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AN ASYMPTOTIC EXPANSION FOR PERMUTATION TESTS
WITH SEVERAL SAMPLES

By J. ROBINSON
University of Sydney

Let ¥, be the standardized sum of squares of the means of  + 1 random
samples of sizes sy, 51, - - , 5, where n = 55 + 5, + - - - +35,, taken without
replacement from n numbers. Then using an approximation to the characteristic
function of the means, an asymptotic expansion is obtained for the distribution
of ¥, with first term being the distribution function of x 2 and with error of
approximation generally of smaller order than 1/n. When the numbers are the
first n integers, ¥ is the Kruskal-Wallis statistic and the approximation is
compared with the exact distribution in some examples of this special case.

1. Introduction. Permutation tests for the case of several samples or treat-
ments arise in testing the null hypothesis that the distribution of a set of observa-
tions is invariant under all permutations of the observations, against the alternative
hypothesis that there are several different samples or treatments. This arises either
from independent sampling of several populations and the null hypothesis is that
these populations are the same or from a physical randomization process in a
completely randomized design with several treatments applied at random and the
null hypothesis is that all treatments have the same effect. The most common tests
of significance are based on sums of squares of sample means of scores. In
particular, the permutation test in the analysis of variance uses observations as
scores and the Kruskal-Wallis test uses ranks as scores. We are interested in
obtaining an asymptotic approximation to the distribution of these test statistics as
the minimum number in the samples becomes large. The results are an extension of
the asymptotic expansions under the null hypothesis for the two-sample case,
obtained by Bickel and van Zwet (1978) and Robinson (1978).

Let {a, :k=1,---,n,n=2,3,---} be a triangular array of real numbers
and suppose 3,4a,, = 0 and =,a>, = 1, where here and in the sequel 3, denotes
summation over k from 1 to n. Let

1

X, =[(n=1)/n]?Zs 1%z, Jj=01---,r
where sq, 51, * - , 5, are integers (the sample sizes) such that s, + - -+ +5,=n
and §;=s,+--- +s5 with S_; =0 and (R,, ‘-, R,,) is a random vector
taking each permutation of (1, - - - , n) with probability 1/n!. Let p, = 5;/n and

g=1-p,j=0,1,---,r
EX,;, = 0,Cov(X,, X,.) = pq; ji=J,
= —ppp J*J.
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852 J. ROBINSON

Let
Vn = Eani'/pi’
where here and in the sequel Z; denotes summation over j from O to .

V, is the form of test statistic used in the case of » + 1 samples. It can be shown
that ¥, converges in distribution to a chi-squared variate with r degrees of freedom,
if b, = max,|a,,| tends to zero and np = n min, p; tends to infinity. This follows
from the results of Rosén (1965) and Hajek and Sidak (1967, Chapter V) where a
functional limit theorem for partial sums of the a,, is given.

Here we will obtain an approximation for F,(x) = P(V, < x) by the expansion

O

G,(x)

_ 3
P(x? <x) — {%(Zka:k _3/")(2/1’1‘ Pt —ar - 1)(r-fZ _3)

_r(r+2)

i (755 1) + $(@eai)’ (152,07 - 97 = 367 - 19)

r+2

% x? _2x +1 x;’e‘%x
(r+8&)(r+2) r+2 2_;,T(r+2)'
2

Let 4, = Z,|a,|™. In Section 2 it will be shown that the expansion above is a
valid approximation with an error of smaller order than 4,, subject to a certain
condition discussed at the beginning of Section 2. An approximation to the
characteristic function of X,,,- - -, X, is obtained in Section 2. The formal
inversion of the approximating Fourier transform is given in Section 3, while the
remainder of Section 2 is devoted to estimating the error of the approximation.
Section 4 gives tables comparing the approximation to exact probabilities for the
Kruskal-Wallis test statistic in the case r = 2.

2. The approximation theorem. If A denotes Lebesgue measure, then write
y(§) = A{x: Fkwith |x — a,| <{}.

Albers, Bickel and van Zwet assume that the following condition holds for some
¢ >n2logn.

ConpITION (B). 38 > 0 such that ¥({) > 46n¢.

