — (dQm)"*||*}"]
= Ko(|| T(£)(dPs)"? ).

Comparing (4.17) with (4.19) shows that the differences 4. converge to zero. This completes
the proof.

(4.19)

ProoOF FOR EXAMPLE 1. In this case,

(4.20) Ko(b) = 2[1 — exp(—b*/2) f exp(—| z|%/8)¢x(2) dz]

which reduces to (2.18) because the Laplace transform of the chi-square distribution with k
degrees-of-freedom is (1 + 2s)™*/2.

PrROOF FOR EXAMPLE 2. The argument for (2.20) is similar to the proof of Theorem 2, the
essential difference being that, under Qm(hn, &x), the distribution of m/%(T,, — 0) converges
weakly to the Ni(h + d(£), 2) distribution, where = = {yi'¢, dx. Consequently, (4.18) is
replaced by

@21 m|(@Pr,)"* = (dQm(hm, £n))* |* =epinind Z'ZZ + || T(€)(dPe) 1%,

where Z has the standard k-dimensional normal distribution; moreover Z’2Z has the same
distribution as Z’ diag{\;} Z.

PRrROOF FOR EXAMPLE 3. Since Py and A(z) are mutually singular,

(4.22) (dQn(Pn, 0)2 = (1 — n"2)V3(dPy )* + n~'(dA(n’e))"/?

and

4.23) ((dPs,)"?, (dA(n%e))?) = 0.

Thus

424 | n**[(dQn(hn, 0))/* = (dPs,)"*11|* = n[(1 — n™*)/* = 1P + n7",

which tends to zero as n increases, proving (2.21).

PrOOF FOR EXAMPLE 4. Because of (4.22), (4.23), and normality of Py,

425) ((dPr,)"%, (dQn(0, 0))"2) = (1 = n™%)"*((dPr,)""%, (dPs)"*)
=(1-n?)"exp[—87!| T, — 6/|*]
Thus,
R(Tn, 0n(0,0)) =47 'nEqy| T, — 0|* — nlog(l — n™?)
(4.26) =47"n|Equ(T,) — 0|* — nlog(l — n™?)
= O(n),

which implies (2.25).
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