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AN OPTIMALITY PROPERTY OF THE
LEAST-SQUARES ESTIMATE OF THE
PARAMETER OF THE SPECTRUM OF A
PURELY NONDETERMINISTIC TIME SERIES

By PAuUL V. KABAILA!
University of Newcastle, Australia

Whittle has proved that the least-squares estimator of a scalar parameter of
the spectrum of a purely nondeterministic time series possesses a certain
optimality property independently of the distribution of the residuals. In this
paper we furnish a proof in full detail of the corresponding result for a vector
parameter and also provide some examples which illustrate the application of
the result.

1. Introduction. Whittle in [3] pages 428-429, proved a remarkable and im-
portant optimality property of the least-squares estimate of a scalar parameter of
the spectrum of a purely nondeterministic time series. A somewhat different point
of departure is taken in [5] pages 124125, but essentially the same result is proved
(for details see Remark 3.3). In [4] page 215 Whittle remarks that for a vector
parameter a result similar to that for a scalar parameter is valid if the determinant
of a positive semidefinite matrix is adopted as a measure of its “magnitude”.

The optimality result is important from a theoretical point of view in that it
exploits a somewhat remarkable analogy with the Cramér-Rao lower bound for
unbiased estimators. The result is important from a practical point of view in that
we do not need to assume knowledge of the distribution of the residuals.

Despite its obvious interest the result does not, however, appear to have been
discussed much in the literature. In fact, it appears that neither is there available a
proof in full detail of Whittle’s result for a vector parameter nor are there many
examples which might point-up the usefulness of the result.

Our purpose in this paper, then, is to furnish a proof in full detail for the case of
a vector parameter and also to provide some examples which illustrate the applica-
tion of the result. A secondary concern is to establish the result under very weak
assumptions. For example, we do not need to assume strict stationarity of the
process.

In Section 2 we introduce a class of consistent estimators of the parameter of the
spectrum of a purely nondeterministic time-series. This class is shown to include
the least-squares estimator.

In Section 3 the estimators introduced in Section 2 are shown to be asymptoti-
cally normally distributed with zero mean. A comparison of the covariance
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matrices of the limit distributions shows that none of the estimators from the class
introduced in Section 2 is more efficient than the least-squares estimator.

Now, if the class of estimators introduced in Section 2 were found to consist of
the least-squares estimator alone, then the optimality result of Section 3 would be
vacuous. In Section 4 we show how to construct a “large” set of estimators which is
contained in the set introduced in Section 2. We also present, in detail, such a
construction in a simple situation.

Finally, a word as to some of the conventions adopted in this paper. “a =,b” is
meant to be read “a is defined to be the expression b”. a, —, b, a, -, b and
a, >4y b are meant to indicate that as n — o, a, converges to b almost surely, in

m(A,
a0,
on for other derivatives. All integrals range from —« to 7 and so we have chosen to
omit the limits of integration. Various functions of # and p and/or A will be
introduced; it will be implicit that these functions are defined only for 8 € ®
(introduced in Section 2), p € A (introduced in Section 4) and A € [~ 7, 7].

probability and in distribution, respectively. m)(A,8) denotes and so

2. A class of consistent estimators. Suppose the stochastic process {x,} defined
on a probability space (2, %, P) satisfies the following assumptions.
Al. {x,} is weakly stationary and has an absolutely continuous spectral distribu-
tion. We denote the spectral density by f(A).

1
A2, ;Ef':,x,x,ﬂ,, —prob Ym fOT €ach m € Z.

Introduce O, a compact subset of a metric space 9N with distance d(-, -). Let Q
denote the set [—a, 7] X ©. In the next two assumptions we introduce a class of
spectral densities { f(:,0)|8 € ®} which is assumed to contain f(+).

Cl. f(A,0) > O for all (A,0) € Q. Suppose

0%(8) =, exp {%flog2wf(}\,0)d}\} >0

for each § € © and define m(-, 8) =, (6*(8)/27f(-, #)). Suppose m(}, 6)
is continuous in (A, 8) € Q.

C2. f(-) = f(+,8,) for a unique 4, € O (here two functions are considered equal
if they differ at most on a set of A-measure zero). We will denote 6%(§,) by
g 2.

Let our aim be to estimate 6, on the basis of a part-realisation x,,- - - , x,, and the
prior information regarding the process {x,} embodied in assumptions Al, A2, Cl
and C2. To this end we introduce A(A, @), a real-valued function of (A,0) € Q
which satisfies assumptions D1 and D2 defined below.

