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PROPERTIES OF SOME ESTIMATORS FOR
THE ERRORS-IN-VARIABLES MODEL!

BY WAYNE A. FULLER
Iowa State University

The limiting behavior of estimators for several errors-in-variables models is
investigated. It is assumed that an estimator of the covariance matrix of the
measurement error is available. Models are delineated on the basis of the prior
knowledge of the error structure. In all cases the limiting distribution of the
estimators, standardized by n%, is normal. Modifications of the estimators that
guarantee finite moments and improve the small sample behavior of the
estimators are presented.

1. Introduction. The statistical model containing errors of measurement dates
from the 19th century. Reviews of the literature and discussions of the problem are
contained in Moran (1971), Madansky (1959), Kendall and Stuart (1961), Cochran
(1968), and Malinvaud (1970). Koopmans (1937) derived the maximum likelihood
estimator for the case of known error covariance matrix. He also presented the
approximate covariance matrix of the estimated coefficients under the assumption
that the variance of the measurement errors was small relative to variation in the
true values of the variables. Following the work of Lawley (1953), Malinvaud
(1970) presented an expression for the covariance matrix of the limiting distribu-
tion of the maximum likelihood estimator.

Dorff and Gurland (1961) investigated the variance of a number of estimators
for the model with a single independent variable. In particular they demonstrated
that the maximum likelihood estimator using estimated error variances was supe-
rior to other estimators of the moment type. Lord (1960) and DeGracie and Fuller
(1972) presented estimators for this model with application to the analysis of
covariance. Robertson (1974) presented approximations for several models with a
single independent variable. Schneeweiss (1976) obtained the limiting distribution
of the estimator for the model with the covariance matrix of the measurement error
in the independent variables known.

Anderson (1951) studied maximum likelihood estimation of the errors-in-vari-
ables model placing the problem in the context of estimating regression parameters
subject to linear restrictions. In this model the number of regression coefficients is
fixed. Limiting properties of the estimators were obtained under the assumption
that the variance of the coefficients converged to zero. The simultaneous equation
model of econometrics is an example of the problem. See Anderson and Rubin
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408 WAYNE A. FULLER

(1949), (1950) and Anderson (1976). Villegas (1961), (1966) also studied parameter
estimation for the errors-in-variables model wherein the number of points at which
observations are made is fixed.

We investigate the large sample properties of the estimators of the errors-in-vari-
ables model when the covariance matrix of the measurement error is estimated. We
assume that the covariance matrix of the measurement error is fixed (not decreas-
ing with sample size) and assume that the variance of the estimator of the error
covariance matrix is inversely proportional to the sample size. Estimators
associated with models containing different amounts of information on the error
structure are presented.

Most of the estimators presently in the literature do not possess finite moments.
We modify these estimators so that they possess finite moments, leaving the
limiting distribution of the estimators unchanged.

2. Themodel. Let {x, :¢=1,2,--- } denote a fixed sequence of k dimen-
sional row vectors. Let

y= xBl’
(2.0) X=x+u
Y=y+e,

where x is an n X k matrix whose tth row is x,; B, is a vector of & unknown
parameters; € = (e : u) is an n X (k + 1) matrix of random variables whose rows
are independently and identically distributed as a multivariate normal random
variable with mean zero and covariance matrix 2. That is, &, = (e, : w,) ~ NID
©,2),fort=1,2,---, where

2 2.
* (&e 2w)'

0’3 - 22¢uBl + BllzuuBl > 0‘

We shall sometimes condense the notation letting Z = (Y : X)and z = (y : x). In
this notation the model is given by

zf =0,
2.1
21 Z=z+e,
where B8’ = (1, —B;). The matrices x, y, z, X, Y, Z, u, ¢, and & could be subscripted
with n, but to simplify the notation we have omitted the subscript.
We shall investigate the limiting behavior of estimators of B as n — oo. We also
assume: the matrix n~'x'x is positive definite for all n > k and

22) lim,_  n"'xx=M,_,

n—»00 XX

It is assumed that

where M, is a positive definite matrix.
We identify five cases on the basis of the amount of information available on 2.
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CASE (i). It is assumed that e is the sum of two components, e = w + q, where
w is a vector of errors of measurement and q is a vector of errors in the equation. It
is assumed that (w, u) is independent of q and that the elements of q are normal
independent (0, o2) random variables, o? > 0. Let

Sw  Swu
S"(s sw)

uw

denote an estimator of

o zw)
Zow P

that is distributed as a multiple of a Wishart matrix with d degrees of freedom. The
estimator S is assumed to be independent of (u, w, q). Because q and u are
independent, S, is also an estimator of 2, and, in situations where no confusion
will result, we may denote S, by S,,.

