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OPTIMALITY OF SOME WEIGHING AND 2" FRACTIONAL
FACTORIAL DESIGNS!

By CHING-SHUI CHENG
University of California, Berkeley

Some asymmetrical weighing and 2" fractional factorial designs are proved
to be optimal over all possible designs with respect to a very general class of
criteria. This strengthens and unifies many previously published results in this
area. An easy method to prove E-optimality is also presented.

1. Imtroduction. In this paper, using a simple method, we are able to improve
some known results on optimum weighing designs significantly. Because weighing
designs and 2" fractional factorial designs are closely related, the method can also
be applied to the latter.

Suppose we want to estimate the weights of n objects by weighing them N times
on a chemical balance. Let x; = 1, —1, or 0 depending on whether the jth object is
on the left or right scale, or is not present in the ith weighing. Then the N X n
matrix X = (x;) is called the design matrix. For clarity, we denote the design
matrix of a weighing design d by X,. Let y,, - - - , yy be the readings in the N

weighings, and w,, - - - , w, be the actual weights of the n objects. Then we have
the following model:

(1.1) y=Xw+e,

where y= (¥, ,yn), W= (w;, - - -, w,), and e is an N X 1 random vector

such that E(e) = 0, and Cov(e) = o,
" If XX, is nonsingular, then the covariance matrix of the least squares estimate
of wis 0%(X}X,)~". A weighing design d* is called ®-optimal if it minimizes some
functional @ of the information matrix X;X,. ® is called an optimality criterion. For
convenience, XX, will be denoted by M, hereafter. In this paper, we consider the
following two types of criteria:

(a) Criteria of type 1. Let Mg = max,cq tr M, where 9 is the class of all
designs under consideration. Then a criterion of type 1 ®; is defined by ®,(M,) =
371 f(\;), where Ay, - - -, Ay, are the eigenvalues of M, and f is a real-valued
function defined on [0, 9My] such that

(1) f is continuous, strictly convex, and strictly decreasing on [0 IMy). We

include here the possibility that lim _ o+ f(x) = f(0) = + oo.
(2) f is continuously differentiable on (0, 9y), and f’ is strictly concave on
(0, IMg).
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That is, f’ < 0, f” > 0, and f"”” < 0 on (0, My).

(b) Criteria of type 2. Same as (a) except that the strict concavity of f’ is
replaced by strict convexity, i.e., f/ > 0 on (0, DMy).

We also define a generalized criterion of type i (i = 1, 2) to be the pointwise limit
of a sequence of type i criteria.

One can easily see that the well-known D- and A-criteria are of type 1 by taking
f(x) = — log x and f(x) = x !, respectively. Also, the E-criterion is a generalized
criterion of type 1.

It is well-known that if there is a design 4 such that

(12) X)X, = NI,

then it is D-, A-, and E-optimal. By Proposition 1’ of Kiefer (1975), it is optimal
with respect to a very general class of criteria. But this kind of design does not
always exist. For example, when n = N, it (a Hadamard matrix) exists only if n = 2
or n is a multiple of 4. Therefore, it is important to investigate the case where there
is no such design. (The readers may consult Hedayat and Wallis (1978) for a review
on the subject of Hadamard matrices.)

Raghavarao (1959, 1960) and Bhaskararao (1966) had studied this problem, but
they only considered designs 4 such that XX, is of the form al, + bJ,, where I, is
the n X n identity matrix and J, is the » X »n matrix consisting entirely of 1’s. This
is a very stringent restriction. Let )3, , be the set of all such designs, and Dy, » be
the set of all possible designs. Then there is no guarantee that the best design in
¢y , is really optimal over 9 ~, n- Actually, counterexamples exist (see Section 5).
Furthermore, they only considered A-, D-, and E-criteria.

The first purpose of the present work is to develop a theory which embraces the
results of Raghavarao and Bhaskararao as immediate consequences and can be
used to prove the optimality of some weighing designs over all possible designs with
respect to a very general class of criteria.