They show, under the conditions 4,, > ¢, 44, < Cn™!, for some positive ¢, C,
that Condition (B) implies the condition below, with 45, replaced by n~ 3, but their
proof can be extended easily to this case. We will assume that these conditions hold

for¢ > A, log 43"

ConpitioN (C). Given ¢’, 3C, 8 depending only on ¢’, such that for any fixed x
the number of indices k, for which |a,t— x — 27| > C{4,,}, for all ¢t €
[c’As3, CAZland all /=0, =1, £2, - -, is greater than &n. Condition (B) is
verified for a number of important special cases in Albers, Bickel and van Zwet
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(1976, page 120 and pages 133 — 134). In most cases 45, is of order n~% and then
the conditions and the bound in the following theorem can be given in terms of
powers of n. If b, » 0, and so As, + 0, the theorem is true but uninteresting.

THEOREM. If Condition (B) (and so Condition (C)) holds for some § >
A2, log A;,! and if for some 3 >¢€ > 0, ¢ < p, then for any n > 0,
|F,(4) = G,(u)| < BA3;™,
where B depends only on m and e.

Proor. The joint characteristic function of X}, - - - , X,,, is
- ir, , .
Xu) = (n!) l2"‘exp{[(n - 1)/n]2[tu1(a(1,1) + o Ha(iy)) e+
+iu(a(iy) + - - - +a(iy))]}

where S* denotes summation over all permutations (igy, * * * 5 ggp 115 * * * » brs,) Of
@, - -, n) and a, = a(i). Using an extension of the method of Erdds and Rényi
(1959) (also given in Rényi (1970 page 460)), this can be written as

fr(u) =[(@7)'B, (P)]—l T JTalk [ije'("f*'"f"»k)] ~Z5y - - - dn,,
where 7y = 4y = 0, v; = [(n — 1)/n]2u and
B,(p) = nlllj_o(p7/5")-

This can be put into a more convenient form by setting n'%xpo = — 2.0
1 -1 .
nTny =1+ n W, ——Elpjj, =+t j=1---,r Then Sy =
Zpt, = 0. Also set 7, = [(n — 1)/n]2 »Jj =0,---,r Then, if f,(£) = f¥(u)

@ 5O = 5 [@mVB(P) | e[Sy ] -

where &, = n hpj + T and the integral is over the region —7m2 <
Y — Yo <mn 2, j=1-+-,r,Zpy =0. The theorem will be proved by means of
a number of lemmas.

Lemma 2.1.  For some ¢ > 0 and (2]1)”)2 = ||7]| <pcb,; !,

| 1£.(8) — g.()] < As,P(ll#])e™ 1,
where P(||t|]) is a polynomial of degree 15,

B) &) = e 1+ 0,() + 0)(),
0,(t) = gszjtjzka,?k,
0.(0) = H[Sptf - 3Sp2) |[Zaate — 3/n] — 2= (28
~5(Zp5) (Sa).
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Proor. The integral in (2) can be considered in two parts. Let f,(¢) = I, + 12,
where Il and 7, contain the integrals in (2) over the regions ||| = (2,2¥; )2
< 2cn? and ) > 2c(n)2 but |y, — ¢ < mn? for allj=1,---,r, respectively,
where we will choose c later. In the sequel 4 will denote a quantity with |#| < 1 and
B will denote a bounded positive quantity depending only on & and r. Consider I,
first and notice that

(@) o (Zpe%)

exp[ 3, log(2 e’ )]

exp[Eklog(l—%ijj + = ijj + = ijj

0
+-§TEJPI|£J"|5)}’
since for all real x
le™ — Sh_o(ix)' /1| < |x["*'/ (h + D).
Since |¢|| <pcb’1, 1] <p2cb'1 for all j=0,1,- - -, r, and when ||¢| < 2cn%

[yl < 2p‘3cn2 forallj=0,1,- -, r Thus we can choose ¢ so that |§,| <3, in
which case the sum of the terms in §, in (4) has modulus less than 1, so

