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IMPROVING ON INADMISSIBLE ESTIMATORS
IN CONTINUOUS EXPONENTIAL FAMILIES
WITH APPLICATIONS TO SIMULTANEOUS

ESTIMATION OF GAMMA
SCALE PARAMETERS!

By JAMES BERGER
Purdue University

A general technique is developed for improving upon inadmissible estima-
tors of natural parameters (or integral powers thereof) from continuous ex-
ponential families. The technique is to reduce the problem to the study of a
differential inequality. Typical differential inequalities are presented and solved.

Explicit results are given for the simultaneous estimation of gamma scale
parameters (and their inverses) for a variety of natural loss functions. Surprising
behavior is observed for many of the estimators improving upon “standard”
estimators.

For squared error loss (and any continuous exponential family) it is shown
explicitly how to establish inadmissibility of an estimator and construct im-
proved estimators.

1. Introduction. There has recently been considerable interest in improving
upon standard estimators in multivariate estimation problems. This interest has
been stimulated by the development of two powerful tools of analysis in Stein
(1973) and Brown (1979). In Stein (1973) the use of integration by parts is shown
(for the multivariate normal distribution) to lead to a relatively simple method of
finding estimators which improve upon the usual estimator (the sample mean)
under squared error loss in three or more dimensions. This technique was shown to
apply to general continuous exponential families by Hudson (1978). It results
essentially in the representation of the risk of an estimator, 8, as the expected value
of an expression involving § and its derivatives but not the unknown parameter.
Indeed if X = (X,, X,, - - -,X,) has density f(x|0) with respect to Lebesgue
measure on R”, and the loss in estimating (@) by 8(x) is L(8, y(0)), the repre-
sentation for the risk, R(8, 8), of § is of the form

R(8, 8) = EyL(8(X), ¥(8)) = JL(3(x), $(0))f(x|0) dx = [D(8(x))f(x|0) dx,

where 9 (8(x)) involves § and its derivatives (but not #). In comparing an estimator
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546 JAMES BERGER

8*(x) with a “standard” estimator 8%x), it may happen that A(x) = D (8*(x)) —
D (8%x)) < 0 for all x. Then clearly

A*(9) = R(8*,0) — R(8° 0) = E,[A(X)] <0

for all @, so that 8* is better than §°. The problem of improving upon an estimator
89 can thus be tackled by trying to find a solution, §*, to the differential inequality
A(x) < 0.

The importance of the study of such differential inequalities has been empha-
sized by Brown (1979), who developed a number of general techniques which use
them in proving inadmissibility. (Stein (1965) had earlier indicated their impor-
tance. See also Brown (1971 and 1975) and Berger (1976a, 1976b, and 1976¢).)

This paper has two purposes. The first is to explain, for the general exponential
family model, how the problem of improving upon 89 can be reduced to studying a
differential inequality A(x) < 0, and to discuss and give solutions for the types of
differential inequalities that are usually encountered. In so doing, a constructive
general theory is developed for improving upon most inadmissible estimators of the
natural parameters of an exponential family under squared error loss.

The second purpose is to apply the results to interesting special cases, for the
most part problems involving simultaneous estimation of gamma scale parameters
(or their inverses). More precisely, assume that X = (X, - - -, X,) is observed,
where the X, are independent Gamma (a;, 6;)(a; > 0, 0 < §; < o0) random vari-
ables, having density (on (0, o))

f(x16,) = 0ia,xlga,—l)e—x,a,/r(ai).

Although one example involving the estimation of 6 = (8,,0,,- - -, §,) will be
given, we will for the most part discuss the estimation of the 6,7'. (The 4,”' are
generally of greater interest, being, for example, multiples of the variances if the X;

are chi-square.) Assume the loss in estimating (8%, 6,"',- - -, 6,”") by 8(x) =
(8,(x), - - -+, 8p(x)) is of the form
(1.1) L(8,8) = 32_,6(1 — 8,(x)6)’.

The “standard” (best multiple of x;) estimator of §,"! for the loss 6;"(1 — 8,0, is

82(x) = x;/ (& + 1).
It is thus natural in the simultaneous estimation problem to seek improvements
upon 80(x) = (8;)(-")’ IR 6‘?()6))

Four choices of m in (1.1) will be considered: m = — 2, m= — 1, m =0, and
m = 1. The choice m = — 2 corresponds to the usual sum of squares error loss (for
estimating the 6,~'), while m = 0 gives the standard invariant loss. The case
m = — 1 will be considered because it is the simplest of the four possibilities to
deal with (and hence easiest to understand). It is also of intrinsic interest as a
compromise between the losses given by m = — 2 and m = 0. The case m = 1 is
examined because it leads to a different type of conclusion than the others. Indeed
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it will be seen that the cases m < 0, m = 0, and m > 0 have considerably different
solutions.

Our results seem to contradict three fairly prevalent beliefs about simultaneous
estimation. These beliefs are that

(i) Improvement is usually obtained only in three or more dimensions;

(ii) Improvement is obtained by shrinking 8° towards a point (or at least a
subspace);

(iii) Somehow the improved estimators are really just taking advantage of some
similarities between the coordinates (say in some empirical Bayes fashion).

We will show that, actually, improvement is usually obtainable in just two or
more dimensions. (Only the case m = 0 requires at least three dimensions.) Also,
the improved estimators need not shrink 8° Indeed to improve upon 8° when
m < 0 it seems necessary to expand 8 ° towards infinity. Finally, an example will be
given which seems to contradict (or at least makes meaninglessly vague) tenet (iii)
above.

It should be noted that certain previous results also required other than three
dimensions for inadmissibility. Clevenson and Zidek (1975) and Tsui and Press
(1978) are especially of interest, as they showed that in simultaneous estimation of
Poisson means, 8° is often inadmissible for two dimensions. Other results, such as
Berger (1976a), Berger (1976b), and Zaman (1977), required more than three
dimensions for 8° to be inadmissible. These results have generally been considered
atypical, however, with three dimensions being considered standard. It will be seen
in this paper that two dimensions are really “typical”, and that three dimensions
are needed only in special situations.

In Section 2 the basic tools for obtaining the differential inequality in continuous
exponential families will be developed, and applied to the gamma problems. In
Section 3 the most commonly encountered type of differential inequality will be
presented, and a general solution obtained. Section 4 gives explicit solutions of the
differential inequalities (and hence the estimators better than 8°) for the gamma
distribution and the four losses of interest. Section 5 gives a formulation of and
solution to the problem of improving upon an inadmissible estimator 6° for
arbitrary continuous exponential families and squared error loss. Section 6 consists
of some concluding remarks.

2. Obtaining the differential inequality. Let X have density (with respect to
Lebesgue measure on (a, b), a and b being possibly infinite)

f(x18) = B(6)#(x) exp{ —Or(x)},

where #(x) > 0 and r(x) is absolutely continuous on (a, b) with r'(x) = d—‘i’(x)
> 0.
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LeMMA 1. Assume that h(x) is a real valued function satisfying
(1) s(x) = «(x)h(x)/r'(x) is absolutely continuous on (a, b),
(i) f5|s'(x)|e %™ dx < o0, and
(ili) lim,_ [s(x)e % ™] = lim,_,[s(x)e %] = 0 for all 9 in the natural parame-
ter space.
Then

Eo[0h(X)] = E,,[s’(X)/t(X)].
PrOOF. Note that

Eg[0n(X)] = B(8)[o[ s(x)][ 0r'(x)e~ "™ ] dx.
An integration by parts establishes the lemma. []

This is essentially the result in Hudson (1978), though stated here in a somewhat
different way.

