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A TEST FOR GOODNESS-OF-FIT BASED ON AN EMPIRICAL
PROBABILITY MEASURE

By RoBERT V. Fourz
Virginia Polytechnic Institute and State University

A goodness-of-fit test is proposed for the simple hypothesis specifying a
continuous p-variate distribution. For a suitably defined empirical probability
measure, the proposed test is based on the supremum of the absolute dif-
ferences between hypothesized and empirical probabilities, the supremum being
taken over all possible events. This test statistic is shown to be distribution free
in the general p-variate case, its exact null distribution is indicated, and its
asymptotic null distribution is obtained. .

1. Introduction. Let X|,X,,---,X,_, be independent indentically distributed,
p-dimensional random vectors defined on a probability space (2, &, P). Denote
Euclidean p-space by R”, and denote the corresponding class of Borel sets by B2,
The probability distribution of X, is the probability measure, P, on (R?,B7) that is
defined for all B in %7 by P(B) = P(X, € B). Throughout, P is assumed to be
absolutely continuous with respect to Lebesgue measure on $”?. For a specified
absolutely continuous probability dlstnbutlon PH, this paper proposes a test for the
simple goodness-of-fit hypothesis H : P= PH

Perhaps a more conventional statement of the goodness-of-fit hypothesis is
H': G = Gy, where G(x) and Gy(x) are the continuous distribution functions
corresponding to the probability distributions £ and }3”. Statements H and H’ are
equivalent due to the unique correspondence between a probability distribution
and its distribution function; however, the statements reflect different approaches
to testing goodness-of-fit. A natural test for H' : G = G, would seem to involve a
comparison of the hypothesized distribution function G, with an empirical distri-
bution function, say G,. The Kolmogorov-Smirnov and the Cramér-von Mises tests
are well-known examples of such empirical distribution function (EDF) tests. The
EDF tests reject H” when a measure of the difference between G, and G, is large.
In general, EDF tests are distribution free for testing goodness-of-fit in the case of
a univariate distribution, but the tests do not extend readily to distribution free
tests in the multivariate case. To emphasize another inherent property of EDF
tests, let ﬁ,, be the empirical probability distribution corresponding to an empirical
distribution function G,, and define B, in B? by

.={y=(yl’y2,...’yp)’:yj<xj’ j=1,2,...’p}.

A comparison of Gy(x) and G,(x) is a comparison of hypothesized probabilities,
Py(B,), and empirical probabilities, P,(B,), of only events of the restricted form B,
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for x in R?. This paper takes the view that the test should compare hypothesized
and empirical probabilities of a/l events B in B”. Accordingly, the proposed test
forH: P = }3” is based on a suitable empirical probability distribution ﬁ", and the
test statistic takes the form

(11) F, = sup{|P,(B) — P,(B)|; B € ®}.

It compares the hypothesized and empirical probabilities of all possible events.
Unlike EDF test statistics, F, is distribution free in the general p-variate case.

In Section 2 a suitable empirical probability distribution 13,, is specified for the
test statistic in (1.1). Since the direct computation of F, by (1.1) is impossible, a
result is given in Section 3 that permits F, to be computed indirectly. In Section 4,
the null distribution of F, is shown to be independent-of both the hypothesized ﬁ,,
and the dimension p; the exact null distribution is indicated; and the asymptotic
null distribution is obtained. Finally, some empirical results are given in Section 5
for the univariate case (p = 1).