. 1
() Mo (Zpe) = exp| —3Zp3 4% + 211’1 kS "‘EE,-PjEk i

2
—%zk(szjgji) +%02jpj2k|§jk|5 s
since for |x| <3, we have from Taylor’s theorem

log(1 + x) — x + x%/2| < |x].
For any z,
(6) le* — Zh_o2//j!] < |2*1ekl/ (h + 1)L,
so if z is the sum of the terms in the exponent of (5) excluding the first, we have
from (6), taking h = 2,

) 3 1
() Miey(Spe™) = exp(—3Z,p,2:42)| 1 + éiz,.pjzkg,z + 1 ZpZk %
- %Ek(szjéji)z -5(Zp2 j?c)2 + Rie®e|,
where for |£,| <3,
1 1
® Ro| = Izl < 7EpZultul + 7 EpZulbul +1Zu(Zp42)’

; szj2k|§jk|5

< % jpjzk ji
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and an estimate of R, is obtained by collecting terms of z2 and |z|* not written out
1
in (7); noting that, since =,|a,,|* > n~2¢#~?,
h
2k|§jk|h < (Il + I Silagl”
and from the Holder inequality, for 2 < h < 5,
(-h/3 h—2)/3 -
Ay, = Zylaylt < (Ekazk) (2k|ank|5)( 7 = AP,
then considering each term, we have
IRy < A45,P(ly] + |"}'|)’

where P, denotes a polynomial in r + 1 variables of degree 15, with coefficients
depending only on ¢ or r.
To obtain an estimate for /; notice first that, since 5,3,z = = p? + Z,p;77,

) UCXP("% ijEk jk)RleRld‘l’l s dy] < A5n|fexP("%2jpj"’j _Eszj"'j)
X Pyl + |]) d, - - - &

< A5, P(||t])e 3227,

where here and in the sequel, P(x) denotes a polynomial of degree at most 15 with
coefficients depending only on ¢ and r, which may be different at each occurrence
and where the integral is over the range ||y| < 2c¢ni. If the other terms in (7) are
integrated over the range, —oo < |{;| < o0, j =1, - -, r, the integral will be of
the form

(10)  py2m)i [ popy - - - 2] Texp(= 1 pm2)[ 1 + QH(r) + Q3(m)]

where Q¥(7), QF(r) are polynomials to be obtained explicitly below. The difference
between this integral and the integral of the same terms over the range ||| <
2cn%, is less than

Bexp(— cn—1 pjj) < BA,, exp( IEJp, ,2)
As a particular case of (9) and (10), we have, taking ¢ = 0,
g 1, _1
(11) @)B(p) = @m)*[po- - - 2,]72[1+ QF(0) + QF(0)] + O(n~3

where the last term is obtained by considering R, and R, when 7, =0, j =
1, - -, r. Further

1 0 1
exp(~32p7) = exp(=3Zm) (1 +3mZott + (S ) e - 3,208 )
Q¥ (r) = Q1) + 0(4s,) P(ll7l)),

and

01(1) = Q2(2) + 0(4s,) P(l|2])-
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So using these results together with (9), (10) and (11), we have
(12) |5~ exp(=3Zp7)[1 + (1) + QO]
< A5, P(|1]]) exp — (((2n = 3)/6n)= p;t?
< A5, P(|t])e(— 12,8}

for n > 6, where Q,() = Q}(r) — QF(0), Qx() = Q3(r) — Q3(0) + (1/2m)Z p;t}.
For 2 < n < 6, the constant may be adjusted to make this result hold.
Now we will obtain Q,(¢) and Q,(?) explicitly. The terms in (7) can be expanded

to give

p2ide = ”_%szj‘l’;? + 30725 pyrt + Tp1S,al,
SpSth = nTISpyt + 6n7 IS pyt? + 418 p S al,

+3.0,7'3 an
S22 = nTSpu) + a7 o) + () Teak
+2n~(Sp47)(E277) + 4n 7 (S p ) (E 0D E
(T2 = v (Ep) + 7' Cpyd) + (Sa7) ()
+6n " (Zp ) (Epu7) + 207 (Zp4))(Z,07) 2 ek
+6n~ %(2,%%?)(2,1;,.7})2 KB