The variance of g, is assumed unknown. Thus we have available an estimator of
the covariance structure of the measurement error, but the variance of the error in
the equation of is unknown. Malinvaud (1970, page 374) discusses the distinction
between errors of measurement (errors in the variables) and errors in the equation.

The degrees of freedom d are assumed to satisfy d = n~'n where 7 is a fixed
positive number. To assume that

E{(WI’ ut)(wt’ ul)l} = (

lim, n~'d=1n""

n—o00

would be sufficient, but to simplify the presentation we use the assumption
d = n~'n. As before, we have suppressed the functional dependence of S,,,, S,
S, and d upon n.

An example of Case (i) is the estimation of an income elasticity from survey data
subject to response error. Battese, et al. (1976) give examples of the estimation of

matrices such as 2, and 2.

Cask (ii). It is assumed that the covariance between u, and e, is known to be
zero (B,, = 0), and that an estimator S, of 2, satisfying the assumptions of Case
(i) is available. That is, it is assumed that E{S,,} = 2, and that a multiple of S,
has a Wishart distribution with d degrees of freedom, where d = 7~ 'n. It is
assumed that ¢? > 0 is unknown or that e = q + w and o > 0 is unknown.

CasE (iia). The covariance matrix 2 is known to be diagonal. Unbiased
estimates of the diagonal elements of 2, are available, where the estimates are
multiples of independent chi-square random variables. This situation arises when it
is known that the measurement errors for the elements of x, are independent. The
model is used frequently when the elements of x, are scores on psychological
instruments. See Warren et al. (1974) for an application in sociology.

It is assumed that the estimates of the variances of the errors of measurement for
the variables X, X,, - - - , X, are based upon degrees of freedom, d,, d,, - - - , d,
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respectively, where d; = 0y 'n, dy = n;'n, - - - ,d, = 'nandn, my - - -, 7, are
fixed positive numbers. As in Case (ii) it is assumed that g2 > 0 is unknown or that
e = q + wand o > 0 is unknown.

CASsE (iii). An estimator, S, of a multiple of 2 satisfying the assumptions of
Case (i) is available. Note that Case (iii) differs from Cases (i), (ii) and (iia) in that
an estimator of o2 is available. Case (iii) is a,generalization of the classical
errors-in-variables model wherein it is assumed that 2 is known up to a multiple.
An experiment where 7! + 1 observations on the ¢th row of Z, Z,, are available
foreachz,,t=1,2,- - -, nis an example of Case (iii). In such an experimental
situation the multiple is known to be one, i.e., £ {§} = ¥. An example of Case (iii)
is contained in Fuller (1978).

Cask (iiia). The matrix 2 is known to be diagonal. Unbiased estimators of
az, 03(1), 02y " s o,f(k) are available, where the estimators are multiples of inde-
pendent chi-square random variables and o2, is the variance of the measurement

error in X;. It is assumed that the estimators of the variances of the errors of

measurement for Y, X;, X,,: - -, X, are based upon degrees of freedom
dy, dy, dy, * + -+ , dy, tespectively, where dy=ng'n, d, =n7"n,dy=n;"n,---,d,
= n; 'n and ng, my, My, - ¢+ ¢, M are fixed positive numbers. This model occurs in

psychology and sociology.

3. Estimation for case (i). We consider the estimator

3.1) B, = (A +an_'Sw)_l(N +an”'S,,),
where a > 0 is a fixed real number,
A=M,, - S, if $>1+n"!
=My — (§-n""S,, if 7<1l+n7}
N=M,, —S,., if §>14n!

=My, —($ =178, if $<1+n7},
A M M r r
M,, M,, n\XY XX
and 7 is the smallest root of [M — yS| = 0. Observe that H is an estimator of the
mean squares and products of the true values, say M, where
M, =n"xx.
In a similar manner N is an estimator of

M, = n"IxYy.

xy
The modification associated with the computation of ¥ guarantees that His a

positive definite matrix, that the estimator of 03 is positive and that the estimator of
B, possesses finite variance. If ¥ is close to one it is advisable to compute / where /
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is the smallest root of

IMXX —1IS,|=0,
as a model check. By Theorem 5, (n — k + 1)~ 'n/ is approximately distributed as
Snedecor’s F with n — k + 1 and 4 degrees of freedom when the rank of M,, is
k — 1. Thus, in practice, a small / may call into question the assumption that M,,
is nonsingular.