2. An empirical probability distribution. A standard notion of an empirical

distribution function from the sample X;, X,, - -, X,_, is
G,(x) = n_llz?;ll[ﬂ_;;lI(—oo,X,-j](xj)]’

where x; and X;; are the jth components of x and X; respectively and where 1,(x)
is the indicator of the set 4. The corresponding empirical probability distribution is
discrete, giving mass 1/(n — 1) to the points X,,X,,---,X,_,. This discrete
empirical distribution would clearly not be appropriate for the test statistic (1.1)
since, with }3” a continuous distribution, F, would equal 1 almost surely. For the
statistic F, to be meaningful when P, is a continuous distribution, a continuous
empirical probability distribution, 13,,, must be used in (1.1). We will define such a
continuous empirical distribution by “spreading” the mass over “statistically equiv-
alent blocks” that are defined from the sample. The following prescription for
using the sample to partition R” into statistically equivalent blocks is taken from

Anderson (1966):

Let hy(x),hy(x),- -+, h,_(x) be n — 1 real valued functions, not necessarily
different, such that the distribution of 4,(X) is a continuous distribution when X is
distributed according to ﬁ,a =1,-+-,n— 1. Let ky,k,,- -+, k,_, be a permuta-
tion of 1,2,--+,n ~ 1. Use h; (x) to order X;,X,, -+, X,_;; and define XV as
the k,th in this ordering. Then the “cut”

he(x) = h(X5)
defines two “blocks”
Byoky = {x1hy(x) < by (X)),
Bisrn = {thk.(X(k')) < hk,(x)}'
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The procedure is continued. Suppose 0 < k, < k;. Use h,(x) to order the
ky—1X/sin B,...,, and define X*2) as the k,th in this ordering. Let

Bl---k2 = B1.-.k, N {x:hkz(x) < hk,(X(k’))},
Bisrk, = Brog, N {x:hkz(X(kz)) <hk2(x)}~

If k, < ky, rank the n — k, X,’s in B, ,,..., according to &, (x), and let X*2 be
the (k, — k,)th in the ranking. Then

Bkl+1~~-k2 = Bk,+1--~ {x hkz(x) hk(X(k’))}
Bis1..on = Bryr...n N {x : hkz(X(kZ))‘< hkz(x)}‘

At the end of the mth stage there will be m + 1 blocks: B,...;, B; ,y...;,
“+yB 1., where j; < ... <, are kj,---,k, arranged in ascending

order; and, finally, after n — 1 stages there will be n blocks B,, B,, - - - , B, in B?.
The blocks are statistically equivalent in the sense of

THEOREM 21 Let X, X,, - - - _1 be independent with common probability
distribution P on (R?, B?). Let By, B2, . B be the statistically equivalent blocks
that are constructed from the sample using cutting Sunctions h(x),a =1,2,-- - ,n
- 1. If h(X) has a continuous distribution for a=1,2,---,n— 1, then
};(Bl), ﬁ(Bz), . P( ) are distributed as the n spacings (coverages) determined
Jfrom a random sample of size n — 1 from the uniform distribution on (0, 1).

The proof is given in Anderson (1966).
A consequence of Theorem 2.1 is that EP(B )=1 / nfora=1,2---,nlItis
therefore natural to specify an empirical distribution, P,, on (R?, ®7) by

DEerINITION 2.1. The probability measure ﬁ,, is an empirical distribution on
(R?, BP) if it satisfies
(2.1) P(B) = 1/n
fora=1,2,---,n.

The specifications (2.1) defines a unique probability measure on the algebra
generated by the statistically equivalent blocks By, B,, - - - , B,. Since this algebra
is contained in %7, P, may be extended to a distribution on %B”. The intent of
Definition 2.1 is to call any such extension an empirical distribution on %B7.

It has already been pointed out that a contmuous empirical distribution, P 5 18
required for the test statistic F, of (1.1): P should spread the mass 1/n continu-
ously over each statistically equivalent block. In Definition 2.2 we let the hypothe-
sized PH dictate the manner in which this mass is dlstrlbuted over each block. For
a subset B of the block B,, the definition requ1res P ' (B) to be proportional to
P, (B), the constant of proportionality being 1/ (nP(B,)).