LEMMA 2. Assume a finite indefinite integral, g(x), of [t(x)h(x)] exists, in the
sense that

g(r1) — 8(y2) = f(x)h(x) dx.

Assume that h satisfies

) E,[|A(X)|] < o0, and.

(i) lim,_ [g(x)e ™ *™] = lim,_,,[ g(x)e "] = 0, for all 8 in the natural param-
eter space.
Then for § # 0,

E[67'h(X)] = E,[r'(X)g(X)/1(X)].
PROOF. Again, just integrate by parts. []

For any loss which can be written in the form L(8, ) = Z0™h,(x) (the m; being
integers and the #; functions of §), the above lemmas can be used to represent the
risk R(8, 9) as the expectation of a quantity involving only functions of x and not
. If m; > 0 for a particular term, Lemma 1 is applied repetitively (namely m;
times) to the term. If m; < 0, Lemma 2 is applied |m;| times to the term. To obtain
a differential inequality in the latter case, it is necessary to express all quantities in
terms of the last indefinite integral, g, obtained. An example of this will be seen
shortly.

Let us now return to the gamma problem discussed in Section 1, and derive the
desired differential inequalities. The following corollaries to Lemmas 1 and 2 will
be needed. In these corollaries, X 1 * X, will be independent Gamma (a;, 6,)
random variables. For a function A(x) : R? — R, let

h O (x) = %h(x) (H'O(x) = h(x)),
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providing the partial derivatives exist. Finally, define
5;,/(%) = Zhnolf) @ T Ox{ar EIT DRI x),

where a<” = (@ — I)a —2) - - - (@ — I)(a’® = 1), and (J) =,!/[i'( — i)'].
COROLLARY 1. Assume m is a positive integer and h(x) : R” — R satisfies for all
0<x, <oo(k#i)andj=0,1,---, m—1,
() s, ;(x) is absolutely continuous as a function of x; on (0, c0),
(@) EflsP01X %] < o0, and
(iti) lim, _o[s; (x)e™**] = lim, _, [s; (x)e” %] = 0 for all 0 < §; < 0.
Then

E[87h(X)] = Eyf 5, (X)XO=%] = S7_o(7)aimPE,[ KO0 X%,

ProOOF. The proof will be by induction on m. By condition (ii) it will always be
possible at all stages to reverse orders of integration so that the inner integral of
E,[67h(X)] is over x;. Lemma 1 will then be applied to this inner integral with
t(x;) = x*"Yand r(x) =

Form =1, Corollary 1 is just a restatement of Lemma 1, noting that

s¥8(x) = =35, o(x) = [h(x)x(“ 1)] = A'O(x)x=D + (o, — 1)h(x)x%=2D
=5, .(x)-
If the corollary is true for (m — 1), one has that
Ey[67h(X)] = Ey[ 05, im—1) (X)X~ ].
It can be checked that — a 8;, m—1)(X) = 5; ,(x). Hence applying Lemma 1 to the

function s; (, _ ,(x)x'~ "") and using the induction hypothesis gives the desired
result. ]

COROLLARY 2. Assume a finite indefinite integral, g(x), of [x{*~ Vh(x)] over x;
exists, in the sense that for all 0 < x,, < oo(k #1i)

gixp Ximp Yy Xt xp) = 8(Xp Xl Yy Xt xp)
= [Jx{*~ Vh(x) dx,.

Assume also that
(i) Epllh(X)|] < oo, Eyl| g(X)| X' ~¥] < 0, and
(i) lim, qf g(x)e 4] = lim, [ 8(x)e %] =0 for all 0 < 6, < co.
Then
Eo[ 6, lh(X)] = Eo[ Xi(l_a‘)gi(X)]-
PrOOF. Rearranging orders of integration so that the inside integral is over x

and applying Lemma 2 (with #(x) = x®~P and r(x,) = 1) gives the desired result.
0
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We now derive the differential inequalities for the gamma problems.

Case 1. L(8,8) = 2%_,0,7'(1 — 8,6)* (i.e., m = — 1). This case gives the sim-
plest differential inequality and so will be considered first. Note that

Ey[67'(1 = 8(X)8)’] = 67 = 2E,[ 8(X)] + E,[6,87(X)]-
Applying Corollary 1 with m = 1 and A(x) = §2(x) gives
E,[0,82(X)] = koo TRE[ X*DhG(X)]
= Ep[ (o, — )X, 7183(X) + 25(X)80(x)].

(The conditions needed for the corollary to apply will be satisfied by the estimators
we ultimately choose. The verification will be easy and so no further mention of the
conditions will be made unless they impose some restrictions on the solutions.)
Hence

(2.1)
R(8,0) = EgL(8(X), 0) = Z2_,6,7" + E,{37_,[ —28(X) + (a; — 1)X;7'82(X)
+28,(X)81"(x)]}.
For a competitor §*(x) to §°(x) (recall §°(x) = x;/(a; + 1)), define
A*(9) = R(8*,6) — R(8%9).

A simple calculation shows that R(8° 0) = S2_,[(a; + 1)6,]"". Writing

8(x) = (1 + ¢(x))x;/ (e + 1)
and using (2.1) gives

2X2/D(X) X02(X)
A*(0) = Ep{ 32| —————=(1 + ¢,(X)) + =2, ———= }.
() (] 1 (ai+1)2 ( ( ) '(ai+1)
Hence if we can find a solution ¢ = (¢, - - -, ¢,) to the differential inequality
2x26/M b2 2x2¢ D .
(22) A_(x) = 1;=1M+ g=li?1£2 5_1M<0
(o, + 1) (o; + 1) (o, + 1)
for all 0 <x; < o0 (i =1, -, p), with strict inequality for some set of x with

positive measure, then A*() < O for all # and 8* is better than §°.

Case 2. L(8,0) =Z%_,(1 — §6,)* (ie., m = 0). This is the natural scale in-
variant loss function for the problem. Using the usual log transform, this problem
could be transformed to a location parameter problem. It is easier, however, to deal
directly with the untransformed problem.

Noting that

Ey[(1 - 8(X)8)’] = 1 - 2E,[6,8,(X)] + E,(826%(X)),
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Corollary 1 can be applied to give
Ey[0,8(X)] = Sh_oa" B[ §/P(X) X V]
= Eo[(ai - DX~ lsi(X) + 8ii(l)(X)]’
and
202 _ 2 2\ (2—k) 2 i(k) y-(k—2)
Eo[ 6;5; (X)] = Z—o(o Ea[{ai (X))} x| ]
= B[ (o = D(e, = DX,7%82(X) + 4(e; — DX,7'8,(X)8/V(X)
+ 28,(X)8!P(X) + 2{8,.f<1>}2].
Defining 8§* and A* as before, a calculation then shows that
A*(9) = Ep{Ao(X)},
where

x4/ D(x) P ap(x)

xi¢i(x)¢ii(l)(x)
S w1 T e T

(23) A(x) =222 =17 (g + 1)

xi2 i2 i i1 2
+22€=1m [¢‘i( )(x) + ¢i(x)¢'i(2)(x) + {¢i( )(x)} ]