The modification associated with a was suggested by a study of the moments
through terms of order n~2 The a-modification gives an estimator that is similar to
the “k-class” estimators used in simultaneous equation estimation, see, for exam-
ple, Johnston (1972, page 388). Our situation differs from that in simultaneous
equations, however. In our model S,, is 0,(1) while the analogous statistic in the
simultaneous equation problem is (‘)p(n").

THEOREM 1. Let the assumptions of Case (i) of model (2.0) hold. Then the limiting
1 ~
distribution of nz(B, — B,) is normal with mean zero and covariance matrix

Mo} + M (02 + mo})R,, + (1 + )2, 2, M,

where v=e—uB,r=w—up, 2, =2, =2, —2.B,02=0—-22,B +
BiZ,.By, and o} = o, — 22 B, + B\2,.B:.

ProOF. We note that the correction associated with ¥ occurs with probability
that is O (n~2). Hence, we can write

Bl =[Mxx -(1- ‘m_l)sw]_l[mxy -(1- an~l)suw] + Gp(”_z)
=[Mxx -(1- an_l)suu]_l[MXXBl + MXU - (1 —-an™h)S,B,
-(1- an_‘)Su,] + @,,(n-z),

where
M,, = n~'XY,
S = Suw — SubBis
v=Y — XB,.

It follows that
B'l - Bl =[MXX - Sw]_l[MXc - Sur] + ep(n_l)'

The matrices Mxx’ Mxy, S,., and S, are all of the sample moment type.
Therefore

A

MXX - Suu = Mxx + Gp(n_%)’

'y 1
MXo—Sur= p(n ),
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and
ﬁl -B = M;\:I[Mx - Sur] + ®p("_l)
=M [n7'xv+n"luv =S, ]+ 6,(n7").
Consider the linear combination
n%A,Mxx(B'l - Bl) = ”_%27-12'5- 1}‘.'{"::”: + (w0, — ou,o)}
—ﬂ%d %2?- N Guyr — Guyr) + Qp("_%)
=S, + S, + @I,(n_';'), say,
where A is an arbitrary real vector and o,;,, = 0,;,. The random variables
& = SN X0, + (w0, — 0,40)}
= C,0, + hv, — o,
where
C, = 2N,
by = 2o Ny
are independent with zero mean. Because (e, u,) is normal,
Var{ g} = C%? + ofa? + o2,
Letting
V, = 2. Var{g},
we have
(32) V'3 fr, (Co + hv — o,)dF(h, v)
<V, 21! g, (0] + [ho = 6,,])’dF(h, o),
where F(h, v) is the distribution function of the random vector (4, v),
Ry, = {(hv): (Coo+ hv — 0,)° > ezV,,},
Ry, = {(h, ) : (Jo] + |hv — a,))* > ezV,,[supl<,<,,a,2]_l}
and
a? =max(C% 1), o2>0
= C2, otherwise.
Because [Var{ g,}]~'a? is bounded, the ratio
(3.3) V., '2.a?
is bounded. By assumption (2.2)

: -1 21 _
hmn—»oo(Vn supl(t(nat) = o0,
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and, as (w, v) is bivariate normal,

(3.4) lim,_, /&, (|0] + |hv = 6,,)’dF(h, v) = 0.
It follows from (3.2), (3.3), and (3.4) that the Lindeberg condition is satisfied for
Sine

The quantity S,, is independent of §,, for all n, and S,, converges to a normal

random variable. Hence, the sum S,, + §,, converges to a normal random
1 ~

variable and the k-dimensional vector n2(8, — B,) converges in distribution to a
k-dimensional normal random variable. Now

E{[n"'xv+n"uv-S,][n"Vx+n"Vu-S8_]}

=n""My0] + 17 (Buo] + BuoBy) + d7 (R0l + 2,2)

and the result is established. []

By setting n = 0 in the conclusion of Theorem 1, one obtains the variance of the

1 ~

limiting distribution of nz(8, — B,) for known 2, and 2.

