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THE EMPIRICAL DISTRIBUTION OF FOURIER COEFFICIENTS

BY DaviD FREEDMAN AND DAvID LANE

University of California, Berkeley and University of Minnesota

Suppose X1, Xz, - - - are independent, identically distributed complex-valued
L? random variables with EX; = 0 and E(| X1|%) = 1. Let Y, be the kth Fourier
coefficient of X, +++, Xn:

20(=1)"%kj
Yor = 2;’_1 A’] exp(.l(__;)_l) .

Let u, be the empirical distribution of {n™"*Yu: k = 1, .., n}. Then p,
converges to the distribution of U + i¥, where U and V are independent normal
variables with mean O and variance %. This theorem is derived from a similar
result for the Fourier coefficients of random permutations of the coordinates of
2", where z" is a vector with n coordinates such that max |z} | = o(n'/%), as n —
00,

I. Introduction. Suppose x is a vector in C", where C is the complex plane. That is, x has
n coordinates, each a complex number. The empirical distribution of x is the probability
measure on C which places mass n~" on each coordinate of x; it will be denoted by p.. The
discrete Fourier transform X is the vector in C" whose coordinates are given by

2m(=1)%kj
Xp = Y1 x) exp(—ﬂﬁ—;—)——i) R l<k=<n.

The coordinates of x are the Fourier coefficients of x.

Now suppose Xi, ---, X, are independent complex-valued random variables with a
common L*distribution and suppose x is an observation on (Xi, ---, X»). It seems to be a
well-known fact, at least in the case that the X/’s are real valued, that normal probability plots
of the real and imaginary parts of the coordinates of X tend to be close to linear. This
phenomenon is discussed, for example, in Brillinger (1975, pages 95-97) and Mallows (1969),
and it is illustrated by some examples in Section 5.

If X1, - - -, X, have either real or complex normal distributions, there is a simple explanation
for this phenomenon. (Recall that Z = X + i{Y has a complex normal distribution if X and Y
are independent real-valued normal variables with the same variance.) In the real case, the

-1
first n

Fourier coefficients of (X;, .-+, X,) are independent identically distributed

2
case, the first n — 1 Fourier coefficients have independent, identical complex normal distri-
butions. Thus in both cases, if x is an observation on (X1, - -+, X,) for n reasonably large, the
empirical distribution of x should be close to complex normal. Consequently, normal proba-
bility plots of the coordinates of Re X and Im X should be close to linear.

If the distribution of the X/s is not normal, the situation is not so simple. There are
theorems which establish the asymptotic joint normality of a fixed finite number of the Fourier
coefficients of (Xi, ---, Xu); see, for example, Brillinger (1975, Theorem 4.4.1). However,
these theorems do not by themselves prove that the empirical distribution of all the Fourier

. - -1
complex normal variables, and X; and X, -; are conjugate for 1 =i= [f——] In the complex
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coefficients will converge to a normal distribution. That seems to depend on the joint
distribution of all n Fourier coefficients, which is hard to estimate. The purpose of this paper
is to provide a rigorous mathematical proof for the asymptotic normality of the empirical
distribution of the Fourier coefficients. This is the content of Theorem 2 below. We prove this
theorem without characterizing the asymptotic joint distribution of all » Fourier coefficients.

Theorem 2 is a consequence of Theorem 1. Suppose z is a vector with complex coordinates,
none of which has a particularly large modulus relative to the others. Consider all possible
permutations of the coordinates of z. For each permutation, calculate the discrete Fourier
transform. Theorem 1 shows that for most permutations, the empirical distribution of the
Fourier coefficients will be close to complex normal. Theorem 1 applies in particular, of
course, to the case in which z has only real coordinates.

A consequence of Theorems 1 and 2, pointed out in Theorem 3, is that the empirical
distribution of the periodogram for data of the sort considered in the theorems should be close
to exponential. This phenomenon has been observed empirically by Brillinger (1975, Figure
5.2.5., page 127).

We want to thank Christopher Bingham and David Brillinger for several helpful discussions.
Bingham suggested the problem to us.

2. Preliminaries. Let C, be the set of continuous real-valued functions on C with compact
support. Give C, the sup norm (denoted by | ||), and let f1, f2, - - - be a dense countable subset
of C,. Let M denote the space of probability measures on C. Metrize M as follows: for y, » in

M, let
Jpafro

20 £l

d induces the weak topology on M, but M is not complete with respect to d. Let .# denote the
o-field on M generated by the weak open sets. The space of probabilities on C* may be given
the weak topology in a similar way.