DI1. h(A,0) is continuous in (A,0) € Q. Let J(8) =, [h(A,0)f(A)d\. Assump-

tion D1 implies that J(#) is continuous in 6.
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D2. J(0) is minimised at the single value of 8, whatever the value of §, in ©.

Now m(A, ) satisfies assumption D1 and fm(X,8)f(A)dA is minimised at the
single value of 6, (see e.g., [1] page 134) so that assumption D2 is also satisfied. 0
defined to be a minimising value of S(8) =, [m(X,8)I,(X\)d\ where

L(\) =4 2+m|2;’=1x,e”" |2 is the “least-squares” (or “Gaussian” [5]) estimator of
0,.

Two functions 4,(A, 8) and h,(A, 8) will be said to be “equivalent” if there exist
¢, > 0, ¢, such that &Y (X, 0) = c;h3 (A,0) + ¢, for all (A, 0) € Q where hf (A, 0)
=,(h(N,0) + 1y (—A,0))/2 and k3 (X,0)=,(hy(A,0) + hy(—A,0))/2. This defi-
nition is natural in the present context because the subset of ® minimising
Th(A,0)I,(N)dA is the same for equivalent A(A, 8)’s.

As we shall see in Section 4 there exist functions which are not equivalent to
m(A, @) but which satlsfy assumptions D1 and D2. For any A(A, ) not equlvalent
to m(A, §) we define 0 to be a minimising value of S,(8) =, [A(A,0)I,(N)dA. 0 is
yet another estimator of 6.

The main result of this section, Theorem 2.1, is that §, —prob 0o and 0 prob 0,.
Thus, consistency of estimation does not provide a basis for deciding which of 0 or
0,, is a better estimator of §,. The proof of the main result of this section will require
Lemmas 2.1, 2.2 and 2.3 which we now present.

LEMMA 2.1. Suppose {x,} satisfies assumptions Al, A2 and h(A,0) satisfies
assumptions D1 and D2. Then given ¢ > 0, n > O there exists an ny € Z, such that
foralln > ng

P{supycelS,(0) — J(8)| > e} <.

PrROOF. Somewhat similar to the proof of Lemma 1 of Hannan [1]. Let g,,(A, )

be the Cesaro sum of the Fourier series of A(A, #) taken to M terms i.e.,

au0,0) =3 3 e ()1 = B oo () =4 5o mr, 00 an.
Also, let

1(8) =4150) = Sau 0L aA]

(0) =a 1 1au A LA AN = [a (X, O)f(A) A

J(8) =alfau(X,0)f(X)d\ — J(6)|.

Our interest in these quantities is motivated by the fact that
(2.1) |S,(8) — J(8)] < Jy(8) + J(6) + J(8).

Now given g > 0 we may fix M so large that |h(A,0) — g (A,0)| < ¢ uni-
formly in (A,8) € Q since the Cesaro sum converges uniformly in (A,8) € Q.
Hence J,(8) < &,c, and J;(8) < &7,. Further, a constant K < oo (which does not
depend on either § or M) can be found such that J,(§) < K =M ules = vl

Consequently, by first fixing M sufficiently large, one can find an ny € Z, such
that P{supycel/i(8) + Jo(0) + J3(0)] > ¢} <nforalln > n,.
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The proof of Lemma 2.2 will require the following well-known result relating
convergence in probability and almost sure convergence.

ResuLT 2.1. X, >, x iff every subsequence of the x,’s contains a further
subsequence which converges to x almost surely.

LEMMA 2.2. Suppose that under a certain set of conditions (call these conditions C)

a, a5, a’bn a.s. b’. sty as T

implies that y, —, ; v. Then again under conditions C
a, _)prob a’bn _)prob b’ MY _)prob r
implies that y, =, V-

PrROOF. Result 2.1 implies that we can prove that y, —,;, ¥ by proving that any
subsequence of {n}, denoted {n;} has a further subsequence n, such thaty, —,, ».

Obviously a, —,., @ hence by Result 2.1 {n,} has a subsequence, denoted {n,}
such that a, —,; a.