The second purpose of this paper is to apply the results on weighing designs
to the setting of 2" fractional factorial designs of odd resolution. Suppose we
have n factors each with 2 levels 0 and 1. A fractional factorial design of resolution
2t + 1 is a design which allows the estimation of all the main effects and inter-
actions up to order ¢ — 1 when all the interactions with order higher than ¢ — 1
are assumed zero. In this set-up, the unknown parameters are ¢° (grand mean),
{¢'}1<icn (main effects), {¢,§}1<i <j<n (first order or 2-factor interactions), - - -,

and {¢/;,...; }i<i,<iy<--- <i<n (t-factor interactions). There are many ways of
parametrization. We will use the one described in Section 7.2 of John (1971). For
any observation y; ..., on the jjth level of factor 1, j,th level of factor
2,---,etc,j;=0o0r1, E(y; ...;) can be written as

(1.3) E(y;j,..5) = ¢° + ZicicnXi® + 21<i<j<nxixj¢i2j +---

o o o t
+2, <ir<ir< -+ - <i,<nXi Xiy Xi®Piiy---ip
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where

(14) = -1, ifj,=0.

In this setting, each design matrix consists of +1 and —1 entries. We will still
denote the design matrix of a design 4 by X, and write X;X, as M,. Then
optimality criteria of both types are defined similarly. The problem now is to find a
best design for fixed number of observations N. In this case, the equality in (1.2) is
achieved by an orthogonal array of size N, n constraints, 2 levels, and strength 2z,
abbreviated as 04(N, n, 2, 2t). For a definition of orthogonal arrays, see Ragha-
varao (1971, page 10).

In a series of papers (see, e.g., Srivastava and Chopra (1971), Chopra (1975),
Chopra and Srivastava (1973a, 1973b)), Srivastava and Chopra obtained best 2¢, 25,
25,27, and 28 resolution ¥ designs under the A-criterion among balanced designs for
some practical ranges of N. A balanced 2" design of resolution 27 + 1 with N
observations is obtained by observing the treatment combinations specified by a
balanced array with size N, n constraints, 2 levels and strength 2¢, denoted by
BA(N, n, 2, 2t). Balanced arrays were first studied by Chakravarti (1956) under the
name of partially balanced arrays. The readers are referred to Srivastava and
Chopra (1971) for a definition.

Shirakura (1976) worked on the same problem for 25, 27, and 2® resolution VII
designs. Again, there is no guarantee that the best balanced design is really
optimal. From our theory, it will be shown later that some special types of
balanced designs are indeed optimal over all possible designs.

For convenience, we will denote the set of all N X n matrices of +1, —1, or 0
by %y, ,,» and denote that of all N X n matrices of +1or —1 by %, ,.

In Section 2, some general results on the optimality of certain asymmetrical
designs are obtained. These results are applied to establish the optimality of some
weighing and 2" fractional factorial designs in Section 3 and Section 4. We will also
indicate how the results of earlier papers follow from our theory.

2. General results on the optimality of certain asymmetrical designs. Theorem
2.2 of Cheng (1978) provided a tool for proving the optimality of some asymmetri-
cal designs in the settings where the information matrices have zero row and
column sums. This result is rephrased in the following form which is suitable for
the present settings of weighing and 2" fractional factorial designs.

THEOREM 2.1. Let C = {M,},cq be a class of n X n symmetric nonnegative
definite matrices.

(a) Suppose M, € C is either a multiple of I, or has two distinct nonzero
eigenvalues A > N such that the multiplicity of X' is n — 1, and

2.1 M. maximizes tr M, over C.

22) tr(M2) < (tr Mp)2/ (n — 1).



OPTIMAL WEIGHING AND FACTORAL DESIGNS 439

1
(23) M. maximizes tt My —[n/ (n — 1)]%[tr(Md2) - (tr Md)Z/n] 2 over C.
Then M. is optimal over C with respect to any generalized criterion of type 1.

(b) Suppose M . € C is either a multiple of I, or has two distinct nonzero

eigenvalues A > X' such that \ has multiplicity n — 1 and
2.4) M. maximizes tr M over C.
(2.5) M. maximizes tr M, — {n(n — D[trf(M?) — (tr Md)z/n] }* over C.
Then M. is optimal over C with respect to any generalized criterion of type 2.