A random measure on C is a measurable map from some probability space into (M, .#). If
u is a random measure on (R, &%, P), and f a bounded Borel function on C, then [ fduis a
random variable on (2, %, P). The set function Epu is given by Eu(4) = [ u(A4) dP, for 4 a
Borel subset of C. Thus, Eu is an element of M.

Suppose p is a random measure satisfying P(u = m) = 1 for some m in M. Then p is a
constant measure, and the random measure p will sometimes be identified with its value m.
Lemma 1 provides a criterion for convergence in probability of a sequence of random measures
to a constant measure; its easy proof is omitted.

d(p, v) = Yiu

LemMa 1 Suppose p1, iz, - - - are random measures on (2, %, P) and m is an element of M.
Suppose for each f in C,.

W) Effdu— [fdm
(i) Var(f f dpn) — 0.
Then . converges in probability to m: that is, P[d(it., m) > €] — 0 as n — = for each € > 0.

LEMMA 2 Suppose m is an element of M. Let m® be the product of m with itself, a probability
on C2. Let {Xn)} be an array of complex-valued random variables, with n = 1, 2, -++,and k =
1, -« -, kn. Let muu be the joint distribution of X.x and X».. Suppose the following conditions are
satisfied:

(1) kn— @ asn—
(1) Mnpp— miasn— o, uniformly in pairs (k, 1), except for indices nkl in an exceptional set

. #{(k, I): nkl in E}

E, with = 0asn— oo,
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For each n, let u. be the empirical distribution of (Xni, « - + , Xna,), So that u, is a random measure.
Then pn, converges in probability to m.

Proor For fin C,,
j S dpn = (kn)™" Thrr f(Xus),
50 E f S dun = (kn)™* Thr, J’ f dmu,

where my,, is the distribution of X,.. Now (ii) implies that m,, — m as n — o uniformly in k,
except for a set of k’s with limiting density 0. Together with (i), this implies that

EJ'fdp‘,.—>J'fdm.

Next,

E (Jf dlln) = (kn)_z[zw jf )f(P)Mue (dx dy) + 3 J'f ? dm,.,]
S0

Var(J’ f du,,) = Ti(n) + Tx(n),

where

Ti(n) = (kn)™> Tawt ( f SEOf(y)mnw (dx dy) — f S dm J’ S dm,.,)
and

To(n) = (kn)"% Yk, [ J’ % dmp, — ( J’ fdm,,k)z].

But Tx(n) is bounded by k;'|| f ||>, which converges to 0 by (i). Furthermore, T:(n) converges
to 0 by (ii). Thus, Lemma 1 implies that u, converges to m in probability. 0O

LemMMA 3 Suppose X, and Y, are real-valued random variables, forn = 1,2, -.., and k
=1, -+, kn, where k, — © as n — . Suppose that for each four-tuple of real numbers A1,
<+, Ay, the distribution of A1 Xnx + A2 Yar + A3 Xu + Ay Yo converges to N(O, (A3 + -+ +
AD) as n — oo, uniformly in pairs (k, 1), except for indices nkl in an exceptional set E with

#{tk, I);C;lkl in E) 0asn— . Set Zu, = Xup + (—1)2 Y, and let p, be the empirical

distribution of (Zp1, + + + , Zns,). Then pn converges in probability to the standard complex normal
distribution (that is, the distribution of Z = U + iV where U and V are independent real-valued
normal variables with mean O and variance ).

PrOOF. Let v be the distribution of four independent normal random variables, each with
mean 0 and variance %. Let ynz denote the distribution of the random vector (Xnz, Ynr, Xni,
Yu), forn=1,2, ..., and k, I = 1, ..., k.. Now, for all indices nkl not in E, order the
distributions ynx to form a single sequence p,, r = 1, 2, ---, in such a way that if yuu
corresponds to p; and vy, corresponds to p, then n > s implies j > k. Clearly, the characteristic
function of p, converges pointwise to the characteristic function of y. Thus, if g is a metric on
probabilities on R* inducing the topology of weak convergence, then g(p-, ) — 0. But because
of the ordering of the sequence {p;}, this implies that g(ynx, y) — 0 as n — o uniformly in
pairs (k, [) with nkl not in E.
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Now let my,; denote the distribution of (Z,z, Zn) forn=1,2, ... k,I=1,---,k,. Letm
denote the standard complex normal distribution. m,, is of course determined by ynx, and so
My converges to m? as n — oo uniformly in pairs (k, I) with nkl not in E. By Lemma 2, then,
un converges in probability tom. O

Suppose x is a vector with n coordinates. Each permutation y on {1, - .., n} yields a new
vector x, with coordinates (xy); = x¢). In the statement of the next lemma, ® denotes the
distribution function of a real-valued normal variable with mean 0 and variance 1.