It is demonstrated in the Appendix that, for {|x,|} uniformly bounded,

E{B—B}=-MMn "k +1-0a)+ (n'+d7)([tr(R M)
+ 2uuMJ:xl) }zuv + @ (n _2)

and that, to order » 2, the mean square error of ﬂ, is smaller for a = k + 4 + 29
than for any smaller a.

Of some interest is the hypothesis that ordinary least squares yields an unbiased
estimator of B,. The observations Y may be expressed as

Y=XB, +v,

where v = e — uf},. Assuming 2, to be nonsingular, the least squares estimator of
B, will be unbiased if E (v|X} = E{v|(x + w)} = u2_ ', = 0. In turn, this condi-
tional expectation will be zero if 2, = E{wv,} =2, — 2,8, =0. Thus, the
ordinary least squares estimator will be unbiased when B, = C = 2_'®,_ . There-

fore, given that 2, is nonsingular, one may test the hypothesis that ordinary least
squares is unbiased by testing the hypothesis that 8, = C.

THEOREM 2. Let the assumptions of Case (i) of model (2.0) hold and let
2u_u12ue = Bl‘ Let

Xi = (ﬂl - é)'{l—l(ﬂl - é)’
where
C=s2's,,
V=n"H'2+(n 2+ d A 'S, A '+ 4720 + S.h)s2,
2= (n— &)Y - X6,)(Y - XB),
s2=(d— k)" (S — S,uS'Su)

r

L
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and H is defined following (3.1). Then X? converges in distribution to a chi-square
random variable with k degrees of freedom.

ProoF. By arguments completely analogous to those of Theorem 1, the vector
1 ~ A . . . . .
n2[(B; — B,), (C — C)] converges in distribution to a multivariate normal random
1 =~ A
variable. The limiting covariance matrix for n2(8, — C) under the null 8, = 0) is
Mo} + M2, M\ (0] + nof) + n(2M} + 2.1)e?,
and nV is a consistent estimator of this matrix. 0

In obtaining our results we assumed (e,, w,, w,) to be multivariate normal. The
moment properties of the normal distribution enabled us to obtain explicit expres-
sions for the covariance matrix of the limiting distribution. It is clear from the
proof of Theorem 1 that the estimator ﬁl will be normally distributed in the limit
for (e, w,, u,) with finite fourth moments and estimators S that converge in
distribution to normality.

4. Estimation for Case (ii) and (iia). Case (ii) is very similar to Case (i).
However, the results follow immediately from those of Case (i) only if d = co.

THEOREM 3. Let the assumptions of Case (ii) of model (2.0) hold. Let the
estimator B, be defined by

4.1) ﬁl = (ﬁ +n_'aSW)_1MX,,,

A 1 a
where a > 0 is a fixed number and H is given in (3.1). Then n2(B, — B,) converges in
distribution to a normal random variable with zero mean and covariance matrix

M_'o} + M/[2,,(0} + nBiZ.B) + (1 + B2, M.
Proor. We have
ﬁ] - B = M;xl(f —aB) + @p(”_l),
where
a=n"'Xu+ux+uu) - (1-an™ S,
f=n"(uy+ xe + ve),
f—ap, =n"'(xXv+uv)+ (1 - an")S,_ B,

Evaluating E {(f — aB,)(f — aB,)’} we obtain the variance result. Considering the
random variables

Elic_ 1Ai{xitvt + (uitvt - o“;'-’)}
and
d%E'f- 1}\12;?- l(sij - oij)ﬂj’

where s;; is the ijth element of S,, and B, is the jth element of B8,, normality follows
as in Theorem 1. []
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As in Case (i), « = k + 4 + 27 gives a smaller mean square error for ﬁl than
does any smaller a.

In Case (iia) it is known that 2, = diag(o,;, 055, * - - , 6;;) and it is natural to
use the matrix D,, = diag(s,, 85, - - -, 5i), Where s; is based upon d, degrees of
freedom, in the estimation of B,. We consider the estimator
(42) ﬁ] = (ﬁ +n _l‘wa)_lMxy’
where H is as defined in (3.1) with S = diag(S,,,, $;1, 525, * * * , Si) When S, is
known and S = diag(0, s,,, 555, * * * , 5) When S,,,, is unknown.

