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NONPARAMETRIC PROBABILITY DENSITY ESTIMATION BY
DISCRETE MAXIMUM PENALIZED-LIKELIHOOD CRITERIA!
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A nonparametric probability density estimator is proposed that is optimal
‘with respect to a discretized form of a continuous penalized-likelihood criterion
functional. Approximation results relating the discrete estimator to the estimate
obtained by solving the corresponding infinite-dimensional problem are pre-
sented. The discrete estimator is shown to be consistent. The numerical im-
plementation of this discrete estimator is outlined and examples displayed. A
simulation study compares the integrated mean square error of the discrete
estimator with that of the well-known kernel estimators. Asymptotic rates of
convergence of the discrete estimator are also investigated.

1. Introduction. The problem we consider is that of estimating an unknown
probability density function f given only a random sample X, - - - , X, which
came from this density.

The classic nonparametric density estimator is the histogram. A significant
updating of the histogram approach was made by Parzen [6] and by Rosenblatt [7]
in their theoretical development of the nonparametric kernel estimators. Given a
kernel function K which integrates to one, the kernel estimator at a point x is

(L1 Je®) = K — X)

where K,(y) = (1/h)K(y/h). Observe that fi(x) actually depends on the parame-
ter h. Convergence of fiy(x) to f(x) in mean square error under very mild restric-
tions is well known. Optimal choices for the smoothing parameter 4 as a function
of N can be derived as a function of the true density and its second derivative f”
(which are, unfortunately, unknown). However, there has recently been some
encouraging activity in the area of choosing A, most notably by Wahba [12],
Silverman [9] and the authors [8].

In 1971 Good and Gaskins [2] used a modification of Fisher’s maximum
likelihood principle to propose an optimality criterion for obtaining a nonparamet-
ric estimate of a probability density function. Specifically, given a class of integra-
ble functions H and a nonnegative penalty functional ® defined on H, they
proposed estimating the unknown density f from the random sample X, - - - , Xy
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by the solution of the constrained optimization problem. Thus
(1.2) maximize L(p)
= ZVlog(e(X;)) — ®(¢) subjecttop € H,p > Oand [ = 1.

de Montricher, Tapia and Thompson [1] extended the theory and gave some
important existence and uniqueness results by placing the so-called maximum
penalized-likelihood estimator (MPLE) in the natural framework of a reproducing
kernel Hilbert space. The difficult question of the statistical consistency of the
MPLE has yet to be answered fully.

We begin our study with a brief presentation of two results from de Montricher,
Tapia and Thompson [1] which will be needed in the sequel. Let H(a, b) be a
Hilbert space of functions defined on the interval [a, b]. We denote the inner
product in H(a, b) by { -, - >y. Recall that H(a, b) is said to be a reproducing
kernel Hilbert space (RKHS) if for each ¢t € [a, b] the point evaluation functional
E,: H(a, b) - R defined by E,(f) = f(¢) is continuous.

THEOREM 1.1. Suppose H(a, b) is a RKHS, integration over [a, b] is a continuous
operation and there exists at least one @ € H(a, b) which integrates to one, is
nonnegative and is positive at the sample points X,, - - -, Xy. Then problem (1.2)
with H = H(a, b) and ®(¢) = alp, ¢ )y for any a > 0 has a unique solution.

Let Hf(a, b) denote the Sobolev space of functions defined on the finite interval
[a, b] whose first k — 1 derivatives are absolutely continuous and vanish at a and
at b and whose kth derivative is in L%(a, b). It is well known that Hf(a, b) is a
RKHS with inner product defined by
(1.3) {p, Eps = [oo V(D)D) at.

TueoREM 1.2. If in problem (1.2) we let H = H{(a, b) and &(p) = alp, @)y
for any a > 0, then the solution (maximum penalized-likelihood estimate) exists, is
unique and is a polynomial spline of degree 2k. Moreover, if the estimate is positive in
the interior of an interval then on this interval it is a polynomial spline of degree 2k
with knots exactly at the sample points and with continuous derivatives up to order
2k — 2.

2. Discrete maximum penalized-likelihood estimators. At the present time it is
not computationally feasible to calculate the spline density estimators described in
Theorem 1.2 since complete identification of knot locations is an open problem.
For this reason and others pertaining to numerical efficiency we are led to propose
and investigate the following finite dimensional problem as an approximation to
the infinite dimensional penalized-likelihood problem corresponding to the Sobolev
space H/(a, b).