The integrals involving these terms may now be written down using Lemma 3.2.
After some reduction we obtain

3
(1) = %EJEG?Eka:k
0,(1) = %[6n7'2,(1 - p)7? + Zp1'% ]
. _%[4” 1551 = P — 4nTIS L pptt + (201) S ek
+2n7 2 jpjtf]
_%[9"—12/'1’1(1 =)t} =TS 7 + (Sp8))(2a)
- _ 1
+18n7'5,(1 — p)’? — 18175, p(1 = )] + 3-Z 51}
— 1 4 2 2 4 l 2 2
= ﬁ[szj’j =321 ][zk“nk -3/n] - Z,;(Ejl’j’j

-%(Zp 5‘3)2(2 kar?k)2~
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It remains only to show that for ||¢]| < pcb; !,
(13) || < BAs, exp(—1Z,p,8%).

If ||¥]| > 2cn?, then for some j =0, 1, - -, r, || > 2cn?, and if ||¢]| <peb ",
1

then 4| <p2ch,!, for all j=0,1,--,r. Thus max,,c,l&l >¢c, for k=

1, -+, n Now

IZpe = |22, pp; cos(&y — &)l

Since = pt, =0 and max0<j<1|§jk| >c, [§x — &4l >c for some pair j,j =
0,1, ,r Also | — ol <anZ, forall j=1,---,r, 50 [§ — &,| <27 —c,
unless either ¢ < [§;, — §o,| < 27 — ¢ or ¢ < |§; — x| < 27 — c. So for some
pairj,j/=0,1,---,rc< |£jk - §jfk| < 27 — ¢. Thus

IZ,pe®? < 1 - 2p*(1 — cos(c)).

Now
2 4 2

c c c
7 7%”3

for ¢ < 2. Thus for ||¢|| < pch,! <pcn%, '

(14) o (Z,6™) < e P/3 < exp(— 129,82 — Sp%cn).

Now (13) follows immediately and the lemma follows from (12) and (13).
The next lemma simply gives the formal inversion of g,(¢). It follows as a direct
consequence of Lemma 3.3.

LemMa 2.2. If G,(u) and g,(t) are defined in (1) and (3), respectively, then
G,(u) = pg'Qm)""[[fe g, (t) dt, - - - dt,] dx, - - - dx,

where the first integral is over the region ijjz/ p; <u, 2;x; =0 and the second
integral is over the region —o0 <t < 00,j=1,---,r,2pit;=0.

1 — cos(c) >

The next lemma gives an estimate of the error of the approximation for large
values of u.

LemMaA 2.3. If u > 3(r + 1)(log A3,}), then
|F,(u) = G,(u)| < BAs,.
ProoF. From (1) it is clear that for u > 3(r + 1)(log 45,
l"
1 = G,(u)| < B(log 45,")? *2 exp(—2(r + 1)(log 45,')) < BAs,
Also
: 1
(15) 1= F(w) = P(3,X2/p,>u) < Z,P(1X, >[pu/(r + 1D]?).
From Robinson (1978) we have

(16) |P(X, < 0(£,)7) — Gu(v)] < BAs,
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where
G (0) = ®(v) — ayHy(v)b(v) — a;H;(0)¢(v) — asHs(v)e(v)

for bounded coefficients a,, a5, a5 depending only on p;, where
-1 1 i di
o(v) = ®(v) = 2m)77e72%,  H(0)o(v) = (-1) -‘Z):qb(v)-

Ifo=[u/(r+ 1]z and u > 3(r + 1)(log 45,"), then 10? >3(log 45,") and so
(17) 11 = Gy(v)| < Bds,
Now (15), (16) and (17) imply that

|1 = F,(u)| < Bds,

and the lemma follows immediately.

The following smoothing lemma is of the same type as that used in the one
dimensional case. Its proof is omitted since it is almost identical to the proof of
Von Bahr (1966) for rectangles. It may also be obtained as a consequence of
Lemma 8 of Bhattacharya (1970).