A solution ¢ to Ay(x) < 0 is thus sought.
CASE 3. L(8,0) = 32_,0(1 — 8,0) (i.e, m = 1). A fairly lengthy calculation
using Corollary 1 shows that A*(8) = Ep{A,(X)}, where
i(1) _ 2 i(2)
Ii,=lai¢i (x) +2’i,-lai(ai D¢ (x) +4 ,i,_lxi‘ibi (x)
(o + 1) (e + Dx; (o + 1)
i 2 i
o;,(x)pM(x) +63P xi[ {8/(x)} +¢i(x)¢i(2)(x)]
(@ + 1) (@ + 1)
x2[ 6 (x) + 30/ V(%) P(x) + ¢;(x)p/®
+a37, 2[9/9(x) + 36/ V(x)e; (2 ) + 9P|
(o + 1)
Case 4. L(8,0) = 3F_,6,"%(1 — 8,6,)* (i.e., m = — 2). This “standard” squared

i=1"i

error loss turns out to be the trickiest to work with because Corollary 2 must be
used. Since

@5)  E[672(1 - 8(08)] = 672 - 2E,[678(0] + E[s3(X0)],

(24) A(x) =23

+637_,

1

Corollary 2 can be applied to obtain
E,[67'6(X)] = E)[ X{'~¥g(X)],
where g,(x) is an indefinite integral (over x;) of [x{*~"8,(x)] as defined in Corollary
2. Note that
8,(x) = &' P(x)x{'",
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so that (2.5) can be rewritten
(2.6)
Eg[0i_2(l - 8i(X)0i)2] =67+ Eo{ —2g(X) X~ + [ gii(l)(X)X:‘(l_ai)]z}-

(Note that it is important to write all quantities in terms of g; so as to obtain a
differential inequality.) Defining 8*(x) = (a; + 1)™'x,(1 + ¢,(x)) as before, g* as
the corresponding indefinite integral, and

h(x) = (a; + 1)g*(x) — x,‘(a'+l)/ (o + 1),

a calculation using (2.6) shows that

X-2
-2 2 _ -2 _ i
Eo[ 9, (1 - ai*(X)oi) ] =0 E, (o, + 1)2 }
2| —2mx) 2HO(X)
|+ DX (o + 12X

[KOX) )"
(o + 1)°X2%~D }
Defining A*(8) as before, it follows that
A(0) = E,{A_x(X)},
where
hi(x)

(27) A_z(x) = —23F W

i=1

i1 i(1) 2
l—h‘!()(L P, [h'} (x)] )
(a + 1)°x(==? T (o + 1)2xHamD
Again, a solution to A_,(x) < 0 is sought. Note for future reference that

(2.8) hii(l)(x) = (o, + l)gi.i(l)(x) - xM= (o + l)ai*(x)xi(a'_l) — x = xfip(x).

+237_

3. Heuristic solution of the differential inequality. An examination of the
differential inequalities A, (x) < O (see (2.2), (2.3), (2.4), and (2.7)) shows that a
wide variety of expressions can be encountered. Finding a general solution seems
very difficult. On the other hand, it often happens that only a few terms of the
differential expression are important, in the sense that they determine the basic
nature of the solution. Indeed, in the expressions (2.2), (2.3), and (2.4) it will be
seen that the first two terms are dominant. ((2.7) is a special case that will be
discussed later.) These first two terms are of the form

(3.1 Py 1";”",(l - m)‘i’ii(l)(x) + 2P bix m¢'i2(x)-

Rough heuristic arguments can be given which show, for any m, that the differen-
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tial expression A, (x) resulting from the application of Corollaries 1 and 2 should
behave as in (3.1). The basic idea is that multiplying a term of the loss by 6, or §,!
is roughly equivalent to multiplying the corresponding term of the differential
expression by ¢,/ x; or x;/c;, respectively. No attempt will be made to make such
heuristics precise, since (3.1) will be used simply as a guide in choosing solutions to
the actual differential inequalities encountered.

The expression (3.1) is quite specific to the distribution and losses involved. It is,
however, a typical special case of the more general form

(32) A(x) = ‘P(x)zlx‘,-lvi(xi)q’ii(l)(x) + 21:‘,=lwi(x)¢i2(x)'

Many simultaneous estimation problems encountered will have an expression of
this form dominant in the resultant differential inequality. The functions 1, v;, and
w; can be quite arbitrary, except that usually w(X) > 0 and Y(X) > 0 with
probability one. This will be assumed in the following analysis.

To find solutions ¢ to the inequality A(x) < 0 (A(x) as in (3.2)), let g,(x;) be an
indefinite integral of [1/v,(x;)] (so that g/(x;) = 1/v,(x;)), and find numbers b > 0,
d; > 0 and B; such that

wi(x)g,?(xi) <K< =L
(b + 2, dg(x)1%) :

(It is assumed that , v;, and w; are such that this can be done.)
THEOREM 1. If p > max{B;} and 0 < ¢ < (p — max{ B,;})/(pK), then
- cgi(xi)

(33) ¢i(x) = i=1--- ,P
b+ 22, d| gi(x)|?

is a solution to A(x) < 0.

ProoOF. Let D denote the denominator in (3.3). Clearly
4’.’“”(’") = —c¢cD _lg;(xi) + ¢D _2gi(xi) 4 gi(xi)l(ﬁi_l){Sgn[ 81()‘,')] } 8/(x)

= —cD 7' /v(x) + cD 7B, d| g/(x)|A/ v x,).
Since, by assumption,

p wi(x)¢i2(x)_ Czl » wi(x)giz(xi) C%IK
) ( ) <

O I
it is clear that
AGX) = Y[ B2 10,(IP(x) + 2w (x02(x)/46)]
<Y @D ' + cDISE, B, dl g (x)|P + 2 Dk
<Y(x)[—p D'+ cD '"max{ B} + ¢*D ~'pk]
= —cy(x) D™'[ p — max{ B} — cpk] <O. 0
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It is generally desirable to choose the B; in the above theorem as small as
possible to maximize the improvement in risk and minimize the number of
dimensions needed for improvement. The d; are arbitrary positive constants often
chosen for convenience, as will be seen in the following examples. The constants ¢
and b will typically have to be adjusted when dealing with the actual differential
inequality (of which A(x) is, hopefully, an approximation) to take care of nondomi-
nant terms. Examples of this will be seen in Section 4. Note finally that the upper
bound on c¢ in the theorem is rather crude, and in specific situations much better
bounds can usually be obtained. This will also be seen in the following example.

EXAMPLE 1. Let Y(x) = 2, v(x;) = a;x{' ™™ and w,(x)= b,x,;™ (a; > 0 and b, >
0), and assume a solution to A(x) < 0 is sought for 0 < x; < 00,i =1, - - p.
(This, recall, is (heuristically) the situation for the gamma problem.) Clearly

1
8(x) = [———dx;
e e =2

x"/ (ma;) ifm =0

a 'log(x,) ifm=0.

Also
wi(x)g2(x,) byx;” " .
= > 7 ifms#0
V)b + 31 dlg(o)#)  2(ma)’[b + Sd{x"/ (ma)}?]
b(log )’ .
ifm=

© 2a2[b + Sda Jlog x#]

This quantity is bounded if 8; > 1 (m # 0) or B; > 2 (m = 0). Since small B; are
desirable, this suggests choosing B; = 1if m # 0 and B, = 2 if m = 0. Theorem 1
then gives solutions to A(x) < O0ifp > 2 (m#0)orp > 3 (m = 0).