LeEMMA 4. Suppose x, y, a, and b are vectors in R" satisfying:
@) Zimxj=Yiyj=Yia=3}1b=0
(i) Tjw (5F +yD) =n,

Yaj=Ykbj=n  and

Y1 aibj=0.

Set V = max {|a;|, |bj|: 1 =j=n} and U=max {|x;|, | y|: | =j=n). Let p be a random
permutation on {1, ..., n} taking on any particular permutation with probability 1/n!. Set W
=n"V2 (Y k1 (%@ + Yon b)) If F is the distribution function of W then

super | F(t) — @(t) | < 48n2VU + h(n),
where h does not depend on x, y, a, or b, and h(n) — 0 as n — .
Proor. Theorem 3.1 of Ho and Chen (1978) can be applied in a straightforward way to

yield this lemma. Here is a sketch: using the notation of Ho and Chen (1978, pages 325-326),
with

a;xj + by, 20V
XQ=W and €=W,

one has L,(¢) = 0. Thus their result reduces to

supeing | F(t) — ¢(t)| < 48n7V2VU,
where Fis the Qistribution function of (1 — 1/n)/2 X W. To get the result, pick A(n) to bound
supeer |F(t) — F(?)|; h can be taken independent of x, y, a, and b.

3. Theorems. The main result of this section is Theorem 1, which asserts that for vectors
z in C", the empirical distribution of the Fourier coefficients of z, is close to complex normal,
for most permutations . For each integer n, let z" = (21, - -+, z) be a vector in C". Let p be
a random permutation of {1, .- -, n}, taking on any particular permutation with probability

2m(=1)"%k;
1/n!. Let Zr=n""2Y 2, 20 exp (W) Let u. be the empirical distribution of
(Zilf M) Z::)

THEOREM 1. Suppose the sequence {z"} satisfies:

(i) Yr12zk=0 and Yia|zZi|*=n

(i) maxi<p<n |25 | = 0(n"*) asn— oo
Then p,, converges in probability to the standard complex normal distribution.

Proor. The idea of the proof is to use Lemma 3 with X,, = Re(Z}), Y., =Im(Z%) and
kn = n. The exceptional set E consists of all indices nkl such that either,

(@ k=n or I=n

b)k=n-1 or
© k=1



1248 DAVID FREEDMAN AND DAVID LANE

Then

k, 1): nkl i 4
alt I)n'; ImE}S—Z—»O asn— o,

Fix the real numbers Ay, -+, Ay, and set A = AZ + ... + A\%. Fix k and / between 1 and n,
with nkl not in E. For the rest of the proof, for notational convenience, drop the superscript
n from z". Let z = x + iy. Then

AMXor + A2 Y + A3 X+ Ay Y

27kj 2 j 2xlj
=n2%%, (x,,(j) [Amos( :kj) + Agsin —+ k] + Ascos&r—l-j- + Agsin —%ll])

. ki \
+n VY Yo [—Alsin% + Azcoslnkj-— Assi (2::1]) + A4 (3;111)] .

So,
2

1/2
MXur+ AoYor + A3 X+ Ay Y= (7) n~12 2,’;1 (Xp(pha; + Yo(ihbj),

where for 1 <j=<n,

2\ —1/2 K . R .
27k 27k 27l 2
a = (Z\—) [Awos( T j) + Agsin<—w—l) + A3c0s<—w—!-) + Msin(-—‘”g)]
2 n n n n
2\ —1/2 . R
and b= <§-) [—Alsm( kj) + AzCOS(M) — Assin (2'”1]) + A (2le)] .
2 n n n n

Note that x, y, a, and b satisfy the conditions of Lemma 4, and

AZ -1/2
supi<j=n (| a1, lbl)<( ) (A +]A2] + [ As] + A ) = 2()72

2\ ~1/2
Thus, if F is the distribution of (7) A1 Xnr + A2 Yo + A3 X + A4 Y,), Lemma 4 allows
us to conclude
Super | F(x) — ®(x)| = 96(2)"*(n™ " maxi<r<n |2} |) + h(n).