In settings where tr My is a constant, for all d € 9, (2.1) and (2.3) (or (2.4) and
(2.5)) can be replaced by

(2.6) M. minimizes tr( M) over C,

and the condition “f’ < 0” in the definitions of type 1 and type 2 criteria can be
dropped.

The following theorems are the main results of this paper.

THEOREM 2.2. Let Cy, = {X'X}yeg, - If N>n and (N- 1, +J, €
Cn, n» then this matrix is optimal over Cy , with respect to any generalized type 1
criterion.

PROOF. Suppose X* X* = (N — 1)I, + J, for some X* € ¥ ,. Then X* X*
has two distinct nonzero eigenvalues N —1 and N+ n—1. Since N+ n—1>
N-— 1, and N + n — 1 has multiplicity 1, it suffices to verify (2.1), (2.2) and (2.3).

(2.1) is trivial. (2.2) follows from the assumption N > n and noting that
tr[(X* X*)*] = nN? + n(n — 1).

(2.3) is the most difficult condition to verify. We have to show that for any
X € Iy p»

2.7) tr X¥X* — tt X'X >[n/ (n — )]3(P* - P),

where P* = [tr(X* X*)> — (tr X* X*)?/ nJ2, and P is defined similarly.

Now we have [n/(n — 1)]% * = p. Therefore tr X* X* —tr X'X > n= (2.7).

Thus we may assume
(2.8) tr X’X > tr X*¥X* — n.

The existence of X* implies that N is odd. Therefore, if tr X'X = tr X*' X* =
nN, then all the entries of X are +1 or ~1, and hence the absolute value of any
off-diagonal element of X’X is at least one. This implies tr(X’X)? > tr(X* X*)?,
and hence (2.7) holds.

So we miay assume tr X'X = tr X*’X* — a for some positive integer a < n.
Then at least n — a of the diagonal elements of X’X are N. The entries of the
corresponding rows of X’ are +1 or — 1. Hence at least (n — a)(n — a — 1) of the
off-diagonal elements of X’X have absolute value > 1. On the other hand, we have

S [(X'X)i]? > (n— a)N? + (N — 1)
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Therefore
(29) P2>(n—a)N>+a(N—-1>+(n—a)(n—a—1) = (nN — a)*/n.
Now, (2.7) is equivalent to

NI.—

(2.10) a—n>—[n/(n—1)]P
ie.,
(2.11) (a — n)* <nP*/(n—-1).

By (2.9), a sufficient condition for (2.11) is
(212) (a—n)*<n(n—a)N*/(n—1) + na(N — 1)*/ (n — 1)
+n(n—a)(n—a—1)/(n—1)— (nN — a)*/(n — 1),

or equivalently,
(2.13)

(n—a)[(n=1)(n—a)— nN> = n(n — a — )] < na(N - 12 — (nN — a)>
Both sides of (2.13) are equal to (n — a)(a — nN?2). This proves (2.11). []

It is difficult to prove a type 2 analogue of Theorem 2.2. A reasonable candidate
for an optimum M, is (N + 1)1, — J,. But condition (2.5) is too stringent to be
verified. Let M* = (N + 1)I, — J,. Then tr M* — {n(n — D[tr(M*)* —
(tr M*)?/ n]}2 = nN — n(n — 1), with a deficit of n(n — 1) from the ideal maxi-
mum.

However, we can prove the following weaker result.

THEOREM 2.3. Let@,(,,,—{XX}XG@, IfN >nand (N + I, - J, €C ,,
then this matrix is optimal over Cf, , with respect to any generalized type 2 criterion.

ProoFr. For any X € % ,, we have tr X'X = nN. Therefore we only have to
verify (2.6). This is a trivial consequence of the fact that N must be odd for the
existence of an X* € ¥y , such that X*X* = (N + )I, — J,. ]

This theorem is not too weak for the application to 2" fractional factorial
designs, since the design matrix of a 2" fractional factorial design with N runs
belongs to %y,

Using a delicate computation, Ehlich (1964) proved that if there is a matrix
X* » Such that X* X* = (n — 1)1, + J,, then X* has maximal determinant
over ?f,:’,, This is a very special case of our Theorem 2.2. Actually, in order to get
Ehlich’s result, we need not even go through the somewhat complicated computa-
tions in the proof of Theorem 2.2. For any X € »n W€ have tr X 'X = n’
Therefore, as in the proof of Theorem 2.3, X* minimizes tr(X'X)? over ¥ ,. Thus,
this result of Ehlich follows easily from our theory. Furthermore, his method does
not work for other criteria.

