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AN INVARIANCE PROPERTY FOR THE MAXIMUM LIKELIHOOD
ESTIMATOR OF THE
PARAMETERS OF A GAUSSIAN MOVING AVERAGE PROCESS

By E. J. GODOLPHIN
Royal Holloway College, University of London

It is shown that the estimation procedure of Walker leads to estimates of
the parameters of a Gaussian moving average process which are asymptotically
equivalent to the maximum likelihood estimates proposed by Whittle and
represented by Godolphin.

1. Introduction. Several authors have considered the problem of estimating the

parameter vector B = (B, - - -, B,) in a Gaussian moving average {X,} of order
q:
(1.1) X, = ¢+ Big_, + - +B&_ g

where {g}(t =0, £1, £2,- - - ) comprises a sequence of independent and nor-
mally distributed random variables with expectation zero and a common variance
0%, and it is assumed that the zeros of the polynomial B(z)=1+ Bz
+ -+ +,z7 lie strictly outside the unit circle. The earliest reference to the
problem appears to be that of Whittle (1953) who established that the maximum
likelihood estimator is consistent, efficient and asymptotically normal. Recently
Godolphin (1977) has obtained a direct iterative formula which yields the maxi-
mum likelihood estimator.

A number of alternative estimation procedures have been proposed in the
literature and that due to Walker (1961) is of particular interest since it places the
main emphasis on estimating not B directly but p = (p,, - - -, p,)’s where, with
130 =1,

(1.2) P = 29§ BiBisi/Zi0 :3,'2

denotes the parent autocorrelation of lag k(1 < k < g). This method is founded on
a theorem of Bartlett (1946) which enables consideration of the likelihood estimator
of B to be avoided completely, a feature which has the practical virtue of
pseudoquadratic convergence which yields a substantial reduction in the number of
iterations required for convergence.

Mention has been made however of a theoretical difficulty concerning the
efficiency of Walker’s method which does not seem to have been resolved in the
literature. Walker (1961) pointed out that his estimate of B, which is derived from
that of p by the Cramér-Wold factorization, has not been shown to be fully
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efficient except when g = 1 owing to the intricate nature of the transformed
covariance matrix. Both Walker and Hannan (1969) conjectured that the estimator
would be efficient, however, and some empirical evidence in support of this for the
case ¢ = 2 was given by Godolphin (1976).

In the present paper it is shown that this conjecture is correct for general gq.
Indeed the argument adopted here establishes the stronger result that, asymptoti-
cally, Walker’s estimator and the maximum likelihood estimator of B actually
coincide. It is shown that the iterative equation system for estimating p based upon
Walker’s procedure differs from that derived from the direct maximum likelihood
procedure by a quantity which can be made as small as required in a neighbour-
hood of the solution, provided that the number of observations on the process (1.1)
is sufficiently large. This result therefore takes the form of an extension of the
invariance theorem for maximum likelihood in the two domains where the natural
parametric vectors are B and p respectively, which conclusion appears to contradict
a remark on Walker’s procedure made by Anderson (1975). Moreover, since the
transformation from p to B is nonsingular, it is possible to adopt the approach of
Godolphin (1977, 1978) and obtain the maximum likelihood estimator of B directly
from Walker’s procedure without invoking the Cramér-Wold factorization, which
conclusion is also relevant to the criticism of Walker’s method made by Hannan
(1969).

In Section 2 Walker’s procedure and the maximum likelihood procedure in the
form due to Godolphin (1977) are described. The main result is derived in Section
3 and its implications briefly discussed in Section 4.

2. Estimation procedures in the p and B domains.

2.1 Preliminary remarks. It is assumed that a realization
(2.1) X, Xyt h X,

of the moving average process (1.1) is available, where # is large. The sample serial
correlation of lag k, r, is defined by

(22) re = {nS19,X, )/ {((n = O X2) (k=1 ,m),
where m is suitably chosen. Other definitions of the sample serial correlation of lag
k are commonly employed (see e.g., the comments of Anderson & Walker, 1964),
but they have the same asymptotic distribution as 7, and, furthermore, (2.2) seems
to be more suitable on the grounds of bias reduction which is perhaps the main
reason why this definition was adopted both by Walker and by the author in the
derivation and application of their estimation procedures.

It follows from the work of Whittle (1953), Durbin (1959), Walker (1961), the
present author (Godolphin, 1977) and others that data reduction is effectively
possible for the estimation problem since near-efficient estimates can be obtained
from a small set of sample serial correlations. In typical applications ¢ <m < n,
for example, Durbin and Walker both chose m = 5 when applying their procedures
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with ¢ = 1 and » = 100 whilst the author has considered m = 30 for g = 2 and
n = 198 when the solution is close to the boundary of the invertibility region. Of
course it makes little practical difference to values of the estimates if m is permitted
to become close to » — 1, its maximum possible value, since all coefficients of A
for large k are negligible (in the case of both estimation procedures to be described
below) as must occur with any convergent series which, in the present case, is given
below by the representation (2.6) or by representation (2.10). (Strictly speaking
m =n — 1 and a case has to be made for taking m small and thus discarding
statistics which contain information about B.) In deriving asymptotic results in
what follows it is assumed that m can be taken as large as required to facilitate the

argument. .
For simplicity the statistics (2.2) are summarized by the vectors
(2.3) Ry = (riyry- -, r.) and R, = (rqH, gt " " s )