THEOREM 4. Let the assumptions of Case (iia) of model (2.0) hold. Then n%(ﬁl -
B.) converges in distribution to a normal random variable with mean zero and
variance

M o2 + M (2,02 + 2,2, + 2R)M_,
where R = diag(n, Bo},, MB35+ nkﬁkzolzk)’ and By = (B, By, - - -, B
PrOOF. The proof parallels that for Case (ii). We have
B, - B, = M [n~'(x'v + uv) + DB ] + O,(n7?)
and the variance result follows from
E{(D,8, + 2,)(D,B, + )} = 2n"'R. 0

Comparison of the variance formulas for Cases (i), (ii) and (iia) makes it clear
that the use of the knowledge that some of the measurement error covariances are
zero reduces the variance of the estimator of B,. The variance of the estimator of g,
is greater for Case (i) than for Case (ii) when 2, = 0 because

is then a positive semidefinite matrix. The variance for Case (ii) is greater than that
of Case (iia) because, for 2,, diagonal andn =n, =7, = - - - = q,,

nzuu(ﬁ,lzuuﬁl) -R
is a positive semidefinite matrix.

The reader will note that, with the exception of Theorem 2, there is nothing in
the proofs of the theorems that precludes the specification that some g, = 0.
Naturally if o; = 0 the ith row and column of S,, will be zero. The results of
Theorem 2 can be extended to singular 2, matrices by suitable reparameteriza-
tion.

5. [Estimation for Case (iii). In Case (iii) the expected value of the estimator of
2 is permitted to differ from ¥ by a multiple. We assume the estimator is
distributed as a multiple of a Wishart matrix with d degrees of freedom, indepen-
dent of X and Y. Denoting the estimator by S we have

E{S}=A"'%,
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5[5 S«
S. S.)

and we define S = AS. Anderson (1951) demonstrated that the maximum likeli-
hood estimator of B,, denoted by B, ,, is given by

where S is partitioned as

(.1 (Mxx - ng)ﬁu = MXY - Xgue’
where A is the smallest root of
(52) M -S| =0

and M was defined in Section 3. If we define the vector B, by B, = [1,— B,.1, then
A= (ﬁisﬁL)_lﬁZMﬁL

and

(5.3) ™M —AS)g, = 0.

Anderson (1948), following Hsu (1941), gave the limiting distribution of the roots

of (5.2) for S = 2. We demonstrate for our model that the distribution of A can be
approximated by a multiple of an F random variable.

THEOREM 5. Let the assumptions of Case (iii) of model (2.0) hold. Then
(n— k) 'nA=XF + 0,(n7"),

where F is a random variable distributed as Snedecor’s F with n — k and d degrees of
freedom.

PROOF. Because A is a continuous function of the elements of M and S in an
open sphere containing the true values and because, by our assumptions,

plim M = M, + 2,
plim S =112,
it follows that p lim A = A. Likewise

p lim B, = p lim{ (Vyx — A8,.) 7' (¥,y ~ 35,)} = B,

Defining
AM =M — E{N1} = M —M,
AS =S -A'%,
AN =X =),
AB =B, - B=[0,(B —Bu)] =[0,-28],

we write (5.3) as

(5.4) [M,, + {(AM) — A(AS)} — (ANATIZ — (AA)(AS)]B, = 0,
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where we have used M = M,, + 2. If we premultiply (5.4) by B’ and note that
B'M,, = 0 we have

(5:5) B[(AM) — A(A8)]B, — (AMAT'B'RB, — (ANB(AS)B, = 0.
As we have proven that A = g,(1),
A\ = (BSB)~'B[(AM) — A(A8)]B + 9,(n" 7).
Using (5.1) and the definition of AM, we obtain
(56) B — B =M [n"'(x'v+uv)—AS,, - AT ANZ,,] + 6,(r7Y),
where v = e — uf, = &B. From (5.5)
fm B’[(AM)~ + 218 N B[(AM) — A(AS)](AB)  B[(AM) — A(AS)]BB'S(AB)
B'SB B'SB (B'SB)’
0,(n~%) = (nBSB) V(I — n~'xMZX)v + O,(n").

By assumption, 'SP is independent of v = 8. Furthermore B'SB is distributed as
a multiple of a chi-square random variable with d degrees of freedom, where the
multiple-is d ~'A 7102, )

Because of the analogy to linear regression theory, we chose to include the term
n~%v'xM_!x'v in the numerator of the F-statistic although this term is O ), (n~ . In
practice, when A is known and the value of A~ I\ is large (or small) relatlve to the
critical value of the central F distribution, the validity of the model is called into
question.