Let © = (a, b) be a finite interval covered by an equally spaced mesh a =
tyty:* sty =0>b with ., — t, = h. Further let s(-) and p(-) be a simple
function and a continuous piecewise linear function, respectively, defined over the
mesh {#,} and vanishing outside Q. The discrete maximum penalized-likelihood
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estimates (DMPLE) will be of this form. Defining the kth mesh interval to be
I, = [, t,, ) the two estimators are completely determined by their values at the
mesh nodes,

(2‘1) Sk = S(tk), k = 0’ ceeL,m
and
(2.2) pk = p(tk)’ k = 0’ e, m.

We require p, = p,, = 0, so that the linear spline p will belong to Hj(a, b). Note
that it is also continuous on the entire real line. There is no way that we can make
the simple function s a member of HJ(a, b) unless we require it to be a constant
function. However for the sake of convenience we let s,, = 0. It is a straightforward
matter to show that

(23) [s(t) dt = BT s,

(2.4) fop(r) dt = KS77'p,

and

(2.5) s(1) > 0,p(t) 05, >0p, >0, k=0,::-,m
For X;,- - -, Xy € (a, b) consider the following constrained optimization prob-

lems modeled after problem (1.2): (defining s_, = 0)

- 2
(26) maximize L(SO, IR Sm—l) Ellvlog(s(X,)) - ahEg‘[ -——-sk -1 ]

h
lands, >0, £k =0,---,m— 1;

subject to AZg s,
and

— 2
(27) maximize L(py, -+ -, pp-1) = flog(p(Xy) — ahZy| =t |

subject to A27 'y, = landp, > 0, k= 1,---,m — 1.
Solutions to problems (2.6) and (2.7) are called discrete maximum penalized-likeli-
hood estimates. Here we have replaced the Sobolev inner product with a discrete
Sobolev inner product in the penalty terms. The extension of (2.6) and (2.7) to
penalty terms with higher order derivatives is straightforward. A different approach
has been taken by Lii and Rosenblatt [4] who considered a cubic spline estimator.

THEOREM 2.1. The DMPLE defined by (2.6) or (2.7) exists and is unique.

Proor. The proof follows in a straightforward manner from Theorem 1.1 once
we note that any finite dimensional inner product space is a RKHS and that all
linear functionals defined on finite dimensional spaces are continuous.

3. Approximation results. We have proposed the DMPLE as an approxima-
tion to the spline MPLE given by Theorem 1.2 for the Sobolev space Hy(a, b). This
was accomplished by replacing the infinite dimensional problem by the finite
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dimensional problem which arises when we restrict our attention to piecewise
constant (simple functions) or piecewise linear functions defined using a regular
mesh or partition of the interval (a, b). In this section we establish the important
fact that the DMPLE approaches the spline MPLE as the mesh size approaches
zero. Specifically, we prove the following theorem.

THEOREM 3.1. Suppose Q = (a, b) is a finite interval, x,,- - - , xy is a fixed
sample and that data outside Q is ignored. Let h be the size of the mesh used to obtain
the DMPLE guaranteed by Theorem 2.1. Then the simple function DMPLE converges
to the Hy(a, b) spline MPLE ( guaranteed by Theorem 1.2) in the sup norm as h — 0.

ProoF. The proof is quite lengthy and is given in three steps. We will denote a
simple function determined by the regular partition of (a, b) of size A by s,(-) in
order to emphasize the dependence on the mesh spacing 4. The criterion function-
als for the finite dimensional problem and the infinite dimensional problems are

respectively (letting s,(¢_,) = 0)

(3.1) L,(s;) = =Y log(sy(x)) — %zﬁn[sh(tk) - -"h(tk—l)]2
and '
(32) Lo (f) = =i log(f(x)) — afsf (1) ar.

Again, the subscripts m and oo on L indicate the dimension of the problem we are
considering. Let f* denote the quadratic spline MPLE given by Theorem 1.2 for
the criterion functional (3.2) and let s denote the simple function DMPLE given
by Theorem 2.1 for the criterion functional (3.1). The proof of the theorem will
follow from the following three lemmas.

LeMMA 3.1. The quadratic spline f* is infinitely differentiable on (a, b) except for
at most 3N points.