A better bound for ¢ than that in Theorem 1 can be obtained if d, = b,/(ma;)
(m # 0) or d, = b,/ a,(m = 0) are chosen in (3.3). A direct calculation like that in
Theorem 1 then shows that

Ax) < ——2¢(p=1=¢c/2) ifm %0
[b+ =2_,b,xm/ (ma,)’]

—2c(p—2—-1c¢/2)

S > 2 ifm=0.
[b + Z4_,b(log x,)°/ a; ]
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The conclusion is that A(x) < O for

—cx"

ma[b + $2_bx"/ (may)’

(B4  p(x)=

fm+#0,b6>0p>20<c<20p-1

_ —c(log x;)
a b+ 3f_,b(log x,)*/ a7 |

ifm=0,b6>0p>30<c<2p-2).

In the gamma problem it will be estimators §*(x) = (a; + 1) 'x,(1 + ¢,(x)), with
the ¢, as in (3.4), that will be shown to be better than §°.

Several interesting observations about these estimators §* can be made. First,
P = 2 seems to be the standard minimal dimension in which improvement upon §°
is possible. Three dimensions appear needed only for the loss corresponding to
m = 0. (It can indeed be seen, from Brown and Fox (1974), that 6° is admissible
for p = 2 when m = 0.) Also of interest is the form of the estimators, themselves.
The “correction” to 82(x) is

8*(x) — 8°(x) = (o + 1)_1xi¢'i(x)'

If m > 0 this correction is always negative (i.e., §° is pulled towards zero); if m < 0
the correction is always positive (i.e., §° is pulled towards infinity!); while if m = 0
the estimator corrects §° negatively if x; > 1 and positively if x; < 1 (i.e., pulls §°
towards (a; + 1)7"). This indicates that shrinking towards a point seems to be the
exception rather than the rule, and that usually improved simultaneous estimators
will pull to, or away from, a boundary of the parameter space. It also seems
reasonable to believe that the need for p = 3 when m = 0 is due to the fact that the
estimator can’t decide which way to correct §°.

For m > 0, the ¢;(x) in (3.4) are very similar to correction factors obtained by
Clevenson and Zidek (1975) for estimating Poisson means A; under the loss
2. A8, — N)*. For m = 0, the ¢, are similar to the correction factors in Peng
(1978) for estimating Poisson means under, the loss =7_,(8, — A,)%. The ¢, form =0
are also related to “Stein type” estimators, as can be seen by letting y;, = (log x,).
(This is to be expected from Brown (1966), since the transformed problem induced
by the log transform is a location vector problem when m = 0.) For m < 0,
however, the estimators determined by (3.4) seem completely novel. When m =
—2, for example, (corresponding to standard squared error loss) the suggested
estimator for 6, is

X; c/x;

o) = (@+1) e, + 1)afb + =2

j=1

_2 _ M
b(24) "x; 2]
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EXAMPLE 2. Assume X, - - -, X, are independently JU(0,, 1) (i.e., normal with
mean 6, and variance 1), and that it is desired to estimate § = (6,, - - - , §,) under
loss L(8, 8) = =2_,(8; — 6,)%. It can easily be calculated using Lemma 1 that if
8(x) = x; + ¢,(x), then

R(8,0) = p + E{232.161V(x) + 20.197(x)}.
(This result was obtained by Stein (1973).) Noting that §°(x) = x has risk R(8°, 9)
= p, it is clear that an improved estimator will have been found if a solution to
(3.5) A(x) = 232161V (x) + 22 197(x) <0

is obtained. This is of the form (3.3) with Y(x) =2, v(x;) =1, and w(x) = 1.
Calculating

g(x) =/

dx; = x,,

1
v(x;)
and using B, = 2 as suggested by Theorem 1, the indicated solutions to (3.5) are

o(x) = —ex/ (b + =xP).
A direct calculation gives that these are indeed solutions for » > 0 and 0 <c¢ <
2(p — 2). Note that p > 2 = B, is required as indicated by Theorem 1. The above

choice of the ¢, gives rise to a standard “Stein estimator” for a multivariate normal
mean.

ExaMpLE 3. In the previous two examples, the differential inequality involved
similar terms. To emphasize that this need not be so, we consider an interesting
combination of the two previous examples. Indeed consider the differential in-
equality

2 2
(36)  A(x) =31, [2610(x) + $2(x)] + (7253_1)7"’3“)(") * ?qui()g'

(These are the dominant terms arising from the simultaneous estimation of two
normal means under squared error loss and one normalized gamma mean under
loss  ~'(1 — 89)%.) Even though the third coordinate terms are quite different, the
solution given in Theorem 1 to A(x) < O is still valid. Indeed a calculation shows
that for b > 0 and 0 < ¢ < 2 solutions to A(x) < 0 are given by

— CX;
3.7 $(x) = i ifi=1or2
b+ x2+ x2+ (a+1)7/x,
+ 1)
elot 1)7/xs if i = 3.

b+ x2+x2+ (a+1)/x,

The implication of this is that in seeking improved simultaneous estimators, it does
not matter what problems are combined. More will be said of this later.
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4. Results for the gamma family. Using the results of Sections 2 and 3, we now
proceed with a rigorous analysis of simultaneous estimation for the gamma
problem and the four losses of interest.

Case 1. L(8,0) = =2_,0,"'(1 — 8,0)". By the results of Section 2, an estimator
better than 6° will have been determined if (2.2) can be solved. The heuristic
solution to (2.2) is given in (3.4), namely

c(o; + 1)2/ Xi
b+ZF_ (o + 1)3/xj
(m=—1,a,=1/(a; + 1)%, b; = (; + 1)). Noting that
—c(a; + 1)°x? R G 1)’/ x?

@n o(x) =

$10(x) = ; - <0,
b+ 2+ 1)/%5  (b+ 3+ 1)°/x)
it is clear that
2
A_y(x) =23F_ . — M(x) + =2 al X(x
1 ](i+1)2¢ () ]( +1) ()
+ 23> __)i'z__ t(l)( )¢(x)
e + 1) :
x2? ) X;
<23P_ ——¢iD(x) + 2E_ — o}(x).
i=1 (ai + l)z‘p (x) l(ai + 1)4’ (X)

But this is the basic expression which was analyzed in Example 1 of Section 3. The
conclusion is that A_(x) < 0 for the solution (4.1) with b > 0and 0 < ¢ < 2(p —
1). Thus a better estimator than 8° forp > 2 is

X, c(a; +1)
—— (1 + ¢(x)) = (6 +1) " p43e_(a+ 1)/

8*(x) = ( + 1)

This estimator can easily be shown to satisfy the conditions of Corollary 1 (which
was used in the development of A_,(x)). Natural choices of b and ¢ are » = 0 and

c=(p-1D.