Usually, among the various optimality criteria, the E-criterion is the easiest one
to verify. We will give an alternative proof for the E-optimality of (N — 1)I, + J,
over Gy . Similar argument can also be applied to other kinds of matrices.
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Let X* €  , be such that X*X* =(N — I, + J,,and @ = {X'X — (N —
1)I,: X € 9y ,}. In order to prove the E-optimality of X* X* over Cy ,,, it suffices
to prove that

(2.19) X*X* — (N — 1)I, = J, is non-negative definite,
and
(2.15) each matrix in @ is not positive definite.

(2.14) is trivial. To prove (2.15), we note that for any matrix M in @, either some
diagonal element is < O or all the diagonal elements are equal to 1 and the
absolute value of any off-diagonal element is > 1. This clearly implies that M is
not positive definite. Thus, the E-optimality of X* X* over Cy , is proved. This
kind of technique is due to Takeuchi (1961).

Using similar arguments, we can establish the following results:

THEOREM 24. If NI, & Cj, ,, and there is an M* € C}; ,, such that

M* = diag((N — )1, + 2J,, (N = DI, +2J,,- - -, (N = 2)I, +2J,),
where n = n; + n, + - - - +m, then M* is E-optimal over C}, .

THEOREM 2.5. If (N + )1, — J, € Cy ,, then this matrix minimizes the maxi-
mum eigenvalue over the matrices in Cy; ,.

PROOF. Multiply all the matrices in Gy, , by —1, and then the result follows
from the above alternative proof for the E-optimality of (N — 1)1, + J, over Cy ,.

0
THEOREM 2.6. If NI, & Cj, ,, and there is an M* € Cf ,, such that

M* = diag((N + 2)1, — 2J,, (N +2)I, —2J,, -+, (N + 2)I, —2J,),

where n = n;, + ny + - - - +n,. Then M* minimizes the maximum eigenvalue over

’
N, n*

Theorem 2.5 and Theorem 2.6 are not too interesting from the optimum design
theoretic point of view.

THEOREM 2.7. If N = 3 (mod 4), and 'there is an M* € Cy , such that M* = (N
— 3)1, + 3J,, then M* is E-optimal over C; .

PROOF. Let M = (my),,, = X'X for some X € %y ,. Multiplying some col-
umns of X by —1 does not change the eigenvalues of X’X. So by Lemma 3.1 of
Ehlich (1964), we may assume that m; = 3(mod 4), for all i, ;.

If my = — 1for all /, j, then certainly M is E-worse than M*. If some m; #= — 1,
then |m;| > 3. The E-optimality of M* follows from the same argument used in the
proofs of the previous theorems. []
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3. Weighing designs. Modifying the notation in Bhaskararao (1966), we de-
note a design d in %Dy , such that X;X, = (N — s — NI, + AJ, by [N, s, A,..

Theorems 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7 can be translated into the context of
weighing designs. For example, Theorem 2.2 says that if there is a [N, 0, 1], design
in 9Dy ,, then it is optimal over 9, , with respect to any generalized type 1
criterion. When specialized to the D-criterion, this actually solves a conjecture of
Mood (1946). (When N = n, the same design was shown by Raghavarao (1959,
1960) to be D-, A-, and E-optimal over 93 ,.) The other theorems are weaker in
the sense that we only claim the optimality over those designs in which all the
objects are present in each weighing.

It can easily be seen that if n > 2 and there is a [N, 0, 1], design in 9 ,, then
N = 1(mod 4). Similarly, when n > 2, a necessary condition for the existence of a
[N, 0, —1], design is that N = 3(mod 4). It was shown in Raghavarao (1959) that
a [n, 0, 1], exists only if n = (1 + a?)/2 for some odd integer a. This necessary
condition is very stringent. Therefore, there are not too many [n, 0, 1], designs.
Some examples are given in Raghavarao’s paper.