ProoF. We show that f* has at most 2 knots between any two data points.
Suppose that the graph of f* looks like that given in Figure 1. If f* consists of the
solid line then it is easy to show that f* can be constructed using the dotted line so
that it has the same definite integral on [x;_,, x;] and the same log likelihood term
as f* but with a smaller penalty term in (3.2), contradicting the optimality of f*. It
follows from the second part of Theorem 1.2 that if f* was constant and nonzero
on a subinterval of (x;_,, x;), then it would be necessarily constant on all of
(x;_1, x;). In essence this proves the lemma.

LEMMA 3.2. For h > 0 it is possible to construct a family of simple functions s |,
which are piecewise constant on the intervals I, are nonnegative, integrate to one and
have the property that

(33) L,(sp 1) &> Loo(f*) as h—>0.
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]

FiGc. 1

Proor. We actually construct the desired simple function Spe, 5 Let

1
(3.4) sf,h(tk) = Zflkf*(t) dt . k = 0, crr,m — l.

Then su , is nonnegative and integrates to one. From (3.4) we see that for some
¢, € I, we have

(3.5) spon(X) = f*(cr), Vx € I,.

Now by Lemma 3.1 we can apply the fundamental theorem of calculus to obtain
(3:6) F(x) = fMa) = L) d.

Using Cauchy-Schwarz on (3.6) and using (3.5) leads to

(3.7) 174G = s 4D < W2 1S* | gy

It follows from (3.7) that su ,(x) — f*(x) as & — 0 for all x € (a, b). This shows
that the log likelihood term in (3.1) converges to the log likelihood term in (3.2) as
h — 0. We now consider the convergence of the penalty term. From (3.5) and the
mean value theorem, there exists X, € I, such that

B8 el a) — 5 alhd) P = ZLE — L E)T

= [2f*(e)® dt + O(h).

The second quality follows from a straightforward application of the fundamental
theorem of calculus. We have ignored the finite number of intervals where f*’ has a
discontinuity, since for the penalty term this contribution goes to zero with A. This
proves the lemma.

LEMMA 3.3. For h > 0 it is possible to construct a family of HJ(a, b) functions f}
which are nonnegative, integrate to one and have the properties that
(39) 1/ sl?”sup -0 a h—0

and
(3.10) L,(s¥) — L,(ff) >0 as h - 0.
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PrOOF. Recall that s is the unique maximizer of (3.1). Thus L,,(sy) > L,(s»,4)

for all h. From Lemma 3.2 we know that L,(sp ;) = L (f*) as h—0. We know
from Theorem 1.2 that L_(f*) > — oo, implying that
(3.11) |s¥(t) — s¥(te_ )| >0 as A — 0.
This follows from the fact that if (3.11) did not hold, then from (3.1) L,,(s5) would
become unbounded as # — 0. This would be a contradiction. We construct fff €
H{(a, b) by considering the piecewise linear function from the points (¢4, 0) and
(t,,» 0), interpolating the simple function s at the midpoints of the intervals 7, and
then dividing this function by 1 — ¢ where & = h(sy + s5,,_1)/4 and s, = s5(%)-
Now & = O(h) since s, — 0 and s,,_,; —0 as & — 0 by (3.11). With this choice ff is
nonnegative and integrates to one. A straightforward calculation shows that

(3.12) f2fr(e) dt =

1
(1= (5o + Sm-1)] {B2aolon = 500" =353 + 5h0) s

hence the penalty terms coincide as # — 0. By adding and subtracting the (unscaled
interpolating) function (1 — ¢&)f¥ and using the triangle inequality we have

(3.13) I — Sk llswp < supg|s¥(s) — s¥(t-))| + € sup fif.

Since s < 1/h by constraint (2.3) and using the definitions of f} and e, & - sup I
< (s + 5,,_1)/4(1 — €) which vanishes as # — 0. Thus (3.11) and (3.13) imply (3.9)
since ¢ = 0(4). Combining (3.9) with (3.12) gives (3.10) and the lemma is estab-
lished.

ProOF OF THEOREM 3.1. By their respective optimality properties

(3.14) Lo(ff) < Lo(f*)
and
(3.15) L,(sp,5) < L, (sp).

Combining (3.3) from Lemma 3.2, (3.10) from Lemma 3.3, (3.14) and (3.15) it
follows that
(3.16) L (ff) - L (f*) as h—0.

From [1] the functional L=- L., is uniformly convex on the subset of Hy(a, b)
which consists of the nonnegative functions which integrate to one. It follows from
the definition of uniform convexity (see page 83 of [5]) that there exists C > 0 such
that for all 0 < B < 1. Thus

(3.17) BL(fY) + (1 — B)L(f*) — L(BfF + (1 = B)*)

> CB(1 — BIfF — f*Il nyca o)
By the optimality of f* (3.17) implies
(3.18) L(f) = L(f*) > CB( = BISE — Il ey
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Coupling (3.16) with (3.18) we see that
(3.19) I — ffluyasy >0 as h—0.