Obviously, then, b, —,;, b hence by Result 2.1 {n,} has a subsequence, denoted
{n,} such that b, —, b. '

We continue in this fashion till we find a subsequence of {n}, denoted {n,} such

thata, —,, a,b, =, b, ,r, —, r. By hypothesis this implies that y, —, .
Hence as already indicated y, —,0p V-
LemMA 2.3. Suppose b(0) and a,(8),a,(8), - - are continuous in § € ® a com-

pact subset of a metric space M with distance d(-,-). Suppose also that b(0) is
minimised at a single value of 8 € © and let this value be denoted 8,. Further suppose
a,(0) >, b(8) uniformly in ©. Then if 6, is any minimising value of a,(8)
d(en’ 00) a.s. O‘

Proor. The method of proof is indicated by the method of proof of Theorem 1
of Hannan [1].
We now present the main result of this section.

THEOREM 2.1.  Under assumptions Al, A2, C1, C2, D1 and D2 d(0:,,00) —prob 0
and d(6,,8,) = pob 0.

ProoFr. Let z, denote supycg|S,(6) — J(8)|. Lemma 2.3 states that when z, —,
0 then d(4,,6,) —,; 0. However, Lemma 2.1 implies that z,—,, 0. Hence by
Lemma 2.2 d(,,8,) =0 0. Similarly d(8,,6p) —pop O-

3. The main result. In Section 2 it was proved that §, = prob 0o and 4, = prob do-
Consequently, consistency of estimation does not provide a basis for deciding
which of 4, and §, is a better estimator of 6,. By introducing additional assumptions
on {x,}, f(A\,0) and h(A,0) we are able to prove in this section that both
n%(ﬂ; — 6,) and n%(é,, — ,) converge in distribution to normal distributions with
zero means. A comparison of the covariance matrices of the limiting distributions
shows that §, cannot be a more efficient estimator of 6, than §,. This is the main
result of the paper.
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Suppose {x,} satisfies the following assumptions (note that A3—AS5 and Bl are
introduced in [1] and A6 appears in [2]).

A3 x, =2, l,¢_, where [, =1 and /,=0 for u<O0.

Ad. E{¢,|9,_,} =0 as. for all n where %, is the o-field generated by
{ens€n1o "}

AS5. E{e2|%,_,) =0>>0 as.

A6. Suppose there exists a random variable X with E{X*} < co such that
P{(le,| > u) < cP(|X| > u) for some 0 < ¢ < oo and all n, all u > 0.

Bl. 3, ul? < co.

A process satisfying assumptions A3—-A5 and B1 also satisfies assumption Al.
By a result of Hannan and Heyde [2] a process satisfying the above assumptions
also satisfies assumption A2. Consequently, the above set of assumptions on {x,} is
more restrictive than assumptions Al and A2.

For the derivation of the limiting distribution of n%(é,, — 6,) we require that
f(A, ) satisfy assumption C1 and assumptions C2’, C3 and C4 set out below.

C2'. f(+) = f(-, ,) for a unique §, € int . Here int ® denotes the interior of ©.

C3. Suppose I is R? so that § = [4,,- - -0p]T. It is also supposed that there
exists a neighbourhood of §,, denoted N,, in which m(A, @) is a twice differentiable
function of the 6, whose second derivatives w.r.t. the §; are continuous in (A,9) €
[—m, 7] X N,

When assumption D3 holds we may define W = (w,;) where

1 mO(X,0,)m (A, 6,)

Wij =a 47 m2(>\,00)

From the hypothesis that fm(\,8)f(A)dA is minimised at 6, it follows that W is
positive semidefinite. We now introduce the following assumption.

C4. W is nonsingular.

For the derivation of the limiting distribution of ni(§, — 6,) we require, in
addition, that A(A, @) satisfy D1 and the following assumptions.

D2'. J(6) is minimised at the single value §, whatever the value of 6, in int ©.

D3. A(A,8) > 0 and h(—A,0) = h(A,0) for all (A,0) € Q.
flogh(A,0)d\ > —oco forall 6 € O.

Assumption D3 is no real restriction over and above assumptions D1 and D2'".
To see this suppose A(A, §) satisfies D1 and D2’ then A* (X, 0) =, L + X h(—A,8)
+ h(A, 0)) has the property that the subset of ® minimising [A(A, 8)I,(A)dA is the
same as the subset of ® minimising [A* (A,8)I,(A)d\ and furthermore A* (A,6)
satisfies D1, D2’ and D3 for suitably large L.

D4. There exists some neighbourhood of 6, denoted N, in which A(A,0) is a
twice differentiable function of the §; and whose second derivatives w.r.t. 6, are
continuous in (A,0) €E [—7, 7] X N,.