However, there are abundant [n, 0, — 1], designs. If the conjecture that a 47 X 4¢
Hadamard matrix exists for any positive integer ¢ is true, then “n = 3(mod 4)” is
also a sufficient condition for the existence of a [n, 0, —1], design, Actually, we
have

THEOREM 3.1. If there exists a 4t X 4t Hadamard matrix, then there is a
[4t - 1, 0, _1]4,_1 design.

Proor. Pick any 4¢ X 4t Hadamard matrix in standard form, i.e., all the entries
in the first row and first column are 1. Delete the first row and first column. Then
the remaining submatrix gives a [4¢ — 1,0, —1],,_, design. []

In general, if there is a [N, 0, 0], design, or equivalently, an orthogonal array of
size N, n — 1 constraints, 2 levels, and strength 2, then there exist [N + 1, 0, 1],
and [N — 1,0, —1], designs.

When N = n and n; = n, = n/2, the matrix in Theorem 2.4 was also shown to
be D-optimal over C, , by Ehlich (1964). The problem of constructing such designs
was considered by Ehlich (1964) and Yang (1966, 1968).

The following is a design whose information matrix has the form described in
Theorem 2.6 with n; = n, = 3.

1 1 -1 1 -1 -1
1 1 -1 -1 1 1
1 -1 -1 1 1 -1
1 -1 -1 -1 -1 1
1
1

e
[

-1 1 1 -1 1
-1 1 -1 1 -1

We now indicate how the results of Raghavarao and Bhaskararao can be derived
from our Theorem 2.1.
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For comparison among the designs [N, s, A], in @3 , with A > 0 under type 1
criteria, we can firstly compare the two values tr M, and tr M, — [n/(n —
l)]%[tr(Mdz) — (tr My)*/ nJ2, since for any such design d, M, is either a multiple of
the identity matrix or has two distinct nonzero eigenvalues such that the smaller
one has multiplicity n — 1. If d is a [N, s, A],, with A > O, then tr M, = n(N — s),
and tr M, — [n/(n — DJ2. [t(M,?) — (tr M,?/n)Z= n(N — s) — An = nN — n(s
+ A). Therefore by Theorem 2.1 we have to make both of s and s + A as small as
possible. In other words, we have

THEOREM 3.2. Assume A > 0and X' > 0.If s > s’ and s + A > s' + X, and one
of them is a strict inequality, then [N, s', '], is strictly better than [N, s, A], with
respect to any type 1 criterion.

Similarly, we have

THEOREM 3.3. Assume A< O0and N > 0. If s >s" and s — N\ >5 + N, then
[N, s', N1, is strictly better than [N, s, A], with respect to any type 1 criterion.

Theorems 3.2 and 3.3 can be used to eliminate most of the designs in 93 ,
except a few competitors. Then we can compare these remaining designs according
to various optimality criteria of interest directly. For example, if n = 2(mod 4) and
n # 2, then [n, 0, 2], and [n, 1, 0], are better than the other designs in %) , under
any type 1 criterion if they exist. Comparing these two designs, we conclude that
[n,0,2], is D-optimal and [n, 1, 0], is A- and E-optimal over %5 ,. The other
results of Raghavarao and Bhaskararao can also be obtained in this way. Actually,
this method enables us to order the designs in GDi, . With respect to any type 1 and
type 2 criteria.

4. 2" fractional factorial designs of odd resolution. Although from the
viewpoint of weighing designs, Theorems 2.3, 2.4, 2.5, 2.6 and 2.7 are incomplete in
the sense that only the optimality over Cy , instead of Cy , is proved, they are
perfect for the problem of 2" fractional factorial designs since the design matrix of
a 2" design consists of +1 and —1 entries. Also, the condition “f’ < 0” in the
definitions of type 1 and type 2 criteria can be dropped in the present section.

It can easily be seen that if there is a balanced array BA(N, n, 2, 2¢) such that
Po= My =""" = py_; =M and g, = p + a, then it defines a balanced 2" frac-
tional factorial design d* of resolution 2¢ + 1 such that M, = X,/ X, = (N —
a)l, + aJ,, where k =1+ (}) + G) + - - - +(}). Therefore, by Theorems 2.2 and
2.3, we have

THEOREM 4.1.  If there is a BA(N, n, 2, 2t) with index set (g, by, * * * , py,) Such
that pg=p, =+ -+ =y, =, and p,, = pu + 1 (or p — 1), then it defines a
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balanced design which is optimal with respect to any generalized type 1 (or type 2)
criterion over all the 2" designs of resolution 2t + 1 with N runs.