LeEMMA 2.4. Let x and y denote vectors (xp, X1, * * » x,) and (Yo Y15 * * 5 V»)
such that 3;x; = Z,y; = 0. Let Q(x) be a density function, let H(x) = F(x) — G(x),
where F(x) is a distribution function and G(x) is of bounded variation and let

Hy(x) = JrQ(»)H(x +y/T)dy,- - - &,

Let S(y,u) = {x: 2,05 —y)*/p; <u},0<p<1j=0, 1, --,r and if L is
any function of bounded variation, write

L(S(y’ u)) = fS(.V, u) dL.
If 8 = sup, H(S(y, v)) and 8; = sup, Hi(S(y, u)), then

§ < 38; + 3a(G, a/T),
where

a(G,a/T) = sup,[d|G|
where the integral is over the set {x :u—a/T < Z;(% — v /p <u+a/T} and
a is chosen so that

Jso.aQ) &y - B, = 2

We are now able to complete the proof of the theorem. Let F and G, be the
functions in R’ whose characteristic functions are f, and g,. Let

Hy(x) = [QO)[Fi(x +y/T) = Gi(x +y/T)] &y, - - - &,

Then F, () = FJ(S(0, u)), G,() = G, (S, u)). If g(¢) is the characteristic function
corresponding to the density Q(x), then since Zpt =0,

Hp(x) = po '2m) " [r e 2 f,() — g.(D)a(—t/T) dty - - - d,.
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The integral of this over the region S(y, u) is

1
_1, 2" _
PO—I(ZW) 2 f[ ”tt‘” ]2 Jr/2(u”t”)e ij(f;l(t) - gn(t))q(—t/T) dtl Tt dtr’
where J, 5(2) is the Bessel function of order r/2. Write this integral as the sum of

the integrals If, I, I, If and I* which are integrals over the regions ||z <
1 1

(log A5;H7", (og A5;H7' < IItIIl< pebt, peb ' < ||| < peds3, pedss <

l£]l <3pCA3," and ||¢|| > 21pCAs,", respectively, where C is chosen later.
Using the inequalities (see, e.g., Esseen (1945))
J,;(2)z"/* < Band|q(?)] < 1,

and Lemma 2.1, we have, taking ||¢|| = p,
- 1.
(18) IIﬂ < urASnfp<(logA{,,‘)_lpr IP(p)e " dp

< Bu*(log 45,") "4s, < BAs,,

for u < 3(r + 1)(log 45,").
From the inequalities

J,y2(2) < Bforz > Oand|q(?)| < 1,
and Lemma 2.1 again, we have for u < 3(r + 1)(log 43,"),

(19) 13| < 445,207 '™ +"P(p) dp
< B(logA;,')%'ASn
< BALT™,
For peb ! < ||#]| < peAs3, it is clear that
(20) |£.()] < BAsye™ "

since b !> A;5. Further, if [[y| < 2cn? then |y < 2p~3cn? for all j =

= 1 1
0,1,---,r, s0 for k€ K; = {k: |a,| <dA?}, |§k| < 2pT i + picd <%, by
choice of ¢, since || < p%cA 5,% when ||¢|| < pc4 5‘,,%. Then, using the trivial inequal-
ity |2,p; exp i§;| < 1 for k & K, and the estimate from (5) for k € K, we have,
writing X for K,

T 1(Z2e)| < exp( =322 exbi + |Ry)
where R, is given in (8). Thus

. _ _1
21 III",,I(leje'@")I < exp[ —3mn 'ijjtlzjz — N7 E P e kO

155 S kexth + 1 + 1508,
where m is the number of elements in K,. Now

2
1 = 3,a% > Siexak > (n—m)d43, > (n—m)dn".