Now convergence in Hy(a, b) implies sup norm convergence. Therefore, from (3.9),
(3.19) and the triangle inequality we arrive at

(3.20) ls# = fllsup — O as h—> 0.
This proves the theorem.

COROLLARY 3.1. Under the conditions of Theorem 3.1 the piecewise linear
DMPLE (guaranteed by Theorem 2.1) converges to the Hy(a, b) spline MPLE
(guaranteed by Theorem 1.2) in Hy(a, b) as h — 0.

Proor. The proof consists of making the appropriate modifications to the
proof of Theorem 3.1.

4. Consistency of the DMPLE. In practice, the consistency question is over-
shadowed by the variances of the small sample properties of an estimator (pro-
vided, of course, that asymptotic consistency has been theoretically demonstrated).
Furthermore, with limited prior information, poor estimates of the density f in the
tails are expected due to the presence of few sample points there. If f has infinite
support or unknown finite support, then it is easy to show by an appropriate
modification of Theorem 4.1 below that the DMPLE defined on the interval
Q = (a, b) converges to the truncated density f(x) defined by

f(x)= Ax) x E€Q

4.1) 1-—c¢
= 0 x&Q
where
e = 1— [of(x)dx.
Thus we shall assume that f has known finite support (a, b) in view of this remark.
Given a sample X, - - - , Xy € (a, b), let
4.2) ¥, = number of samplesin I, =[#, 4, ,),

k=0,---,m—1
Then 37_4y, = N. Using (4.2), problem (2.6) (see also (3.1)) becomes

s m— X sm
(4.3) maximize L(sg, * * * 5 Sp—1) 20 le log(s,) — Zzo (s%—1 — sk)2

subject to A3 "ls, = lands, > 0, k=0,---,m — L

In the sequel we shall slightly abuse notation and denote the solution of (4.3) also
by (S * * * »S,_;) and the simple function representing this solution by s,. We
now prove the following important consistency result for the simple function
DMPLE.
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THEOREM 4.1. Let X, - - , Xy be a random sample from a continuous density f
of bounded support (a, b). Consider the simple function DMPLE with the number of
partitions given by m = [cN?] where ¢ > 0,0 < ¢ <31 and [d] denotes the integer
closest to d. Then for x € (a, b), lim,,_, _s,(x) = f(x) almost surely (a.s.).

PROOF. In order to emphasize the dependence on N we write m(N) for the
number of mesh nodes. In this case the mesh spacing will be 4 = hy = (b —
a)/(m(N) — 1) = O(N ~9). We have from the theory of Lagrange multipliers that
there exist multipliers A, pg, - - - , p,,_, such that

0L(s;) ) 1 )
(4.4) T+>\a—si[2ksk—z}+/.¢,.—0,1—O,---,m—1
and y;s;, = 0.
For our problem, (4.4) becomes
(4.5) M+?+2—:82Si+k=o, i=0,"’,m_1
where
(4.6) 8% = 5., — 25, + 5,_,.

Multiplying by s,, summing over i, and using the first constraint in (4.3) we obtain
the following expression for the Lagrange multiplier A:

(4.7) A = —Nh — 2a37l5,8%,
Substituting (4.7) into (4.5), our necessary conditions upon dividing by N, become

[ v; 2a 200
(4.8) W + 'N'—S + mszsi — h — sz_olsja%} = 0.

Before solving for s;, let us approximate the third and fifth terms in (4.8). From the
integral constraint we know that s; < 1/4 so that

(49) 8% = o(5)
and
m— 1
(4.10) | STls6% = o( ?).
Using the bounds (4.9) and (4.10) in (4.8) and dividing by /& we obtain
, ) .
(411) N_hs, -1+ 0(-1\-/?) = 0.

Now as N — oo we are interested in the behavior of the quantity v;/ Nhs; corre-
sponding to the interval containing the particular x in question. In this context the
subscript i is very misleading, since the dependence is actually on x, & and N.
However, recall that 4 is itself a function of N. We therefore introduce more
meaningful notation. Let [x: N] denote the mesh interval of length 4 containing x
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for a particular value of N and let »[x: N] denote the number of samples in [x: N].
In order to complete our proof we need the following lemma which describes the
behavior of the random variable »[x: N]/Nh.