THEOREM 6. Let the assumptions of Case (iii) of model (2.0) hold. Then n%(ﬁL1 -
B,) converges in distribution to a normal random variable with mean zero and
covariance matrix

M_ o2 + (1 + M (R,,02 — B2 )ML
PrOOF. By using (5.5) and
AN = Ao, (62 — s2) + O,(n7Y),
where 62 = n~'v'v and 52 = B’SB, we have
B — B =M [n7'(xv +uv) - S, — 07482 — s2)=B,,] + O,(n7").
Considering the random variables 4
=G X0, + w0, — 0, %0, }, t=1,2---,n,
and
Ef_IC,-(s -0, s‘,auiv)

where the C; are arbitrary real numbers, asymptotic normality follows by the
argument of Theorem 1. []
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The root A is bounded by a multiple of an F random variable and, hence, has finite
moments for sufficiently large d. However, B,, does not necessarily possess finite
moments. Therefore we suggest that the maximum likelihood estimator be replaced
by

Bri=[Myy — A1 = n7'0)8,,] 7' [Myy —A(1 - n7'0)8,,],

where a > 0 is fixed. Under the assumption of bounded x’s it has been demon-
strated that

E{f—B)=—[n'0 -l + (" +d
XM = (63) 7' 2uoBoa} MS! + 0(n72).

Also it is possible to prove that, through terms of O (n~2), the mean square error of
Bu is uniformly smaller for a = 4 than for any smaller a.
Case (iiia) differs from Case (iii) in that
2 = diag(ogp 0115 * * * 5 Oht)
is estimated by
D = diag(se, S11>* * * 5 Six)s

where the s; are assumed to be independently distributed as multiples of chi-square
random variables with d, i = 0, 1, - - -, k, degrees of freedom. In our presentation
we assume E{D} = 2, but it is easy to modify the results for the case wherein
E{D} =)\"1%
We consider the estimator
~ A A — —-1.A
B = [Mxx -(A-n a)Dw] M,y,
where a > 0 is fixed and A is the smallest root of |M — AD| =
THEOREM 1. Let the assumptions of Case (iiia) of model (2.0) hold. Let E (D} =

2. Then n2(}\ A) converges in distribution to a normal random variable with mean
zero and variance

2+ 2‘7—421-0'7: 14 3’
where B’ = (1, =B) = (Be, —=B1, =By -+ » — B
PROOF. As in Theorem 5, A is bounded by a multiple of an F random variable.
Using (5.4) '

AN =

B[(aM) - (AD)]B
2

9,

+0,(n7"),

where
AD =D — 2’
B(AM)B = n"'vv — o2,

B'(AD)B = 2'f-o Biz‘sii - °§~



ERRORS-IN-VARIABLES MODEL 419

Hence
=oX(n"'vv = 2 B%s;) + O,(n7T)
and the result follows by the arguments of Theorem 1. []

By analogy to Theorem 5 one might choose to approximate the distribution of
(n — k)~ 'nA with the distribution of Snedecor’s F with n — k and » degrees of
freedom, where

v =[S%_od18%2] "ol

THEOREM 8. Let the assumptions of Case (iiia) of model (2.0) hold. Then n%(ﬁ L1

— B,) converges in distribution to a normal random variable with mean zero and
covariance matrix

M_ o2 + M (B..02 — B2 )M5!
+2Mxxl{R + 2u02w00_4(21-0"’1 1 u) + o_z(RBlz + 2 BIR)} XX ’
where
R= dlag(m ,31011, "12.32022,' Tt "kﬁl?oﬁk)-
ProoF. We have
ﬁu B, = [ “'(x'v+uv) +D wbi + (ANZ,, Bl]"’@(”_l)

= Mx [ —l(xv + llV) + D ﬁl - 0_2(62 - 21-031 sii)zuu] + Op(n_l)'
Considering the random variables
2’;_,q{x,.,v, + w0, — o, 202014,0} t=12--,n
and

2k-lci{ B + 0‘22"_0,@2sﬁam},

where the C; are arbitrary real constants, the result follows by the arguments of
Theorem 1. []

APPENDIX

THEOREM A. Let the assumptions of Case (i) of model (2.0) hold and let the
sequence {|x,|} be uniformly bounded. Then

E{Bi-B)=-n""M{(k+1-a) +[1+ n][tr(B M)I
+2,M;'}2,, + 0(n72).