2.2 Estimation in the p domain. The asymptotic covariance matrix W = (w;) of
1
n2(R{ — p’, Ry) is due to Bartlett (1946) who showed that

24) Wy = &i + bus + 2oi0g0 — oty — ob) (=1, m)
with
(2:5) b = bk = 25 PuPrrie

It is helpful to partition W into four components W,; (i,j = 1,2) where W,,, W,
have dimensions g X g, (m — q) X (m — q) and are the covariance matrices of
n%Rl, n%Rz respectively whilst W,, = W],; then the maximum likelihood estimator
of p is obtained from the asymptotic distribution of n%(R’l —p, R,). It is given
(Walker, 1961) by the regression equation

(2.6) p =R, — WplWyu'R,.

It may be noted that the right side of (2.6) depends upon p through (2.4) and (2.5),
consequently equation (2.6) is to be regarded as valid primarily as a final iteration.

2.3 Estimation in the B domain. Under Gaussian assumptions, a direct repre-
sentation for the maximum likelihood estimator of B is given (Godolphin, 1977) by
the iterative equation
(2.7) B = HIRI + H2R2,
where H; = (h,;) is an everywhere nonsingular matrix whose elements are rational
functions of B chosen to satisfy B = H,p whilst the coefficients (H,),; = h, ,.; are
obtained from the simple recurrence relation

(2.8) X = x_ (1<k<gq), xz+32%B,_,=0k>qg+1)
where B* is the coefficient of z* in the expansion of
(29) B(z) = (1+ Bz +---B,z?) = 1 + 532, Bz,

Here h;, = x,(k = 1,2, - - ) where x, = —28;foreachi=1,---,q.
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Godolphin (1977) has shown that the equation system (2.7) can be expressed in
the equivalent form

(2.10) p = R, + AR,
where the elements (4);, = a
relation (2.8) with
2.11) xq= —2p;, x,=06,(1<k<gq) and x, =ay(k>qg+1)
where 6, = 1(i = k), = 0(i # k).

It is possible to summarize the results (2.10) and (2.11) in the following way. Let
J be a g X (¢ — 1) matrix with unity occupying the positions (i,g — i)}(i = 1,- - - ,q
— 1) and zero in all other positions—the “mirror image” of I with first column
removed. Define the ¢ X 24 matrix K by
(2.12) K =[J, =2p,I]

and denote the elements of K also by a; for 1 <i<gand 1 - g <j <gq. For
eachi=1,---,gq, it follows that any 2q consecutive elements in the ith. row of
the ¢ X (m + q) matrix [K, A] satisfy the recurrence relation (2.8): therefore

(2.13) a + 2}11,8;"@.,,(_!. =0 (k>q+1)
where B is defined by (2.9).

i,q+; satisfy, for each i=1,---,q, the recurrence

3. Asymptotic equivalence of the two methods. In this section it is shown that
Walker’s procedure and the maximum likelihood estimator of B lead to estimates
which differ by an asymptotically negligible quantity. This is achieved by demon-
strating that the iterative equation systems (2.6) and (2.10) yield solutions for
estimating p which are asymptotically equivalent. For this purpose it will be shown
that every element of the matrix 4 + W,,W,," can be made as small as required
when m is suitably large. A preliminary result is required.

Let a;; be defined as in (2.13) and vy, denote the coefficient of z¥ in the expansion
of

(3.1) (1+39_,B2°)'(1 + 29_,B27) = 32 _, iz~
We first show that forallj > 1 — g and foreachi=1,:-- - ,¢q
(3.2) 21q=0ai, j+kYe-2g = 0.

However, (3.2) is a consequence of the definitions (2.9) and (3.1) which yield
immediately

Ve = Yoi = S35 BBk 0 <k <2
and therefore by (2.13)
E‘I‘cq=0ai,j+k7k—2q = Eiioﬂfziﬂoﬂfai,ﬂzqw—k = 0.

This result is of particular relevance to the problem since Wold (1949) demon-
strated that the term ¢, defined by (2.5) is given by the coefficient of z* in the
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expansion of { B(z)B(z" N} /(1 + B + - - - + B2 It follows that
(33) E‘I‘cq=Oai,j+k¢k—2q =0 (i=L---,q9j>—9q).
Now let 2g X 24 matrices ®, © be defined as follows. @ is a symmetric Toeplitz

matrix with elements (®),, = ¢,_, (i,j = 1,- - -,2q), whilst © = (6;;) is an upper
triangular matrix with common diagonal elements given by

(3-4) 0i,i+j = ¢y
i=1,"‘,2CI§j=0,"‘,2q—1,
=0 i=1---,2q;j <O.