860 J. ROBINSON

So m > n(d? — 1)/d>?. Also

As, > Zieklagl > d*A5,3, o xak.
Thus
Siex <d™?® and S, xak > 1-—d73
Further
1
IZ kel = |Zrextul < d7'4533,exak < d_4A5_n% < d

Using these results and the inequality |y;4| < 3¢7 + 3¢ in (21), and taking d = 3,
we have

I (Z,76%)| < exp(—3iZp4? —+2p,8?) < BAs, exp(— 200 —32p,8),
since b, ! >A5;' and ||¢|| > peb . Also if |y > 2crlﬁ then for some Jj=
0,1, ---,r, |lpj| > 2ens, Further, if pcb, ! < ||¢|| <pcA5‘,,5 then || <p20A5,,3, for
allj=0,1,---,r. So,if k € K3, maxo;,[éul >1c and so as in (14)
I=pe%* < 1 = 2p*(1 — cos(¢)).
Using this estimate for k € K; and the estimate 1 for k & K%, we have
lHn=l(2jpjei§k)| < e~ Pn/24
since the number of terms in K3 is greater than 3 n. So since ¥ — ol < an? and

1
peb, ! < ||t < peds,3,

(22) |I#| < BAs,.
prcA_‘;,?l < |||l <3pCAg', then |4 >pcA5‘n% for some j =0,1,- - -,r and so
for some pa1r A pcAs,,; since in addition 3 p;t; = 0. Also |f, — | <

(7' +p7 a||g]| < CAsj,l for all palrs J»J'- Thus if Condition (B), and so Condl-
tion (C), holds with { > Ag,, log 43,",

I=pe®? < 1 — 2p*(1 — cos(§CA,"))
for at least n indices k, where § and C are chosen to satisfy Condition (C) for
¢’ = pc. Bounding the other terms by 1, we have, as in the proof of (14),

I (Z,p6")| < exp(—1p%n$2C%452)
< exp(— 3p*C*%(log A5,") )
So
(23) |I¥| < BAs,.

We can choose Q so that g(f) = 0 for ||¢]| > 1 (see for example, Von Bahr
(1966)). Then

(24) IF =0,
if we take T =1pCA4,,".
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Combining (18), (19), (22), (23) and (24), we have for u < 3(r + 1) log 43,',
8r = sup Hy(S(y, u)) < BAI ™.
Further, since G,(x) is the Fourier-Stieltjes transform of g,(#), it is readily seen that
for T =3pCAS},
a(G),a/T) < BAs,.
For u < 3(r + 1)(log 45,"), the theorem follows from Lemmas 2.2 and 2.4 while
it follows for u > 3(r + 1)(log 43,") from Lemma 2.3.

RemArk. Condition (C) is weaker than the corresponding condition of Robin-
son (1978). The method of proof used to obtain a bound for 7§ could be used there
to obtain a weakening of the condition to that given here.

3. Some results for multivariate normal distributions. The purpose of this
section is to obtain some formal results on integrals of densities of multivariate
normal type which occur in Section 2.

Lemma 3.1. If Y, - - -, Y, are NID(O, 1) and 1, is the indicator function of the
set A, then '

1
2T(L + 1)
EY{l(s,vi<ay = __(1“2(1_)—)
2

=0, v odd,

P(x%, <a), v even,

and
2 T(L (v + D)L (s,

r(:)r(z)

v, and v, even,

+l))P(x,2

EYPYy (s,v2<ay = oty < a)’

= 0, v, or v, odd.
PrOOF.
EYlyI{E,Y,?<a} = EU”/ZI( U+V<a)

where U and V are chi-squared variates with 1 and » — 1 degrees of freedom,
respectively. Upon integrating this we have

27T(4(v + 1))
r(z)

for » even and O for » odd. The second result follows in the same way.

EY{I(s,v2<ay = P(x’y, <a)

LEmMA 3.2. Let X; be NID(,p)),j =0, 1, - -, r. Given 3,X; = 0, the condi-
tional frequency function of X, - - - , X, is

[@m)Pop, - - -p,]_% exp(~32,%7/p;),
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where Z;x; = 0. If E, denotes conditional expectation given 2, X; = 0, then if I is a
random variable taking the value 1 when 3 ,X?/p, < a and 0 otherwise and q; = 1 —
Ppi=0,1,---,r,

EXMT = pg;P(x’s> <a),

EX'l = 31;1.2%.2P(x3+4 <a),

EX, X, I = —ppP(x+; <a),

EXPX, 1 = =3pjgpP(xss < a);