Under assumption D4 we may define ® = (¢,,;) where ¢, =, [ACD(, 6,)f(N) dX.
From the hypothesis that [A(A,8)f(A)dA is minimised at 6, it follows that ® is
positive semidefinite. We now introduce the following assumption.

aN = 2 log® m(A,6) log m(,6) .
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D5. ® is nonsingular.
We are now ready to present the main result of the paper.

THEOREM 3.1. Suppose assumptions A3—A6, B1, Cl1, C2', C3, C4, D1, D2/, D3,
D4 and DS are satisfied. Then
ni(G, — 6y) =45 N(O, W)
ni(8, — 8y) =4 N(O, @71 D 1)
where ¥ = (y,;) and ,; =, 4mfhO(N, §)R (N, 8,)f*(N) dN. Furthermore,

O~ WO — W is a positive semidefinite matrix. The result is usually written
oo ! > wl, :

PrOOF. The proof is divided into two parts.
Part a. We note that the following relationships hold

(3.1 JmO(X, 8,)f(A)d\ = 0
32) JRD(N,6,)f(N)dN = 0.
Now assumption D2’ implies that whatever the value of §, in int
Ofh (A, 8,)f(A)d\ = 0. Hence
h(j)()\,go)
m(X,6p)
Differentiating w.r.t. §, we see that
@) X, 6, A 2,0
MO 8) K 8)

d\A = 0  whatever the value of §,in int ©.

A, 6, = d\.
JHO(X, 6) (0 y) N, G)
Hence
(3.3) 4mfhD(N, 0p)mD(N,0,)f2(N)dN = 26%p,,.
Also,
(3.4 4vrfm(j)(}\,00)m(i)()\,00)f2()\)d)\ = 4o4w,-j.

Let us now'introduce the quantities
Vi =aniS(8y) = nfhO(N,6)1,(N) dX

T! =, n189(8,) = nifmP(\,8,)I,(N)dA.

Let us define

A =,

—_—— e ] —_——_—— —

v o 202'21)]
2020 ! 4¢*W

We will prove that the limiting distribution of & =,[V;},--- V2, T,} - - TF]" is
N, A).



1088 PAUL V. KABAILA

Now let us define I(A,e) =, 2——[2, 1&,€"|2. As proved by Hannan [1] we
may replace consideration of the expressions 7,/ and ¥/ by

n [I(A, &) f(N)m®(X, 8y) dA and ni (I(\, &) f(AN)RD(N, 6,) dA
respectively. But equations (3.1) and (3.2) imply that

ntFION, €) fN)mO(A, ) dN = nt f{I()\ e) — 2," & } FO)mO(N, 8,) dA
and
nt [ION, &) JNRO(A, ) d = {I(A e) ———2, P ,}f(A)h(')(A 8) dX.

As proved by Hannan [1] this type of expression can be reduced to the
consideration of an expression which is asymptotically normal by Hannan and
Heyde [2]. The precise value of the limiting covariance matrix follows from
equations (3.3), (3.4) and the definition of V.

Part b. By Theorem 2.1 §, —prob B0 and~0; —prob 0p- Hence we may derive the
limiting distribution on the assumption that §, € N, and 6, € N,. By the mean-value
theorem

(3.5) 32, {-89(8,)}{n(8,, - 6.)} = T/

(3.6) i =5 (6, — 8o,)} = Vi

where §,, = A0, + (1 — X )80, 8% = X5,0, + (1 = A;;)6, 0<A,; < 1and 0<
Now S§%)8,,) = §%(8y) —prop 0 and STG%) — S(Gp) —prop 0. By an

argument similar to that used in the proof of Lemma 2.1 it can be seen that

SE(0p) —pron Wiy and SH(6y) =40 ¢ Let us define

@-lveT 207 }
|.

From the limiting distribution for « found in Part a and from equations (3.5) and
(3.6) it follows that B —y N(O,B). B is clearly positive semidefinite as it is a
covariance matrix. Hence

Therefore @' W@ ! > w1,

REMARK 3.1. @ %@~ ! > W~ !is a strong result. It implies, for instance, that
each diagonal element of ® '¥®~! is larger than the corresponding element of
w1, 1t also implies that det ®~'¥®~! > det W~ which, as mentioned in Section
1, is the result stated by Whittle in [4] page 215.
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REMARK 3.2. It is evident that §, is a better estimator of 6, than §, when
assumption D5 is not satisfied i.e., when @ is singular.