For simplicity, but without affecting the general point, 1ét m be an odd multiple of
g, say m = (2p + l)q where p > 2. Then it follows from (2.4) that W,, can be
partitioned into p? blocks, each of size 2q X 2g, as follows:

d © PR 0
Wa=[0 € e 0
0 0 --- @

This matrix is given in a suitable form for the product 4 W,, to be examined,
where A4 is defined in equation (2.11). Let 4 = [A4,, A,, A;] where A,, A, are both
of size ¢ X 44. Then it follows from (3.3) that [K, 4,][©, ®, ©'] = 0. Consequently
the leading ¢ X 2¢ submatrix in AW,, is given by

(3.5) 4,[9, 0] = —KO'.

However, from (2.12) and (3.4) we have the interesting result

(3.6) KO = wio,

where W29 denotes the leading g X 2q submatrix of W,, defined by (2.4). This
can be seen e.g., by partitioning the right side of (3.6) into two components of order
g X g, the first of which can be expressed as (J, —2p)®;, + O}, and the second
simply as ©},, where the matrix © has here been partitioned into four components
of size g X g in an obvious way.

It evidently follows from (3.3) that premultiplying the p — 2 central column
blocks of W,, by A yields a ¢ X 2¢g(p — 2) matrix consisting entirely of zeros. The
final ¢ X 2g submatrix in A W,, is given by 4,[0, ®]'. However it follows from (3.3)
that

[43, 44][6, 2, 0] =0,

where A4, is the g X 2q matrix
(3.7 A4, = (ai,(2p+l)q+j)
whose elements are defined recursively by (2.11). Therefore, by invoking (3.5) and
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(3.6), we have the expression
(3.8) A+ WWwy' =[0,---,0,4,0]W5".

To assess the magnitude of the right-hand side of (3.8), it is necessary to take
account of two relevant features. Firstly, it can be seen from (3.7) that all elements
of A, rapidly approach zero as p becomes large. This follows from (2.13) since the
inverse zeros z, - -, z, of B(z) are strictly less than unity in modulus and therefore

a;; = Zi_(B; +jC,)z{ ~ 0forjlarge

(where B;, C; are fixed real constants). Secondly, Walker (1961) has pointed out
that W,, can be considered the covariance matrix of 2pg consecutive observations
from an invertible moving average process of order 2 pg with covariance generating
function

{0+ Zi0(z" + 270} = {1+ 3 p(z" + 27,

so W,,! can be regarded as the covariance matrix for 2pg observations from a
stationary autoregression with the same parameters (see e.g., Shaman, 1975). The
largest element in W,;' is the variance of this autoregression which does not
depend on p and therefore the elements of [0, - - - , 0, ©]W,," are bounded above
in modulus by a quantity which is also independent of p. Consequently the
elements of (3.8) can be made as close to zero as desired by taking p suitably large,
from which the result follows.

Note that the term A4, in (3.8) can be regarded as another example of a
time-series “end-effect”. This is alone responsible for preventing the two estimation
procedures from being equivalent in small samples notwithstanding the mathemati-
cal elegance of the connecting equation (3.6).

4. Implications of the equivalence. The invariance property of maximum likeli-
hood, which in the present context states that if B is the maximum likelihood
estimator of B then p = p(ﬁ) is the maximum likelihood estimator of p, is known
to apply even though the transformation (1.2) is not one-one and the members of
the realization (2.1) are not independent; see for example Zehna (1966). The
present result shows rather more than invariance in a straightforward asymptotic
sense, however, because the solution of (2.7) is the limiting form of an estimator
based on the exact distribution whilst Walker’s estimator (2.6) is based upon the
asymptotic distribution. Moreover (2.7) is derived on the assumption that the
process is Gaussian whilst the derivation of (2.6) requires only that {¢,} consists of
independent and identically distributed random variables with a finite variance
(Anderson & Walker (1964)).

Walker’s procedure has been criticized by e.g.,, Hannan (1969) because of its
dependence on the Cramér-Wold factorization. This point has been discussed in
some detail by the author (Godolphin, 1976). It is interesting, however, that
because (2.7) and (2.10) are equivalent then Walker’s method can be transformed
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to the iterative equation in B
4.1) B = H\R, — H|W12VVz_2'R2’

where H| is an everywhere nonsingular matrix chosen to satisfy B = H,p. (4.1) is
independent of the Cramér-Wold factorization and, for sufficiently large m, yields
an efficient estimate of B. On purely practical grounds, however, (4.1) seems to be
less useful than (2.7). But (2.6) could conceivably be preferred to (2.10) in certain
cases (see Godolphin (1977)).

Another consequence of (3.6) and (3.8) is the following formula for the limiting
value of the covariance matrix of Walker’s estimator (2.6):

(4.2) lim, Wy — WpWa'Wh,) = W, + A998k,

m-—)w(
where © and K are given by (3.4) and (2.12) respectively and 4?9 denotes the
leading g X 2¢g submatrix of 4 whose elements are found from (2.13). The
representation (4.2) seems to provide a useful alternative to the asymptotic formula
given by Walker (1961).
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