CaSt 2. L(§,0) = =F_,(1 — §,8)% It is now necessary to find a solution to
Ag(x) < 0, where Ay(x) is given by (2.3). The solutions suggested by (3.4) for the
first two terms of (2.3) are

" o —c(oy+ 1)log x)
(42) (%) b+ Z2_a(e; + 1)(log x,)°

(g =1/(y+ 1), m=0, and b; = a;/(; + 1)). Using this choice in (2.3) and
defining, for convenience, D = b + 2 05(e; + D)(log x)2 the analysis in Appen-
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dix I shows that

=

)

(43) Ag(x) < -—ZCD_I[{p —2-S(a+ 1) =373 [Say/ (0, + 1)]

- (c/z){l +2p/b + 16/ (27bp)

+b_%[4p + 3{a(a; + 1)}_1]%}]

Equality can hold only if all x; = 1. Hence we have a solution (with probability
one) to Ay(x) < 0, providing

2(p ~2 - 3(a + 1) = 35"¥[Za/ (& + D]}

(44) 0<c< .
1+ (2p/b) + (16/[27bp]) + b™2[4p + S{a(e, + 1)} ']

1
2

By choosing b large enough, it is clear that a solution always exists providing
p>2+3(a+ )7,
which if «; > 3 will be satisfied for p > 3.
For c satisfying (4.4) (note b > 0 is necessary), the estimator improving upon &°
is
;+ 1)1 ;
(o + 1) b + Za,(a; + 1)(log x;)

This estimator essentially shrinks towards (a; + 1)~! (attained when x; = 1). To
achieve shrinkage towards a point v;/(e; + 1), simply replace (log x;) above by
[(log x;) — (log ¥,)]. It is easy to check that none of the calculations leading up to
(4.3) are affected by this change. Hence such an estimator still improves upon §°,
and allows shrinkage towards a priori suspected values of 4,7 .

A final observation is that §*(x) should clearly never be allowed to be negative.
One method of preventing this is to truncate the estimator at zero. Alternatively, b
could be chosen to ensure that §*(x) is never negative. Indeed, using Lemma 1 of
Appendix I it can be checked that

1
c(a; + 1)|log x| < c(1+ a7
b + Za;(a; + 1)(log xj)2 262

9

so that choosing b > (c?/4) (1 + 1/min{q,}) will suffice.

Case 3. L(§, 8) = =2_,6,(1 — 8,6, It is desired to find a solution to A,(x) <
0, where A,(x) is given by (2.4). The solutions suggested by (3.4) for the first two
terms of (2.4) are (choosing b =0, a; = a;/(a; + 1), and m = 1)

—c(o; + )x;/
(4.5) o,(x) = 7

j=1

a;x;
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(It will be convenient to choose the d; in a manner somewhat different than
suggested by (3.4).) In order that the resultant estimator satisfies the conditions of
Corollary 1 of Section 2 (so that the derivation of (2.4) is valid), it is necessary to
assume thato; > 1,i=1,---,p.

Defining d, = (o; + 1)(a; + 2)(o; + 3)/a? and D = 2f_1dx;, the analysis in
Appendix II shows that for the ¢, in (4.5), A;(x) satisfies

46)  Af(x) < 2cp—l{[p — 1 - 4/min {a;} + 4/ (Sat)]

_ (0/2)[1 — 6{S(a; + 1)(e; + 2)/ (a; — 1)} "

i

W

—24(=[ (o + 1)(o; + 2)(e; + 3)]
The ¢, in (4.5) are thus solutions to A,(x) < 0 for
(4.7) 0<c
2[p - 1 - 4/min {a;} + 4/ (Sa)]
1= 6{S(a + 1)(o+ 2)/(e; — 1)} " = 24(Z[ (e + 1)(e + 2)(e, + 3)]

<

Wl

)—3
(It can be checked for a; > 1 that the denominator above is always positive.) To
have a solution we thus need

p>1+4[1/min {} - 1/(Za)].
Ifa >4(=1,---,p), it follows that solutions will exist when p > 2. If the o;
are all equal, the numerator in (4.7) can be rewritten (p — 1)(1 — 4/[pa]), so
solutions will exist for p > 1 and p > 4/a. Thus a = 3 will suffice to ensure the
existence of solutions forp > 2.
The estimator improving upon §° is

8i*(x) = i l) (1 _

(o +

C("‘i + l)xi/ai )
S2_(a + 1)(e; + 2)(a; + 3)x,/a? )

As before, this estimator should be truncated at zero (if necessary) to prevent
possible negative values.

Case 4. L(8,0)=3r_,07%(1 — 8,.0,.)2: This case requires a different technique
of analysis, due to the fact that Corollary 2 of Section 2 was used to derive A_,(x)
in (2.7). The difficulty is that we can’t work directly with the ¢,, but instead must
deal with the functions 4,.

A natural approach is to choose ¢; as suggested by (3.4), determine the A, from
the ¢;, and see if A_,(x) < O for this choice. Unfortunately, the analysis becomes
too difficult and an alternative approach is needed. One that suggests itself is to try
and choose the A; so that A_,(x) is relatively easy to deal with. Such a simplifying

choice is
h(x) = (o + 1)’ x{%~ Vh(x),
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where 4 is a function to be determined later. For this choice, (2.7) reduces to
(48) A_y(x) = —4ph(x) + 2Zxh'V(x) + Z(a, + 1)2[ A D(x)]?

+ 3(a? = 1)’ x7%%(x) + 2h(x)S(a; + 1, — 1)x 'R O(x).

Using (2.8), we obtain by a straightforward calculation that
(49) ¢,(x) = x7*hiV(x) = (a; + 1)’(a; — 1)x;7%h(x) + (a; + 1)*x,7 B D(x).
The heuristics of Section 3 suggest that ¢,(x) should be as in (3.4), i.e.,
cx;?
b+ Zdx?]
The first term on the right-hand side of (4.9) is similar to this if
h(x) = c/ (b + =_1dx7%)

is chosen. For this choice of A, (4.8) becomes (letting D denote the denominator
of h)

A_,(x) = —4pcD ~' + 4cD ~23dx? + 4¢*D ~*S (o, + 1)°dXx6

qbi(x) = 2a,.[

+c*D 723 (o - 1)°%72 + 4¢2D 33(o; + 1)X(o; — 1)dx™*
< —4peD "' + 4¢D ! + 4¢*D 23 (o + 1)%x,72

+2D 725 (a? — 1)’ x72 + 4¢*D ~28(a; + 1) (o — 1)x,72
= —4(p — DeD ™' + D "33 (a; + 1)*x,72

If d, = (a; + 1)* is now chosen, it follows that
A_y(x) < —eDY4(p — 1) — c}.
The given A is thus a solution to A_,(x) < O for
0<c<4(p-1).
Clearly p > 2 suffices to give a solution.
Using (4.9) the estimator better than §° can be calculated to be

8 (x) = G,-—)i—l)(l + ¢i(x))

X c(a — 1)x! 2¢(e; + 1)°x,73

= T .

(s + 1) [b + E(aj +1) x; 2] [b + E(l‘lj + 1)4xj—2]2
For this estimator and the corresponding 4;, it can be checked that the conditions
of Corollary 2 of Section 2 (needed to derive A_,(x)) are satisfied. Note that for

large a; or large p, the third term of §* is likely to be considerably smaller than the
second term (which was the correction factor derived from the heuristics).
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5. Simultaneous estimation under squared error loss. Usually the heart of a
theory lies in methods and examples, which are what the last three sections
concentrated on. It is possible, however, to construct an elegant general theory,
using the results in Sections 2 and 3. This will be demonstrated here for the
simplest situation—squared error loss.