Thus, some of the designs obtained by Srivastava, Chopra, and Shirakura are
really optimal over all possible designs with respect to a very general class of
criteria, not just A-optimal over the balanced designs. It is worthwhile pointing out
that all the balanced designs with index sets of the form (u, g, - - - , o + 1) do not
appear in the lists of designs in the papers by Srivastava, Chopra, and Shirakura.
Instead, they list balanced designs with index sets of the form (p + L g, - - -, )
for the same values of N. This kind of design is obtained by interchanging the two
symbols 0 and 1 in the design with index set (g, u, * * - , g, p + 1). The informa-
tion matrices of these two designs have the same eigenvalues, although that of the
one with index set (u + 1, g, * + -, p) is no longer of the form al + bJ. This shows
that the optimum information matrices are not unique.

A BA(N, n, 2, 2¢) with index set (pg, pty, * * - , pip,) such that pg = p, = - - - =
Po—1 = pand p,, = p + 1 (or p — 1) can be obtained by adding (or deleting) one
column consisting entirely of 1’s to (or from) an orthogonal array 0A4A(N —
1, n, 2,2f) (or 0A(N + 1, n, 2, 2t)). Therefore, the construction of the designs in
Theorem 4.1 is essentially the same as that of orthogonal arrays. There has been an
enormous literature on the construction of orthogonal arrays.

It is worthwhile pointing out that the conclusion in Theorem 4.1 is still true if the
design is obtained by adding (or deleting) any observation to (or from) an
orthogonal array. Optimal designs obtained in this way are not necessarily bal-
anced according to the definition of Srivastava and Chopra. The recipe of adding
one observation to an orthogonal design was suggested by Mood (1946) and was
supported by the computer search of Mitchell (1974). The present paper gives a
proof of the optimality of this procedure.

Similarly, we have

THEOREM 4.2. A design obtained by adding any two (or three) observations to an
0A(N, n, 2, 2t) is E-optimal over all the 2" designs of resolution 2t + 1 with N + 2
(or N + 3) observations.

So there are quite a few E-optimal designs. For example, let 4 and d be
BA(N, n, 2, 2¢) with index sets (g, g, * * “, g, p+2)and (p+ 1L, p, - -, ppu +
1), respectively. Then both of them are E-optimal. But the eigenvalues of X}X,
majorize those of X;X;. Thus, d is ®,-better than 4 for any strictly convex function
J. A similar conclusion holds for BA(N, n, 2, 2¢) with index sets (u, g, * =+ , g, p +
3)and (p+ 1L, - v, ppu+ 2).

5. Remarks.
(1) We will give an example to show that, in finding an optimal design over
&y ,» it is not enough to search among the designs in 973, , only.
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Let

1 1 -1 1 1 1

1 1 1 -1 -1 1

i1 1 1 1 -1 -1
Xa, 1 1 1 -1 1 -1/

1 -1 1 1 1 1

1 -1 -1 -1 -1 -1

1 1 -1 1 1 1

1 1 1 1 1 -1

|1 1 1 -1 1 1

X 1 1 1 1 -1 1

1 -1 1 1 1 1

1 -1 -1 -1 -1 -1

Then 4, is a [6, 0, 2], and X; X, = diag(4l; + 2J;, 41, + 2J,).

It is obvious that 4, is D-better than d,. On the other hand, 4, is D-optimal over
D3 - This shows that an optimal design over %73, , need not be optimal over 9D, ,.

Actually, since the eigenvalues of X X, majorize those of X X, , d; is ®;-better
than d, for any strictly convex function f.

(2) The observation in (1) also shows that the best balanced 2" design of
resolution III might not be optimal. The author believes, although he has not yet
found, that counterexamples also exist for resolution ¥ designs.

Acknowledgments. I wish to express my sincere thanks to Professor Jack Kiefer
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