DEerFINITION 2.2. Let By, B,,- - -, B, be the statistically equivalent blocks that are
constructed from the sample X, X,,---,X,_,; and let P, be the hypothesized
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distribution used in the definition of F, in (1.1). The empirical distribution in (1.1),
P, is defined for each B in B? by
1 _Py(Bn B,

P(B) a-l A
Py(B,)

3. A computational result. The computation of the statistic
F, = sup{|P,(B) — P,(B)|; B € 7}

would seem to require the impossible task of directly comparing hypothesized and
empirical probabilities of all events in #*. That F, may be computed indirectly is a

consequence of

THEOREM 3.1. Let By, By, - - -, B, be the statistically equivalent blocks con-
structed from the sample X, X5, - - - , X,_,; and define D,y <D,, < - -+ <D,, to
be the ordered values of Py(B,), Py(By), « - - , Py(B,). Then
3.1) F, = max{a/n— (D, + Dy + -+ - +Dy);

a=l,2’...,n_1}.

The proof requires

LemMma 3.1. For ﬁ,, given by Definition 2.2 and with B a Borel subset of a
statistically equivalent block B,, we have

Py(B) — P,(B)
ﬁH(Ba) - ﬁn(Ba)

PROOF. With P(B) = (Py(B)/Py(B))/n and with P(B,) = 1/n, straight-
forward algebraic manipulations show

Py(B) — P(B) _ Py(B)

ﬁH(Ba) - ﬁn(Ba) ﬁH(Ba)

the right side of which is easily seen to be between 0 and 1 when B is a subset of

PrOOF OF THEOREM 3.1. Define n + 1 classes of events in B? by

Bo = {9}
%(I) = {B, By - Bn}
B = {B,U B; 1< j,<j,<n}
By = {B,U- - UB, ;1<)3<-- " <j_y <n}

Bwm = {R”},
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and write
By = Bo U By U -+ UB

as the algebra generated by the statistically equivalent blocks. The first step in
proving Theorem 3.1 is to show that F, may be constructed solely from events in
%, by showing
(32) sup{|Py(B) = B,(B); B € B”} = max{|P,(B) — B(B)|; B € By}

Select an arbitrary B in %”. Expression (3.2) will follow upon producing a
corresponding event B* in %, for which
(3:3) |Py(B*) — P,(B*)| > |Py(B) — P,(B)|.
In the case where ﬁH(B) - ﬁ,,(B) > 0, define a subclass ' of statistically equiv-
alent blocks by

C = {B,: Py(B n B,) - P,(B N B, >0},

and select the required

B* = UBaEGB"'

To see that B* satisfies (3.3) use the definition of € and Lemma 3.1 to argue the
two inequalities below:

Py(B) — B(B) = 3._,Py(B n B,) — P(B N B,)
21.?‘,'5@1617((3 N B,) - ﬁn(B N B,)
35, ccPu(B,) — P,(B,)

Py(B*) — P,(B*).

n N

The selection of B* when ﬁH(B) - ﬁn(B) < 0 may be made similarly to complete
the justifications of (3.3) and (3.2).
From (3.2) and the definition of the ®,,’s

(3.4) E = max‘,=,,2,...,n_lmax{|13H(B) —a/n|; B € B}

Note that the right side of (3.4) may be expressed in terms of the D, ;’s: For a = 1,
since D,,=1—-D,,=---=—-D,,_,,

max{|Py(B) — 1/n|; B € B,)} = max{l/n— D,,,D,, — 1/n)
max{1/n — D,,, (n — 1)/n
- (Dnl + Dn2 + - +Dnn—1)};

and, in general,
(3.5) max{IﬁH(B) —a/n|;B € %(a)}

= max{a/n - (Dnl + - +Dna)’(n - a)/n - (Dnl +- +Dnn—a)}'
The theorem is proved upon combining (3.4) and (3.5) to conclude (3.1).
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A further simplification in the computation of F, is obtained by selecting a* to
satisfy
1/” - Dnl > l/n —Dnz >"’ > l/n—Dna‘
> O > 1/” - Dn(a‘+l) > > l/n - Dn”.

It follows that we may compute
(3.6) F, = a*/n — (D, + Dy + -+ +D,).