Furthermore, through terms of order n=2, the mean square error of ﬂ, is smaller for
a =k + 4 + 27 than for any smaller a.

Proor. The ith element of ﬁ, is given by
B; = Zj_ AN, = =5, B~ cof () N,
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where cof (h ) is the SIgned cofactor of h,j, h,j is the yth element of H, #? is the ijth

element of H 1 and N is the jth element of N. Let 6 denote the column vector
obtained by listing the columns of M M » Sy S, In a single column and let

xx2 uw’
L®) = ISWI"IE;‘_,cof( )N |” where r is a posmve integer. Because
| > |n7'S,,|
we have

Iﬁil’ < ”’kL(é)-
James (1954) has shown that E{|S,,|**} is bounded for all d greater than some
number depending on r. By the normality of & and because |x,| is bounded,

E{|é —0|4”‘} = 0(n~%%)
forr=1,2,---, where = E{@). It follows that, for r = 1,2, - -
E{|L(O)*} = o(1).

We may choose an open set 4 containing 0 such that there exists an n, for which
§>1+n"'if0€ 4 and n>n,. Forn >n, and @ € 4 the elements of B, are
continuous functions of @ with continuous third derivatives. Therefore the condi-
tions of Theorems 5.4.3 and 5.4.4 of Fuller (1976) are satisfied and a truncated

Taylor’s series may be used to obtain the moments of ﬁl through terms of order
n~2. Carrying out the Taylor’s expansion we have

B, — By = MZ!(b — aB,) — MaMC!(b — aB) + 8,(n~3),
where
a=n"'Xu+ux+uwu)—(1-an 1S,
b=n"'(wy+xe+ue)—(1—an"1)S,,.
Using
nTE{xuM_'x'v} = 2,
n"'E{wxM_'x'v} = k2,
E{(n""wu - S, M_'(n uv - S.,)} ="+ d")[tr(ZWM;')I
+2, M. 2.,
we obtain the bias result. Similarly,
(B-l - Bl)(f:i _Bl)l = (Mxx - Suu)_lggl(mxx - Suu)_l
—n"laM_ 2, M lggM_! — n”'aM_lggM_ 'R M
(A.1) +n~laM_!(gS,, + S,g)M_}
—n~laM'aM_ (g2, + 2,.g)IM.}
—n~laM_/(g2,, + Z,.8)M_aM}!
+ n"%MLR, 2 M5! + 0,(n" ),
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where g = n~!(x'v + u'v) — S,,. Now the first term of (A.1) is, except for modifi-
cation associated with ¥, the error in the estimator with.a = 0. Therefore we need
only evaluate the expectation of the remaining six terms of (A.1). Using

E(85,) = —d '(03R, + EuR,)
E{eM;'gR,,)} = n7(k + DB 2, + (™' + d7)
X[ZLMZ + t(ML 2,2,
E{M; 2,8} =n M, E,M 2, +n" 22,
+ (n7! + d7)[ 2L (BuMLZ,,) + 22 M2,
where ¢ = n~!(x'u + u'v + w'u) — S, we obtain
- an M2 M (02 + no})2,, + (1 + n)Z,2,, M,
—anMZ'[(02 + no))Z,, + (1 + D2, 2, M2, M
=2an (1 + M [ B ML + (M2, T2, 2, M !
(A2) —2an M (2 M, '2,.)
—2an” (1 + M2, M (B, M. '2,,)
—an”}(1 + 9)[M'2, 2 M2 M + MJ'2, M2 3 M_!|
-nM;![2a2,, (02 + no?) — {a® — 2a(k +2) — Zan}ZWZW]M;xl
+0(n73)

as the effect of a on the mean square error of ﬁ,. Let £ be an arbitrary real k
dimensional column vector with |§| # 0. Then £L§, where

L = 2aM_ (2 M'E,,) + 2aM /2, M (0] + no})
- [a2 —2a(k +2) - 2a'n]M,;12w2wM;',

is larger for « = k + 4 + 27 than for any smaller a. As all other multipliers of a in
(A.2) are negative semidefinite matrices, the conclusion follows. []
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