The proof of the following lemma is due to Silverman and is significantly shorter
than the authors’ original proof.

LeMMA 4.1. Under the conditions of Theorem 4.1

v[x: N]

Ny = f(x) as.

th —00

ProoF. Define the triangular array of random variables

I[x: N](X)) — p[x: N]

Nj hN
where I[x: N](-) denotes the indicator function of the interval [x: N] and
(4.12) p[x: N] = [ixm A1) dt.
Now {Yy;:j=1, - -, N} forms an independent sequence for each N. Also I[x:

N](X)) is a binomial random variable with expectation given by p[x: N]; hence,
EYy; =0, and EYZ; = p[x: NI(1 — p[x: N])/h%. Let

Sy = 2.\ Yy
To prove the lemma, we wish to show that Sy /N — 0 almost surely.

If T is a B(n, p) random variable, it is easily shown that E(T — ET)* < 3pn®.
Hence, by the fourth moment generalization of Chebyshev’s inequality, for any
e >0,

(4.13) P{Sy| > Ney < 2L ]

. € —_—
o N2hiet

From the mean value theorem, p[x: N] = hyf(¢y) where £y € [x: N]. Combining
this fact with (4.13) leads to

W) _ 5 1
N2h3e* O(N 2= 3")
since ¢ < §; hence the Borel-Cantelli lemma implies
Sy V[x: N] p[x: N]
N Nhy Ry
Since f is continuous, (4.12) implies p[x: N]/hy — f(x), completing the proof of the
lemma.
We now return to the proof of the theorem. Replacing »; with »{x: N] and s, with
s5,(x) in (4.11), observing that Nh* — oo, recalling Lemma 4.1, and lettmg N - o0
in (4.11) we obtain

¥=1P{|Snl| > Ne} < ZR.,

—- 0 as.

5,(x) > f(x) as,

which proves the theorem.
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REMARK. If in Theorem 4.1 we consider a discrete kth order derivative in the
penalty term of our criterion functional, then the analogous consistency result
would require 0 < ¢ < (2k + 2)~'; however, numerical work indicates that this
requirement is an artifact of the method of proof and not necessary for consistency.
This parallels the conjecture that the MPLE is consistent.

S. Numerical implementation and Monte Carlo simulation results. In this sec-
tion we investigate the small-sample properties as well as the asymptotic properties
of the discrete maximum penalized-likelihood estimator. In presenting the numeri-
cal solution for the DMPLE we chose the continuous piecewise linear solution
rather than the simple function solution for its smoothness and derivative ap-
proximation properties. We also chose the penalty functmnal using second dif-
ferences to approximate second derivatives.

Specifically, given x,,- - -, xy, an interval (a, b), a positive scalar a, and a
positive integer m we let
(5.1) h=(b—a)/m,
(5.2) t, = a+ ih i=0--,m,
(5.3) Py =Po =Py = Pns1 =0

and solve the m — 1 dimensional constrained optimization problem
(54)

. . a m
maximize L(p,, - * * , pp_y) = Zi-jlog p(x;) — ;;Ek-o[PkH = 2p; +Pk-1]2
subject to hAZ7-!p, =1 and p, >0, k=1,---,m— 1,
where
Prar — Px
t)= + (-t tE|(, ¢
(5.5) p(t) Dy A ( ) [k k+l)
=0 t €[t 1,).

A computer program has been written to solve problem (5.4) and is contained in
the IMSL Library [3]. This program uses a modification due to Tapia [10], [11] of
Newton’s method. This modification takes advantage of the special banded struc-
ture of the Hessian matrix of the Lagrangian functional for problem (5.4). Thus the
amount of work turns out to be O(m?) instead of the expected O(m>) per iteration.
Notice that the sample size N enters only in evaluating the gradient and Hessian
and not in the matrix inversions. No initial guesses for Newton’s method are
required. Rather a bootstrap algorithm is employed. First the problem is solved for
m =7, an easy problem to solve. This estimate provides initial guesses for m = 11,
then for m = 19, and so on. The bootstrap algorithm takes advantage of the
stability of the DMPLE with respect to & for a fixed choice of a.