4. The null distribution of F,. Let Y, ¥,), -, ¥,_;, be the order statistics
from a random sample of size n — 1 from the uniform distribution on (0, 1). The
corresponding spacings are defined to be Y, Yo — Yy v+, Yooy = Yiuo2pp 1 —
Y,_ 1) Denote the ordered spacings by Uy, Uz, * > Uype The null distribution of
F, is characterized in terms of these ordered spacings in

THEOREM 4.1, Assume the conditions of Theorem 2.1. When H : P = Py is true, F,
is distributed as a function of ordered uniform spacings:

E, = max{a/n — (Uy + Uy + -+ +U);a=1,2,-++,n—1}.

n

In particular, the null distribution of F, is both independent of the hypothesized }5H and
the dimension p.

Proor. From (3.1)
(4.1) F, = max{a/n— (D + Dy + -+ +D,,);a=1,2,---,n—1},
where D,;,D,,,"  *,D,, are the ordered values of ﬁH(Bl), ﬁH(Bz),~ .- ,ﬁH(B”).

That ﬁH(B,), ﬁH(BZ),- . ,}SH( B,) are distributed as uniform spacings and that
D,,D,,, - ,D,, are, thus, ordered uniform spacings follows from Theorem 2.1.
The proof is completed upon identifying D,; with U,; in (4.1) for j = 1,2,- - -, n.

To find the exact null distribution of F,, note from Mauldon (1951) that the joint
distribution of U, U,,," -+, U,,_; has density function f(pypz, " p,—1) =
nl(n — 1! for py, py, -+ s,y satisfying 0 < py < py <-++ <p,_,and p; + p,
4+ -+ +p,_,+2u,_, < 1. The transformation of variables A, = 1/n — U,;,4,
=2/n—Uy— Uy, Aoy =(n—1)/n—U, =+ —U,,_y shows the joint
density function of A,,A,,--+,A,_; to be g,(8,,8,, +,8,_;) =nl(n— 1! for
1/n>8>8—-8>8-8>->8_,—8_,>—8,_, Finaly, P(F, <x)
may be found from

4.2) P(F,<x) = X [% 088y ,8,21)d8---d5,_,.
In the simplest cases the integration gives
P(Fp<x) =1, forx >2
= 12xmin(},x) — 12xmin(},x/2) + 3x* — 3min(5, x?),
for0 < x < %,

=90, forx <0
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and
P(F,<x) =1, forx >%
96 min*(,x/3) + 72x?min(4,x) + 4min’(%, x)

+ 36x2min(},x/3) + 12min2(§,x/3) - 108x2m1'n(%,x/2)

+ 144xmin’(3,x/2) — 108x min’(3, x/3) — 36x min’(}, x)
_ 48min3(£,x/2), for0 < x <3
=0, forx < 0.

The tedium in evaluating (4.2) increases rapidly with n."However, for large n the
null distribution of F, may be approximated using the normal approximation of

THEOREM 4.2.  Under the assumption of Theorem 2.1, when H : P= ﬁH is true:
li, e SUP_ oy ol P 3(F, — €71)/ (2671 = Se2)} < ]
— [ JQI) iem24q| = 0.

REMARK 4.1. For the case p = 1, the Glivenko-Cantelli Theorem tells us that P
*may be estimated by P, with uniform accuracy over all events of the form
B, = (— 0, x], x € R: It concludes

sup—oo<x<oolﬁ(Bx) - ﬁn(Bx)I - O
almost surely as n— co. Blum (1955) proves a related result for the general

p-dimensional case. It is of interest to recognize that £ may not be estimated by ﬁn
uniformly over all of %”, for Theorem 4.2 implies that

supg gl B(B) — B(B)| > e,
where the nonzero limit is in probability as n — oo.