The right-hand side tends to 0 as n — o by condition (ii) and does not depend on k and /.
Thus the distribution function of A1 Xne + A2 Ynr + AsXn: + A4 Y, converges uniformly as n

— o to the distribution function of a real-valued normal variable with mean 0 and variance
2

LS
2

A2
distribution of A1 Xne + A2 Yur + A3 X + Ay Yo converges to N <0, 5

pairs (k, /) with nkl not in E. Now apply Lemma 3 to conclude that pi,, converges in probability
to the standard complex normal distribution. 0 .

, and this convergence is uniform for pairs (k, /) with nkl not in E. This implies that the

) as n — oo, uniformly in

The following corollary will be used to prove Theorem 2.

COROLLARY 1. Suppose the sequence z" satisfies:
(@) Yi-1zk=o0(n) and Yia|zZ’=n+o(n) asn— o
(i) maxi<p<n|z%|=0("?) asn— oo,
Let p,, correspond to z" as in Theorem 1. Then ., converges in probability to the standard complex
normal distribution.

PrOOF. Leta,= 1/n Zk=1 ziand s% = 1/n Y31 |z — a,|%. Then a,— O and s, — 1 as n
( i n)
. 0

— . Apply Theorem 1 to ———— .
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THEOREM 2. Suppose X1, Xa, - -- are independent identically distributed complex-valued
random variables with E(X;) = 0 and E| X,|* = 1. For each n, let X, be the discrete Fourier
transform of (X1, - - -, X»), and let p, be the empirical distribution of n™"?X,,. Then p, converges
in probability to the standard complex normal distribution.

PROOF. Suppose Xi, Xz, - - - are defined on the probability triple (2, &, P). Let the triple
(', #', P') support a sequence p1, p2, - - - independent of (X1, Xz, - - +), where p,, is a random
permutation of {1, - -+, n} taking on each permutation with probability 1/n/. A typical point
of @’ will be denoted by .

Now consider ( X ', #X #’, P X P’). On this product space, let Y,(w, w’) be the discrete
Fourier transform of

Xp,,(w’,l)(“’), M} Xpn(w',n)(“’)-

Let vu(w, «') be the empirical distribution of n7/?Y,(w, «’). Fix € > 0. Let m be the standard
complex normal distribution. Let

Zn(w) = P'{w": d(n(w, ), m) > €}.
Now, for almost all w,
Xi(w) + +++ + Xu(w) = o(n)
X w) + -+ + Xo(w) =n+ o(n)
and
MmaXi<e=n | Xa(w)| = o(n"/?).

The corollary to Theorem 1 implies that Z,(w) — O for almost all w. By Fubini and
dominated convergence,

(P X P'){d(vn, m) > €} = E(Zn) - O.

Thus », converges in probability to the standard complex normal distribution. Finally, note
that the law of p, coincides with the law of »,. O

For a vector z in C”, let 2, denote the kth Fourier coefficient. The kth periodogram ordinate
is defined by

I(k) = (1/m)| 2x|".

Under the conditions of Theorem 1 or Theorem 2, the empirical distribution of n™"* % is
approximately standard complex normal: that is, the real and imaginary parts of the distri-
bution are approximately independent N(0, %). Thus, if each mass point is squared and the
moduli of the corresponding real and imaginary parts are summed, the resulting empirical
distribution is approximately exponential with parameter 1. Formally:

THEOREM 3. Under the conditions of Theorem 1 or Theorem 2, the empirical distribution of
the periodogram ordinates converges in probability to an exponential distribution with parameter
1.

This theorem provides an explanation for the linearity of the x3-probability plot of 500
periodogram ordinates noted by Brillinger (1975, page 127).