We will seek an improvement upon an estimator §° (which could be any
estimator) in the general continuous exponential family setup. Thus assume X =
(X, - - -, X,) is observed, where the X; are independent with densities

J(x|0,) = B{(6)t(x;) exp { —Or(x;)}
with respect to Lebesgue measure on R'. Assume it is desired to estimate § =
(8, - - -, 8,) under loss

L(3,0) = 32.,(5 — 6)"
Using Lemma 1 of Section 2, it can be shown that (under the appropriate
conditions)
R(3,0) = E,[ L(8(X), 0)] = 24,6 — 257, Eg[ 0,5(X)] + =%, Ey[ 57(X)]
HX)E(X) | 8I0(X)  8(X)r(X)
wW(X)r(X,) — r(X) (r(x,))?

=3P_02 - 23°_\E,

i=1

+32_ B[ 82(X) |-

Writing a competitor to 8° (componentwise) as

(5.1 8*(x) = 8%(x) — gi(x)e,(x),
a little algebra then gives that
(5.2)

A(9) = R(6*,0) — R(8°%9)

2¢,(X)g(X) [ ¢¥(X) t(X) "'”(X.')
N ”[ (%) { a0 O G TR }]
(X))o
vy 31, 2D 1 52 g (X)q»?(X)}

To simplify this, define 5(x) as an indefinite integral (with respect to x;) of
[82(x)r{(x,)], and let
(53) q(x) = r/(x;) exp {s5,(x)}/#,(x;)-
It is easy to check that the first term on the right-hand side of (5.2) is then Z€ro, So
that
A(0) = E[A(X)],
where

A(x) = Z5.,2q,(x)e {D(x) /ri(x;) + Z2.,1g7(x)b7 ().
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To find an estimator 8* better than §°, we seek a solution to A(x) < 0. Providing

(5.4) gi(x) = 1(x)h(x;)

(without loss of generality assuming that 7(x) > 0) this is exactly the problem
solved in Section 3 (with Y(x) = 27(x) and v(x;) = h(x;)/r/(x;)). The answer
found there was to calculate the indefinite integrals

_ 1 _ ri(x;)
(5‘5) gi(xi) - fv,'(x,') dxi - fh,'(x,') dxb
find constants b > 0 and S; such that (fori =1, - - -, p)
47(x)g’(x;) _ (x)h(x;) gl (x:)

< K< o0,

[2r(x)][5 + Z2_1lg(x)IB]  2[b+ 2 g(x)I5]

and use (for p > max{ 8;} and ¢ > 0 small enough) functions of the form
- cgi(xi)

b+ 301d)g(x)|®

(5.6)

(5.7) ¢(x) =

where the 4, are convenient constants. (Implicit in all these calculations are certain
conditions on the functions involved; namely the existence of all necessary func-
tions, derivatives, and integrals, and the conditions of Lemma 1 (Section 2) as
applied to A(x) = §%(x) and A(x) = 8§*(x) = 82(x) — q(x)¢;(x),i =1,- - -, p. No
attempt is made to write down general sets of conditions, since verification in
specific instances is usually very easy.) Some examples of this technique should
prove enlightening.

ExaMPLE 1. Assume the X; are Gamma(e;, 6) with o, >2 (i=1,---,p).
(Note we are now trying to estimate the 8, themselves, not the §,7!.) Here r/(x,) = 1
and f£(x;) = x~ V. Consider the “standard” (i.e., best multiple of x,”') estimator
defined by §°(x) = (o; — 2)x,”'. A calculation using (5.3) shows that s,(x) = (a;, —
2)(log x;) and gy(x) = x;~'. As in (5.4) and (5.5) define 7(x) = 1, A(x,) = x,”!, and

2(x ()
hy(x )
It is easy to check that (5.6) is satisfied for 8, = 1 (i = 1, - - -, p). Hence solutions
to A(x) < 0 are given in (5.7) (for small enough ¢ and p > 1). Indeed, choosing

¢(x) = —ex?/ (b + 22_1x7),

a simple calculation verifies that A(x) < 0 providing b > 0, p > 2, and 0 <c¢ <
4(p — 1). The estimators improving upon 8° are thus given (componentwise) by

8*(x) = 8,'0()‘) = g(x)i(x) = (o — 2)x,7 " + ex;/ (b + 2;,;1)92).

EXAMPLE 2. Assume the X, are 9U(6;, 1), so that r[(x)= — 1 and #(x,) =
exp{ — x?/2}. Assume

= [x;dx; = x2/2.

8°(x) = x — xo(|xP),
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where g is a real valued function. Then
s(x) = [ = 8%(x)dx; = = x7/2 + N(|x[") /2,

where A(z) is an indefinite integral of ¢(z). (Assume that A exists for all 0 < z <
00.) Hence by (5.3)

g:(x) = —exp{A(|x]*)/2}.

This is of the form (5.4) with 7(x) = exp{A(|x|?)/2} and A(x;) = — 1. Hence define
ri(x;)
hi(x;)
It is now necessary to find b6 > 0 and B; such that (fori =1, - -, p)
()R8 (x)  _ exp(A(IxP)/2)x?
2[b+ 32, g(x)IF]  2[b+52,Ix/"]

J

g(x) =/ dx; = [(1)dx; = x;.

<K< o

(5.8)

Assuming this can be done, estimators better than 8° are (componentwise)

(5:9) 82(x) = 8%(x) — qu(x)9(x) = x; — x,9(|x]") + exp{A(|x[*) /2}$,(x),
where the ¢, are given by (5.7) (for appropriate ¢) and p > max{ 8,}.
From Lemma 1 it is easy to check that the conditions needed for this analysis are

(5.10) (i) 8°x) and g,(x)¢,(x) are absolutely continuous in all coordinates; and
(i) Epl|X;8(X)| + |8 (X)[] < 0, and

Egl| X,||g(X)e(X)| + |g/(X)p(X) + ¢/P(X)g(X)|] < oo,
fori=1,---,p.

It remains only to check (5.8). A more convenient bound to work with can be
obtained by noting that for reasons of symmetry is is desirable to choose all
B; = B. Note also that

(5.11) min{1, p ~#/2} < 32_,(|x|/Ix])? < p.

Recall that for (5.7) to be a solution it is necessary to have p > max{ §8;} = B, so
from (5.11), it follows that for any feasible 0 < 8 < p,

K, (p)Ix|? < 20.1xl? < plx|?,
where K,(p) > 0. Noting also that summing over i in (5.8) does not qualitatively

affect the bound (if each term is bounded the sum is, and if the sum is bounded
each term is), it follows that a bound equivalent to (5.8) is

exp{A(|x[) /2}|x]?
bKy(p) + |x|
where K,(p) > 0 and K5(p) > 0. Since A(2) is finite and continuous for 0 < z < oo

(the finiteness by earlier assumption), it is clear for a fixed p that the above
expression can be unbounded only as |x| - oo (if b > 0). The verification of

< K3(p) < o0,
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inadmissibility thus reduces to showing that
(5.12) lim,_, z"~#/?exp {A\(z)/2} < oo.

Note that to do this it is only necessary to know A(z) as z — oo.

EXAMPLE 2(a). 8%x) = (1 — d)x (d < 1). Here ¢(z) = d so A(2) = [@(z)dz =
zd. Clearly for 0 < d < 1, (5.12) cannot be satisfied for any B. (This indicates the
admissibility of 8° for this choice of d, a well-known result.) If d < 0, (5.12) is
satisfied for B8 = 0. Hence choosing ¢(x) = — cx;, it follows that 6* in (5.9)
improves upon 8° for appropriate c. (The conditions in (5.10) are easy to verify.)
This, of course, is well known also. If ¢ = 0, (5.12) will be satisfied for 8 = 2. This
corresponds to the basic situation in which Stein estimators improve upon 8%(x) =
x. If ¢ > 1 the conditions in (5.10) will be violated (though 8° is clearly inadmissi-
ble), so the method will not work.