ReMARK 3.3. In its basic approach the proof given above is much the same as
that given in [3] pages 428-429. We outline, now, another interpretation of
Theorem 3.1. In [5] pages 124—125, this other interpretation is used as the basis for
an alternative proof of the result given in [3].

If we let x = [x,,- - -, x,]” then we see that S,(6) is approximately x’Cx where
ao(9) 0‘1(\0) e, 4(9)
1 a_(9)
C=som
a—n+1(0)

and we remind the reader that a () =, % [h(X, 8)e**dX. Thus Theorem 3.1
may be interpreted as indicating the optimality of the least-squares estimator from
within the class of consistent estimators of §, which minimise certain types of
quadratic forms in the data.

4. Some examples. Suppose assumptions A3-A6, B1, C1, C2, C3 and C4 are
satisfied. It is of interest to ask how “large” is the class of estimators of 6,
generated by minimising [A(A, 8)I,(A)dX where h(A, @) satisfies assumptions D1,
D2/, D3, D4 and D5. As already indicated in Section 3 the least-squares estimator
belongs to this class of estimators of #,. We may generate (in the obvious way) a
“large” class of nonequivalent A(A, #)’s which satisfy assumptions D1, D2’, D3, D4
and D5 based on two observations:

First observation. Suppose h,(A,0) and h,(A, @) satisfy assumptions D1, D2,
D3, D4 and D5. Also suppose that A3(A,8) and hy(A, ) satisfy D1, D3 and D4
and that fh(A, 0)f(A)dA and [h,(A,8)f(A)dA are minimised on sets containing 6,
whatever the value 6, is assumed to take in int®. Then hg(A,80) =, h (A, 0) +
ahy(A,0) satisfies assumptions D1, D2, D3, D4 and D5 for a > 0. Ag(A,0) =,
h3(A,0) + Bh,(A,0) satisfies assumptions D1, D3, D4 and [hg(A, 8)f(A) is mini-
mised on a set containing 6, whatever the value of §, € int® for 8 > 0. h,(A,0)
=, hi(A,0) + ohy(A, 0) satisfies assumptions D1, D2’, D3, D4 and D5 for ¢ > 0.

Second observation. We may generate functions A(A,8) which satisfy D1, D3,
D4 and [A(A,8)f(A)dA being minimised on a set containing 6, whatever the value
of 4, in int® as follows. Consider the class of estimators of x, of the form x, =
— 2 uroh(p)x,_, where %, denotes the estimated value of x, and pE U, a
compact subset of R? Suppose that for each p € b 2, , o5, (p)z" is analytic in
an annulus containing the unit circle. The mean-square error of estimation is
E{(x, — %,)*} = [h(\, p)f(A) dX. Suppose, also, that for each @ € int ®
TR ) (A, 0)dN (B(A, p) =41 + Eu,uyéohu(u)e‘“ﬂz) is minimised at a unique
p € int Y and denote this value by p(6). From assumptions C1, C2" and C3 it
follows that in N, f(A,#) is a twice differentiable function of the §, whose second
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derivatives w.r.t. the §, are continuous in (A,d) € [—m7,7] X N,. Assume there
exists a neighbourhood of u(4,) denoted N,, in which A(A, u) is a twice differentia-
ble function of the p; and whose third derivatives w.r.t. §; are continuous in
(A, p) E[—m, 7] X N,.

If £(0,n) =45 f[AO(N, p)f(A, 8) dX then clearly u(8,) is a solution of £,(6,,n) = 0
for i=1,---,9. Let us now introduce the assumption that the Jacobian
(8( S5~ - £;)/3(pys - - - 1)) is nonzero at (6, u(6,)). An application of the implicit
function theorem indicates that there is neighbourhood of §,, denoted Nj;, such that
for 4 in this neighbourhood p(#) is a twice differentiable function of the §;, whose
second derivatives w.r.t the 6§, are continuous in (A,8) € [—7,7] X N;. Hence
h(X, n(8)) has the desired properties. Let it be remarked that an especially simple
class of estimators suitable for the construction just described is given by X, =
— 291X, ;) Where 7(j) # 0 for j =1, - - g and M is defined to be the set of
those p’s minimising fA(A, ) f(A,8)dA as @ varies over ©.