ProoF oF THEOREM 4.2. Let U,,, U, - - - , U, be the ordered spacings from a
random sample of » — 1 random variables distributed uniformly over (0, 1). Fix b
to satisfy 1 — e~! < b < 1. With [nb] representing the largest integer smaller than
or equal to nb, the ordered spacings process is defined on (1/n, [nb]/n) to be

U,(1) = n2[nU, + log(1 — £)]

for (i — 1)/n <t <i/n 2 <i<|[nb]/n.

Write U for the normal process on (0, 1) having continuous sample paths, mean
value function 0, and covariance function K(s,¢) = s/(1 —s) — log(1 —s)
log(1 —#), for 0 < s <t < 1. Let D = D(0, 1) be the space of right continuous
functions on (0, 1) that have left hand limits, and extend U, to the element U in
D defined by '

UX(t) = U,(s), if 1/n <t < [nb]/n

= U(1), otherwise.
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Let Q( ) denote the class of positive, strictly increasing continuous functions ¢
on [0, 1] for which f}q~*(#) dt < co. Let Q denote the class of all ¢ such that
g)=q(1 — ) =q()for0 < ¢ <% and some ¢ € Q( 7). Define the metric p, on
D by

Pq(fl,fz) = SuP0<t<1'(f1(t) — f2(0)/q(2)l.

Finally, use the symbol —, to denote convergence in probability.

Section 7 of Shorack (1972) shows that there is a probability space with special
processes {D,},>; and D defined thereon satisfying
(4.3) Pq/(l—I)(D:’ D) —50
as n — 0. The processes D* all lie in D(0, 1), and D lies in C(0, 1). Furthermore,
for each n, D, and U, generate the same measure on D@, 1), and D and U
generate the same measure on C(0, 1).

Let p be the Skorohod metric on D (cf. Billingsley 1968, page 111). To argue that
(4.3) implies
(44) p(Dy¥, D) —p0,
take g = [I(1 — 1 )]% € Q, and observe that

(1 — (D) — D(1))

(4.5) Pq/(1—1)(D,’,", D) = supy [t(l ~ t)];l
> — L supyc, D) — D).
[b(1 - b)]7
From (4.3) and (4.5) we see that
(4.6) SuP0<t<1|D:(t) — D(1)| =50
as n — oo.

Since the sup metric dominates the Skorohod metric, (4.6) implies the result (4.4).
Because the space D is separable in the metric p(cf. Billingsley 1968, 123), we may
conclude from (4.4) that D} converges weakly to the process D as n— oo (cf.
Billingsley, 1968, Theorem 4.1). Therefore, denoting this weak convergence in D by
—,,, we also conclude that

4.7) ur -»,U.
From Theorem 4.1 the test statistic F, has representation
F, = max{a/n— (Uy + U+ - +U,);a=12---,n— 1}.
Define F,, to be a truncated form of F, as
F, = max{a/n— (U, + Up+ -+ +U,);a=12"--", [nb]/n}.

We will show that F, and F,, have the same limiting distribution whenever b is
greater than 1 — e~ ! by showing

(4.8) lim,_, P(F, # F,) = O.
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To prove (4.8), note from (3.6) that F, = a*/n — (U,; + Uy + - - - +U,.) for
a* satisfying 1/n — U,e > 0> 1/n— Uypeyyy. We thus see the equality of
events [F, # F,], [a* > [nb]/n], and [1/n — U,qu, /n+1 > 0. We may therefore
write

P(F, #F,) = P(1/n = Uquwi/n+n > 0)

= P[12(#Upusr/nay + log(l — b)) <mi(1 + log(1 = B))],

and (4.8) follows upon noting that 1 + log(l — b) is negative and upon noting from
(4.7) that n%(nU,,([,,,,] /ey 1 10g(1 = b)) is asymptotically normal with mean 0 and
variance b/(1 — b) — logX(1 — b).