4. Notes and Questions. (1) Consider the n X n matrix F with entries Fj = n~"/*

-1 1/21, » .
-exp(zz(T)—kl). F is a unitary matrix, and for y in C", n™"/? § = Fy. The questions

considered in this paper about the coordinates of Fy may be raised with arbitrary unitary
matrices H, and in fact the theorems of Section 3 generalize immediately with the Fourier
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transformation replaced by arbitrary unitary transformation. That is, suppose for each n, H"
is an n X n unitary matrix, with max;;| H}| =< cn™"/? where c is a constant which does not
depend on n. For a triangular array Xue, n= 1, 1 < k < n, consider y, = (n)"/2H"x,.. Then the
theorems of Section 3 hold if X, is replaced by y,. Thus, broadly speaking, unitary transfor-
mations take arbitrary vectors into vectors with approximately normal empirical distribution.
Some other aspects of this “normality-inducing” behavior of unitary transformations have
been considered by Mallows (1969).

(2) In the setting of Theorem 3, do the empirical distributions p., converge almost surely?
We have not been able to settle this question yet. Another related question of some statistical
interest is to determine the distribution of the largest Fourier coefficient. Gersho, Gopinath
and Odlyzko (1978), building on theoretical work of Halasz (1973), have shown that if X7,
-+ -, X, are independent with the same L°-distribution and Var(X;) = 1, the maximum Fourier
coefficient is with high probability close to (n log n)"/%. Can this result be extended to more
general L*-distributions?

(3) Suppose X1, X;, are independent complex-valued random variables with a common
distribution, but EX} = oo. In this case, is there any sequence c,, such that if p, is the empirical

— 12k
distribution of {c,Yne: A =1, -+, n}, where Y = Y11 X; exp(gl;z—)——lﬂ> , then p,

converges to some distribution?

If the X’s have the distribution of a symmetric stable law of order p, 0 < p < 2, then such
pn cannot converge to a constant measure. However, if ¢, = n™"/?, we can show that the
corresponding p. converge in distribution but not in probability to a random measure, and
plan to discuss this in a future paper.

5. Examples. Here are some normal probability plots to illustrate the results of Theorem
2. In each plot, the expected values of the order statistics from an appropriate-sized normal
sample are plotted along the x-axis (these are denoted rankits), while various data or Fourier
coefficients are plotted along the y-axis.

FIGURE |—Exponential data. A pseudorandom sample of 1000 observations from an
exponential distribution with parameter 1 was generated. Figure la is a normal probability
plot of the original data, while Figure 1b is a normal probability plot of the real parts of the
2nd through 499th Fourier coefficients of the data.

Fi1GURE 2— Uniform data. The arrangement is the same as Figure 1, but the data is a
pseudorandom sample of size 1000 from a uniform distribution on [0, 1].

FIGURE 3—Cauchy data. Here the data is a pseudorandom sample of size 1000 from a
Cauchy distribution. The situation is quite different from the L? distributions illustrated in the

8 75
A B e
Y 50 4 -4
6 4
fo 25 4
s
. ! 0 ]
.25 -
2 -
-50 A 0 ©
0 - v v v v r -75 v v r v r r v
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

FI1G. la. Y-axis: Pseudorandom sample of size 1000 from an exponential distribution with parameter 1. X-
axis: Rankits.

F1G. 1b. Y-axis: Real parts of 2nd through 499th Fourier coefficients of data plotted in 1a. X-axis: Rankits.
Norte. The normalization required by Theorem 2 for the coefficients would be to divide each of them by
23.6 to obtain an approximately standard normal empirical distribution.
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F16. 2a. Y-axis: Pseudorandom sample of size 1000 from a uniform distribution on [0, 1]. X-axis: Rankits.
F1G. 2b. Y-axis: Real parts of 2nd through 499th Fourier coefficients of data plotted in 2a. X-axis: Rankits.
Norte. The normalization required by Theorem 2 for the coefficients would be to divide each of them by
6.45.

1000 4000
A B °
o
04 d{_ il 2000
o
~1000 - 0-
~2000 - ~2000
o
o 0%

-3000 T T T T T T T -4000 T T T T T T T
-4 -3 -2 -1 0 1 2 3 a4 -4 -3 -2 -1 0 1 2 3

FIG. 3a. Y-axis: Pseudorandom sample of size 1000 from Cauchy data. X-axis: Rankits.
F16. 3b. Y-axis: Real parts of 2nd through 499th Fourier coefficients of data plotted in 3a. X-axis: Rankits.

preceding three figures. Different Cauchy samples lead to differently shaped plots of the
Fourier coefficients, but an S-shape, indicating a short-tailed empirical distribution, is com-
mon.
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