The choice of a is very important and more difficult than the selection of the
mesh spacing k. Asymptotically, of course, any positive value gives consistent
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results. For finite sample sizes, however, the choice is critical. The & parameter is
analogous to the kernel scaling parameter 4 in (1.1). Unfortunately, (as is
customary) we have also denoted the mesh spacing by 4. Hopefully, this will not
lead to confusion in the sequel where we will be discussing the roles of the penalty
parameter a and the kernel scaling parameter 4. For a fixed finite sample there are
values of a and 4 which give the “best” approximations for the DMPLE and kernel
estimates, respectively. For values smaller than “best”, the corresponding estimates
peak sharply at the sample points. On the other hand, values larger than “best”
correspond to depressed and oversmoothed estimates. For the kernel estimator,
asymptotically, “optimal” choices for 4 are known; however, knowledge of the true
(unknown) density is required to evaluate this ». Wahba [12] has given some insight
to this problem. Also, Scott, et al.,, [8] have developed an iterative data-based
approach for estimating # which only requires the prior knowledge that the
unknown density has a square integrable second derivative. An interactive ap-
proach is often used where the smallest value of a (or 4 for the kernel estimator) is
chosen that reveals fine structure without “too much” oscillatory behavior (con-
sistent with prior knowledge).

To compare the approximation properties of the DMPLE with those of the
kernel estimators we performed a Monte Carlo simulation. A “reasonable” value
for a was chosen for each density (e.g., a« = 10 for the standard Gaussian and
a = 30 for the Gaussian mixture). For comparison purposes we weighted the
simulation study in favor of the kernel estimator by using the optimal choice of 4
(since in this case the optimal 4 is known). The highly popular Gaussian kernel
K(x) = (2',7)‘% exp(— x?/2) was used, although kernels with finite support enjoy
computational savings. The optimal choice for the scaling parameter 4 as a
function of N in this case is

U
.

[K(x)? dx }; V-
[fsz(x) dx]sz”(x)2 dx

Random samples were generated on the computer [3] and the integrated mean
square error (IMSE) evaluated numerically over the truncated interval (—5, 5). The
Monte Carlo technique is to report the mean and standard deviation of the IMSE
of 25 generated samples from a fixed distribution for a fixed sample size N. We
also calculated the kernel estimate (using the “optimal” choice of 4) for the same
random samples and evaluated the IMSE numerically in the same manner. These
results are given in Table 5.1.

We used Monte Carlo methods to estimate the rate of convergence of the
DMPLE as a function of N, using Gaussian random samples. When plotted on
log-log paper, the values of the estimated IMSE given in Table 5.2 fall on a straight
line with slope —.773. The actual regression analysis gave

W) = {

loglo(IMSE) = _.773 logloN - .873
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TABLE 5.1.
Monte Carlo estimation of integrated mean square error of DMPLE and Gaussian kernel estimator.*

Sampling Sample Gaussian
Density Size DMFPLE Kernel
N, 1) N=25 .010 .016
) (.008) (.012)
N@©, 1) N =100 .0037 0050
(-0021) (:0027)
N, 1) N =400 .0015 .0021
(.0008) (.0009)
Bimodal N=25 .010 .009
(-003) (:007)
Bimodal N =100 .0036 .0036
(-0007) (:0020)

*Each row represents the mean of the IMSE for 25 trials of the DMBPLE and the Gaussian kernel
estimator based on 25 random samples from the density in question for fixed N; the standard
deviation is given in parentheses; a = 10 was used for the N(0, 1), @ = 30 was used for the bimodal
and the bimodal density is the mixture .SN(—1.5, 1) + .SN(1.5, 1).

TABLE 5.2. I

Asymptotic rate of convergence for DMPLE based on the N(O, 1) sampling density.
Sample size Number of samples Estimated IMSE
25 50 .0110
100 100 .00347
400 50 .00151
800 50 .000843
1000 50 .000545
2000 84 .000360
= DMPLE =10
-=-N(0Q,1),N=100 r4 «— DMPLE «=30

-—= 1/2N(-3/2,1)+1/2N(3/2,1), N=100

Probability Density Value
o

L 2 L 1 1 1 L J L L I 1 1 1 [ N S 1
4 -3 -2 -1 0 1 2 3 4 54 -3 -2 -t O I 2 3 4 5
— — b
h h

Fi6. 2. DMPLE’s with a = 10 and 30 for unimodal and bimodal samples respectively .
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with a sample correlation of r = — .996. Thus in this case the IMSE ~ O(N )
which is about the same as that for kernel estimators, namely O(N ‘%) as is
discussed in [6]. See Figure 2 for DMPLE examples of selected random samples.
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