To introduce more notation, let [n¢] be the largest integer smaller than or equal
to nt. Define

n

W= = i7" log(1 — s) ds,
B = lim, p' = (1 - t)log(l - t) + 4

o = 2t(1— 1) + 2(1 — 1)’ log(1 — 1) — (1 — £)* log¥(1 — 1),
I=1-¢!
of = 2e™' — 5S¢

Also, for a functional # : D — D and for x € D, denote the image function by
h(x). Further denote the value of the image function at 7, 0 < ¢ < 1, by A(x)(?).
The remainder of the proof involves representing F,, as a functional of U}:

@9)  ni(Fy—[nl]/n+ ) = sup{g,(h(UN)(®); 0 <t <b)
where A, and g, are measurable mappings from D into D having measurable limits
h and g. It will then follow that the left side of (4.9) is asymptotically distributed as
SUPy <, 8(A(U))(?). Finally, the distribution of sup,_,, g(A(U))(?) will be found
to be normal with mean 0 and variance 2e~' — 5e~2,

To proceed with the proof, define A, : D — D by

h(x)(1) = 7Y "x(s) ds.
Note that A, is a continuous, thus measurable, mapping on the metric space D with
metric p. The p-limit of A, is the measurable functional 4 defined for each x € D
by

h(x)(#) = fox(s) ds.
Next, define the measurable functional g, : D — D by
£,(x)(0) = max{nz([nt]/n — x(t)/n7 = " =[nl]/n + p), = x(1)}.

To evaluate lim g,(x) for x € D, note that / = 1 — e~ ! is chosen so that ¢ — p, is
less than / — g, for all # = /. Now, for ¢ # |/,

»ﬁl([nt]/n ' —=[nl]/n+ ") > -0
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as n — oo, and we may argue that
lim, ., g,(x)(1) = —x()
for all ¢. Define g : D — D by
g(x)(1) = —x(I)
forall0 <t < 1.
Let E be the set of functions x € D such that

p(g,(h,(x,)), g(h(x))) - O

fails to hold for some sequence {x,} approaching x in the p metric. A tedious
but direct argument shows that E may contain only discontinuous functions x €
D. Since U —,U and since U has continuous sample paths, it follows from
Billingsley (1968, Theorem 5.5) that

(4.10) (1, (UY)) —,g(h(V)).

Since sup x(z) is a p-continuous function on D, it follows from (4.10) and
Billingsley (1968, Theorem 5.1) that

(4.11)  supoc,p 8 (A (UN)(1) —,, suPo,cs 8(A(U))(1) = —h(U)(I).
To evaluate the left side of (4.11), write for 0 < ¢ <b
h(UN(D) = [Y7)/"U,(s) ds
= niZl U, — n2 /" log(1/ (1 — 5)) ds
= n2SiM U, — nipl,

and proceed to evaluate
(4.12)

SUPor<b g.(1.(UN)()

SUPo /s max{n_;([nt]/n - S u, —[nl]/n + ),
ni([nl]/n — SV U, —[nl]/n + 1)}
= n2 max{a/n — Z5.,U, —[nl]/n + pf’
a=12---,[nb]/n}
= n3(Fy, —[nl]/n + u).

To determine the distribution of —A(U)(/) on the right side of (4.11), observe
that A(U)(/) is obtained by integrating the normal process:

h(U)(1) = [oU(s) ds.
It follows that —A(U)(/) is itself normally distributed:
(4.13) —h(U)(I) ~ N(O, fofsk(s, 1) ds dt),
where
Jifbk(s, t) ds dt = o} = 2e™ ! — 5¢72
(cf. Parzen 1962, Theorem 3A, page 79 and Theorem 4B, page 91).
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Returning to (4.11), we see from (4.12) and (4.13) that

ni(F,, —[nl]/n + pl') >, — h(U)I) ~ N(O,2¢™" — 5¢72).
Thus, also,
(4.14) ni(E, — |+ w) —, — h(U)(I) ~ N(0,2e~! — 5¢72).

Theorem 4.2 is now a consequence of (4.14), the equality / — y, = e, and Polya’s
Theorem (cf. Rao, 1973, page 120).