EXAMPLE 2(b). 8%x) = {1 — a/(d + |x|)}x. Here ¢(z) = a/(d + z), so A(2)
= [@(z)dz = a log(d + z). Clearly

lim,_ 2z~ #/exp{\(z)/2} = lim,_ z0~#/D(d + z)*/* = lim,_ z(+2/2= B/

This is finite (and hence (5.12) is satisfied) for 8 = (a + 2). Recalling that this
leads to an improved estimator only for p > 8 = (a + 2), this means that 8° is
inadmissible if a < (p — 2). (Again the conditions in (5.10) are easy to check.)

If one were solely interested in proving inadmissibility in Example 2, the results
of Brown (1971) would apply (in for the most part greater generality). The nice
features of the approach in Example 2 are that it is easy, and that it is constructive,
with an explicit improved estimator being determined. Note that this method is not
just for “simultaneous estimation”, in that it applies to one-dimensional problems
also.

Unfortunately there are certain inadequacies of the method. The calculation of
the g; and g;, and the verification of (5.6) can be analytically difficult in some cases.
Also, the improved estimators obtained can be unwieldy and are in no sense
necessarily optimal improvements.

6. Conclusions and generalizations. The results of the preceding sections pro-
vide support for the statements made in the introduction. Improvement upon §°
was most commonly obtainable in two or more dimensions, with only Case 2 of
Section 4 and the standard normal situation requiring at least three dimensions.
Also, in Cases 1 and 4 of Section 4 and Example 2 of Section 5 the improved
estimators, 8*, corrected 8° by shifting towards infinity, a rather surprising phe-
nomenon. Finally, consider the following example, for which it seems difficult to
conceive of any intuitive Bayesian or empirical Bayesian explanation of the “Stein
effect”.

ExXAMPLE 3, Section 3 (continued). Example 3 involved the analysis of the
differential expression (3.6), which arises as follows. Assume X, and X, are
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independent 90(6;, 1) random variables and it is desired to estimate (,, §,) under
the loss [(8, — 8,)* + (8, — 8,)*]. The standard estimator §2(x) = x,(i = 1, 2) is
known (James and Stein (1960)) to be admissible. If a competitor §*(x) = x; +
&,(x) (i = 1, 2) to (82, 89) is considered, Example 2 of Section 3 shows that

2

2 [2610(x) + ¢/(x)]

i=1
is the integrand of the difference in risk between 8* (i = 1, 2) and 8§°(i = 1, 2).

If (independently) X, is Gamma (a, 8;), and it is desired to estimate 1/6, under
loss 8,7 '(1 — 8,8,)% it is known that 8(x;) = x,/(a + 1) is admissible. (Hodges
and Lehmann (1951).) For a competitor 8(x) = (a + 1)7'x;(1 + ¢4(x)) to 8(x),
the analysis in Case 1 of Section 4 shows that the integrand of the difference in risk
between 8%(x) and 8;(x) is bounded above by

2(a + 1) 7 x3030(x) + (o + 1) x393(x),
providing ¢3V(x) < 0.
Letting 8* = (8%, 8%, 8%), 8% = (87, 85, 83?), X = (X}, X5, X5), 0 = (6, 05, 05), and
assuming that ¢3(’(x) < 0, it follows that in estimating (6,, 6,, #,"") under the
overall loss [(8, — 8))* + (8, — 6,)* + 6,7 '(1 — 8,0,)%),

A(8) = R(8*,0) — R(8° 0) < Ej[A(X)],

where A(x) is given by (3.6). The solutions to A(x) < 0 which are given in (3.7) can
be shown to satisfy all necessary conditions of the derivation provided 4 > 0.
Hence an estimator better than 8°is (for b > 0,0 < ¢ < 2)

X
6¥(x) = x; — i 3 ifi=1o0r2
b+ x2+ x2+ (a+ 1)°/x,

X3 cla+1)

= + 3 ifi =3.
(a+1)  p4+x2+x24(a+1)/x,

The implications of this are interesting. First, two completely unrelated prob-
lems, one involving a two dimensional normal mean and one a gamma scale
parameter, can be combined to obtain an estimator improving upon admissible
estimators in each separate problem. Secondly, the improved estimator treats the
coordinates quite differently. In the first two coordinates, §%(x) = x; is shrunk
towards zero, while for the last coordinate, 89(x) is shifted towards infinity.

This example will be very difficult to explain using any Bayesian, empirical
Bayesian, or other intuitive arguments. The point is not that such arguments are
not useful or enlightening in other situations, but that the basic Stein effect
obtainable in simultaneous estimation appears to be a more basic and general
phenomenon.

The explicit results obtained concerning simultaneous estimation of gamma
parameters are rather scattered throughout the paper. Therefore, these results are
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summarized in Table 1. Recall that the “m™ loss functions are £6,"(1 — §,4,)>. The
estimators given in the table are those which were shown, under the indicated
conditions on ¢, b > 0, p, and the a,, to have smaller expected loss than the usual
best invariant estimator (which is (o, — 2)/x; for the first loss and x;/(e; + 1) for
the other losses).

TABLE 1
Improved estimators for gamma parameters
Loss Estimator (coordinatewise) c P
a — 2 ex?/ (e, — 2
6 - 6, (’X )(1+ A 2)), O<c<4p—1), p>2(fa>2)
Z [6 + =x7]
me1 N P ol + Do, casin@7), p>2(fe >4
’ @+ D\ [Zo (e + 1)(a + 2, + 3] ) " “
X, c(a, + 1)log x, . )
m=0, @+ 1- == | c(and b)asin (4.4), p > 3 (ifa; > 3)
4 [6 + Za,(a, + 1)(log x,)]
2
X, c(a, + 1)7/x,
me=—1 z ;1)(l+ ] )/3' , O<c<2p—1) p>2
L [6+2(a, + 1) /x)]

m= —2,

2 6
= 1)(a, + 1)7/x2 2c(a, + 1)°/x}
% (He(a, e+ 1Y/ 2e(ay + 1)/ ) o<c<dp-1,  po2

(o + 1D [6+2(a + 1)/5] 6+ 3(a + 1)"/52]

A number of questions remain concerning the actual application of the estima-
tors in Table 1 to practical problems involving simultaneous estimation of gamma
parameters. One such question is whether or not an improved estimator can be
found which will work well for several or all of the losses considered. Unfor-
tunately, the drastic differences between the estimators that were obtained for the
different losses indicate that hoping for a positive answer to the question may be
somewhat optimistic.

A related and useful generalization is to weighted losses of the form

6.1) L(3,0) = 22_,4.0"(1 — 8,6,

where the g; are positive constants designed to reflect the relative importance of the
various coordinates. There are two possible methods of dealing with such a loss.

The first is to include the g; in the differential expressions A(x), and then solve
A(x) < 0 along the same lines as before. The second method of dealing with the g,
is simpler, and so is used here.