EX?XPT = pp(1 = p; — py + 3p2) P(x’sa < a),
EXXPT = —3p’p’(3 — 3p; — 3p; + 5ppy) P26 < @),
E XX} I = 0,if h + kis odd,

Jorj,j =0,1,---,rj#Jj.
Proor. Consider a transformation to Y, Y,, Y,, where Y, =X X Y= X, —
22X, Y, =X, — p,2,;X; + (X, — p,2,X))q,/p,. Then Y, Y, Y, are indepen-

JT

dent with variances 1, p,q, and ¢,(1 — p; — p,)/p,, respectively. Given T X, = 0,
Yo=0and X, = Y,, X, = (Y, — Y,)p,/q,. The results follow by direct applica-
tion of Lemma 3.2.

LeMMA 3.3.  For a function h(t) of (ty, - - - , 8,), let
A(h(D)) = pg'@m)~"[[ fexp(—iZ;t%; — 32,1 )h(e) b, - - - dt,] dx, - - - dx,,

where the first integral is over the region ijjz/ p; <u,2,;x; =0 and the second
integral is over the region —o0 <t < oo,j=1,---,r,2;p;t; = 0. Then

A(l) = P(x’ <u),
AEp1) = m(w),
ACpE) =0,
AZpt’) = 357" —2r = Dy,(w)[1 - u/ (r +2)],
A[(Efjgz)z] r(r + 2y, (w)[1 - u/ (r +2)],
A[(Ep)] = (152571 — 972 = 36r — 15),(w)
X[w?/(r+2)(r+4)—2u/(r+2)+1],
where ,(u) = u¥’e™3*/2'T[(r + 2)].

ProOOF. The results follow by a direct application of Lemma 3.2. For example,
_1
AEp4) =[@0)pop: - - - 2] 2 fexp(— 32,57 /p)[32,(4/p) — 62,(9/7])
+3,(%'/)] dx, - - - dx,,
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from Lemma 3.2, applied to the random variables Y; = X/p,j=01,---,r,
conditional on 3 p;¥; = 0, and with a infinite, where the integral is over the region
=,x?/p; <uand = x; = 0. So from Lemma 3.2 again

A(Zp5) = 2(a7/p)[3P(C <u) = 6P(x%ss < ) + 3P(X'4s < u)]
= 3(2jpj'l - 2r— 1)7,(u)[1 —u/(r+2)]
The other results are obtained in a similar manner.

4. Numerical comparisons for Kruskal-Wallis test. It seems worthwhile to
consider the accuracy of the approximation for small sample values in a particular
case. Tables of the exact probabilities for the Kruskal-Wallis test for » = 2 are now
available in a number of text books, so below we give a table of values of u
throughout the range and give P,, the exact probability ‘that the statistic is greater
than or equal to u, P,, the chi-squared approximation, and P;, the approximation
given in this paper, for four choices of (sq, 5;, 55).

Inspection of the table reveals quite good approximation in the cases (3, 4, 5),
4, 5, 5) and (5, 5, 5), especially in the tails of the distribution for probabilities in
the range .01 to .2. As might be expected the approximation is somewhat inade-
quate for (2, 3, 4). '

TABLE 1
2,349 3,4,5)
u P, P, Py u P, P, P,
111 944 946 954 118 953 943 949
1.000 660 .606 644 1.004 654 .605 633
3.011 256 222 236 3.010 238 222 232
4.000 .149 135 135 4,015 .140 134 134
5.078 .057 079 .070 5.041 072 .080 074
6.000 .024 .050 .038 6.026 .038 .049 .040
7.000 .005 .030 017 7.004 .015 .031 .020
8.030 .005 .018 .009
4,5,5) 5,55
u P, P, Py u P, P, P,
111 958 946 951 .140 954 932 938
1.000 .650 .606 629 1.040 .620 594 616
3.023 229 221 228 3.020 231 221 228
4.043 © 133 133 132 4.020 132 134 134
5.023 .075 .081 076 5.040 075 .081 .076
6.031 040 .049 .041 6.000 044 .049 .043
7.000 019 .030 022 7.020 .020 .030 022
8.006 .009 .018 011 8.000 .009 .018 .011
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