S. Empirical results. For the univariate case (p = 1) the test statistic F, may
be computed by ‘constructing statistically equivalent blocks B, B,,- - -, B, from
cutting functions A (x) = x,a = 1,2,---,n — L. With ¥;) <Y, <--- <Y,y
the ordered sample, the blocks are then simply the intervals B, = (— o, ¥;)], B, =
Yay Yl -+, B, = (Y(ﬁ_,), o). For testing the null hypothesis of a standard
normal distribution, P, is the corresponding normal probability measure;
D,<D,, < ---< D,, are the ordered values of B, (B,),P,(B,),
RN ﬁH(B,,); and F, is constructed from the D, ;’s according to (3.6).

This proposed test for the standard normal distribution is compared with the
Kolmogorov-Smirnov test and the chi-squared test as follows: Each of the three
tests is performed on ten simulated samples of » — 1 = 50 observations from a
“mixed uniform” distribution U* that is coded as

U* = .1U(—1.6449 + .12) + .1U(—1.0364 * .12) + .1U(— .6745 = .12)
+ .1U(— 3858 = .12) + .1U(—.1257 = .12) + .1U(.1257 + .12)
+ .1U(.3853 = .12) + .1U(.6745 = .12) + .1U(1.0364 + .12)
+ .1U(1.6449 =+ .12).

The notation U(® = .12) is for the uniform distribution from © — .12 to © + .12,
and U* above is a mixture with probabilities .1 each of the ten uniform distribu-
tions centered at standard normal percentials of 5%, 15%, 25%, - - , 85%, and 95%.

For constructing the chi-squared test, ten groups with an expected number of 5
in each group are taken. Intentionally, this chi-squared test is not expected to
perform well against the alternative U* as its power at U* equals its significance
level for testing the null hypothesis of a standard normal distribution. The
Kolmogorov-Smirnov test is also found to perform poorly for the samples consid-
ered. The interest in the example is in providing (empirical) evidence that the
proposed F;, test may perform better than chi-squared and Kolmogorov-Smirnov
tests in some situations.

The results are included in Table 1. Entries in the table are values of the
appropriate test statistic. Significance at the 5% and 1% levels are denoted by single
and double asterisks respectively. The critical values for the three test statistics are
obtained from the exact null distribution for the Kolmogorov-Smirnov statistic (K)
and from the limiting null distributions for the chi-squared statistic (x2) and for the
proposed statistic (F5;). The table also shows results for ten simulated samples of
n — 1 = 50 observations from the hypothesized standard normal distribution.
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TABLE 1
Empirical results for three goodness-of-fit tests on simulated samples
Test
Population Sample X2 K Fy,
1 6.4 .102 428*
2 52 .098 A470**
3 3.6 .078 460**
Mixed 4 7.6 155 456**
Uniform 5 44 .105 A456**
6 9.6 .084 A454**
7 14.0 .191* 445+
8 8.8 119 .440*
9 9.6 .100 A470**
10 6.4 1267 429*
Test
Population Sample X2 K Fs,
1 6.4 .092 331
2 16.4 .156 410
3 4.0 .108 342
Standard 4 8.8 121 404
Normal 5 5.2 126 .366
6 17.6* .199* 351
7 10.8 135 334
8 104 .185 .380
9 13.6 .230** .330
10 14.8 175 .359

The critical values for the three statistics are:
X? K Fy, X2 K Fs,
5% 16.92 .188 424 1% 21.67 226 447

6. Concluding remarks. The literature provides a variety of tests for goodness-
of-fit. Although no attempt is made here to review this literature, it should be
pointed out that Durbin (1961) proposes goodness-of-fit statistics for the univariate
case that are also functions of the variables D,,,D,,, - -, D,, that are defined in
Theorem 3.1; these statistics thereby share a relationship with the test statistic F, in
(1.1) and in (3.1). Durbin (1961) also provides a randomization procedure whereby
F, may be used to test composite goodness-of-fit hypotheses including the hypothe-
sis of a normal distribution with unknown mean and unknown variance.
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