This second method is discussed in Berger (1979), and involves a decomposition
to similar subproblems. Begin by ordering the g;, say so that g, >'gq,- - - > -
Consider the subproblem of estimating (,”', - - -, 6,”") under loss ¥/_,8"(1 —
8,0, and let 8Y(x,, - - - , x,) be an improved estimator found in Section 4 (with
p=jandx = (x, - -, x;)). If j = 1 or the a; are such that no improved estimator
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was obtained, let §? = 8% = ((a; + 1)7'x,, - - -, (o + 1)7'x;). Finally, define
fori=1---,p,andj=1,---,p,
B = i) <i

=(4— g+0/a ifj >4

where g,y is defined to be zero. Berger (1979) then proves that an estimator
better than 8° in the original problem with loss (6.1) is given coordinatewise by

8+(x) = 30, B8P (),

j=1
providing that in at least one of the subproblems, 8’ is not identically equal to
8%, (This method was originally developed by Bhattacharya (1966), in a problem
involving simultaneous estimation of normal means.)

Another problem of interest is that of the incorporation of prior information. In
simultaneous estimation of normal means, it has been observed (see Berger (1980)
and Berger (1979)) that to obtain significant practical improvement upon 8° it is
usually necessary to incorporate prior information. In the simplest case, this can be
accomplished by shrinking 8§° towards an a priori “most likely” parameter value. It
is, unfortunately, not clear how such prior information can be incorporated into the
gamma estimators 8*, except for Case 2 (m = 0) in which shrinkage towards an
arbitrary point is possible. Perhaps a broader class of solutions to A(x) < 0 is
needed, allowing a solution corresponding to possible prior information to be
chosen.

APPENDIX

1. Bounds on Ay(x). Define y, = (log x;) and D =b + Z¥_, ae; +
1) (log xj)z. A direct calculation in (2.3), for ¢; as in (4.2), shows that

A(x) = =2eD Y p— 2+ ¢c/2)D 'Say(e; + 1)y — 2(oy + 1)7'}
(A1) +4cD 3D 'Say; — D 'Say} — 4D *TaH(a; + 1)y}}
+2¢2D YD 7'EQ2a; + 1)y, — 10D "2Sa,(a; + 1)y?
—2D"%3(2q; + Day(e, + 1)y}
+12D 73T a(a; + )%} + pD 7'},

In simplifying this expression, the following two lemmas are useful. Their proofs
are standard calculations using Lagrange multipliers and will be omitted.

LemMma 1. Fora, > 0,c¢; > 0, and b > 0, the expression
(Sroiap)/ (b + Z0_cp})

is maximized at

(N1

Vi =%[b/(2f-lfl,~2/cj)] ’ i=L-.p,
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achieving a maximum value of
2773(82-14/ )"
LEMMA 2. Forb >0andz; >0(i =1, - -, p), the expression
sp_122/ (b + 22.,z)°

is maximized when z; = 2b/p and has a maximum value of 4/(27bp).

ol—

Denote, for convenience, the three terms on the right-hand side of (4.2) as T, T,
and T respectively. Since

Soe + 1)y} Zae + y?

D b+ Safe+ 1y
it is clear that
(A2) T, < =207 Y{p—-(2+¢/2) —Z(e; + 7'}

To bound T, note that fori=1,---,p
(e + DIyl
oly| > ’
b+ 20 (e + 1)y}
Hence
3D _1201,- P 4D_22ai2(ai + 1))’:‘3 < 3D_120‘i')’i|’

and so

T, < 12¢DY{ D 'Sajy|l}.
Lemma 1 can be applied to this last expression (with g¢; = o; and ¢; = a;(e; + 1)) to
give
(A3) T, < 12eD {2773 [Say/ (o + 1)]%} = 6cD b I[Sae; + 1)]7.
To deal with T, note first that fori=1,- - -, p,

Ni—

a(a; + )y? > D oo + 1)’y
Using this with Lemma 2 (setting z; = a;(e; + 1)y/) gives
(A4) —10D "2Sa,a, + 1)y? + 12D 3Za(a; + 1)%} < 2D el (e; + 1)y}

< 8/ (27bp).
Observe next that fori =1,- - -, p,

e, + Dyl > D7 'Q2e; + Dey(a; + Dyl

which, with Lemma 1, shows that
(AS5)

D 'S(Q2a;, + 1)y, — 2D 722(2¢; + Day(a; + 1)y} < D7'E(Q2a; + 1)y}
< 2_1b“5|[2(2ai + 1%/ {a(a + 1)}]%
= 27%"3[4p + 31/ {a(a; + D} 7.
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Using (A4) and (AS5), together with the observation that p/D < p/b, it follows
that

1
(A6) T, < 20—'c2{p/b + 8/ (27bp) + 2-'b-%[4p + Z{a(e; + 1)}“]2}.
Combining (A2), (A3), and (A6), the bound given in (4.3) is obtained.

2. Bounds on A,(x). Defining D = 3?_,d x;, a lengthy calculation using (4.5)
in (2.4) gives

(A7) A(x) = =2D"Y(p = I)c + *D "2Z(o; + 1)(o; + 2)(o, + 3)a, %,
+8cD ?Tdx;/o;+ Ty + T, + Ty, + T,
where
T, = —8cD Td>?/a; — 24¢™D ~53d>x} / o?,

Ty = —12¢{D °Zd} /[ a(e; + 1)] = D*Zd3} /[ o(o; + 1)]},
Ty = —6c*{ D Zd(a; + 1)x7; + 4D 73Zd(a; + 1)x?/a?

—3D " Sd¥(a; + l)x?/(x,.z},
Ty =12¢*{3D "*Zd’x}/ o} — D ’Zdix}/o}}.

Noting that for K; > 0, d?x?K; > d’x?K,/ D, it is clear that
T, <0,
(A8) T, < —6c2{D 3%d(ea; + 1)x?/a; + D 33d(a, + l)x,-z/a,.z}
= —6¢2D 733d(a; + 1)°x?/ a2,
T, < 24¢*D ~*3d>} /o? < 24¢*D ~33dx?/ ol
Hence
(A9) Ty + T, < —6¢*(D 7°Sd(a; + 1)’x?/a? — 4D ~>Sdx?/ a?}
= —6c¢*D 2d[ (o, + 1)’ - 4]xf/¢xf.

At this point, two lemmas are needed. Their proofs are again simple Lagrange
multiplier arguments.

LemMMA 3. Fora; > 0,b, > 0,and x; >0(i = 1,- - - , p), the expression
(ZI."- 14x} )/ (2. lbixi)2
is minimized when x; is a multiple of b,/ a,, attaining a minimum value of
1/ (22..6%/ ).
LEMMA 4. Fora; > 0,b, > 0,and x;, > 0(i = 1, - - - , p), the expression
(2’;- 1% )/ (5. lbixi)4
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1
is minimized when x; is a multiple of (b;/a;)3, attaining a minimum value of

1/ (22,63 /a3)"
Applying these lemmas to T, and the last expression in (A9), it can be concluded
that
(A10)

— 2 2
T,+T2+T3+T4<D28c)— 2¢ — - - b¢ - .

Ca D(Z[d,-(xiz]i) D(Ediai/[(a, + 1) - 4])
Returning to the second term of (A7), it seems natural to define

d; = (a; + 1)(o + 2)(o; + 3)/a}.

Noting, finally, that,
D~ '3dx;/a; < 1/min{a;},
it can be concluded from (A7) and (A10) that the bound in (4.6) holds.
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