Based on the second observation we present, in Subsections 4.1 and 4.2, an
infinite class of nonequivalent A(A, #)’s which satisfy assumptions D1, D2, D3, D4
and D5 for {x,} known to be given by a first order autoregression.

4.1 An infinite class of nonequivalent h(\,@)’s. Suppose {x,} is given by x, =
2. 0.€_, where I, = 6§ foru > 0, 1, = 0 for u < 0 and where for some 0 < £ < §
< 1 known to us, £ < |6,| < 8. It is clear that T u/? < oo so that assumptions A4
and B1 are satisfied. Suppose, further, that {e,} satisfies assumptions A4, AS and
A6.

If we define f(A,8) = (62/27)(1/|1 + #e|?) and © =[-8, —£] U [£,8] it is
clear that assumptions C1, C2’, C3 and C4 are satisfied.

Now let k be a fixed, positive, odd integer. Consider the class of predictors of the
form %, = px,_, where p =,[—8&% 8] It is not difficult to show that for each
6 € O the value of p which minimises [A(A, u)f(A,0)dA is u(8) = 9*.

h(A, n(8)) is seen to satisfy assumptions D1, D2’, D3, D4 and DS. By Theorem
3.1 the limiting distribution of n%(ﬂ; — 6,) is normal with mean zero and variance
J, =A(1/k1)8%1~%gb=2 where a = 47[(0h(A, u(8,))/0p)f(A\)dA and b =,
J(3%h(X, 1(8y))/9u?) f(A) dA. By a lengthy calculation we can find explicit expres-
sions for the Fourie: coefficients of f(A) and f2(A). It can then be shown that:

2
Jo_60+6) 1 @ (2k+1)_2 % \ 1
Ji (1 - 82y k203 1-6\ k? 1- 62

4.1) PER

Let us examine this expression a little. For kK > 1 and 6, =0 J,/J, clearly
diverges to +o0. For 8, = 0 J,/J, is of the form a,(6,)f,(k,8,) — ay(6y)fo(k) —
a5(6y) f(k) where a,(6y) > 0, a,(6y) > 0, a3(6y) > 0, fi(k,8,) >0, (k) > 0 and
fi(k) > 0. Obviously fo(k + 2) < fo(k) and fy(k + 2) < fy(k). Furthermore, f,(k +
2,6,) > fi(k,6,) for |6y < (k f_ 5 )%. Hence for fixed 6, such that 4, # 0 and

J J
[6,] < glf:1< L]-3—< 2« 21« ... In fact, for any fixed 0 < 8 < 1 and for k,,
2 1

AN A



LEAST-SQUARES ESTIMATORS FOR TIME SERIES 1091

. o ko2 Jrgra
sufficiently large Tl < 7, < 7,
6, such that |6,| < 1 that J,(6,)//,(8,) > 1 and numerical evaluations of J,/J,
verify the truth of this.

4.2 An additional h(X,8). Suppose {x,} is given by x, = 2/ ¢,_, where [, = 6}
foru > 0,/, = 0 for u < 0 and where for some 0 < § < 1 known to us, |§,| < 8. It
is clear that 3, u/2 < oo so that assumptions A3 and Bl are satisfied. Suppose,
further, that {¢,} satisfies assumptions A4, A5 and A6.

If we define f(A,0) = (8%/27)1/|1 + 8e™*|?) and © = [—4,8] it is clear that
assumptions C1, C2’, C3 and C4 are satisfied.

Consider the class of interpolators of the form %, = u(x,_, + x,,,) where
P =A[—8/(L + 8%),8/(1 + 6%)]. Thus the mean-square error of interpolation is

E{(x, — %)%} = [h(A,p)f(A\)dA. For each § € int® [h(A,p)f(A,pn)d\ is mini-
mised at p(0) = >

h(A, n(8)) satisfies assumptions D1, D2’, D3, D4 and D5. By Theorem 3.1 it is
clear that the limiting distribution of n%(0,, — 6,) is normal with mean zero and
variance '

< - --.Theorem 3.1 indicates that for any

16

1+
+

where

c =A4wf[f’ﬂ%§0°—))]2f()\)dx andd =, fﬂ%;’:—(ﬂ))—)f()\)d)\.

A calculation of the Fourier coefficients of f(A) and f?(A) shows that I, = 1. Now

J, as defined in the previous section is 1 — 7. Hence it is obvious that J, < I,
except for §, = 0 where J; = I,. This is in accord with Theorem 3.1.
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