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ADAPTIVE DESIGN AND STOCHASTIC APPROXIMATION'

By T. L. Lat AND HERBERT ROBBINS
Columbia University

When y = M(x) + ¢, where M may be nonlinear, adaptive stochastic
approximation schemes for the choice of the levels x;, x5, - - -+ at which
Y1 Y2 -+ + are observed lead to asymptotically efficient estimates of the value §
of x for which M(@) is equal to some desired value. More importantly, these
schemes make the “cost” of the observations, defined at the nth stage to be

7(x; — 8)?, to be of the order of log n instead of n, an obvious advantage in
many applications. A general asymptotic theory is developed which includes
these adaptive designs and the classical stochastic approximation schemes as
special cases. Motivated by the cost considerations, some improvements are
made in the pairwise sampling stochastic approximation scheme of Venter.

1. Introduction. We shall consider the general regression model
(1.1) yi=M(x) + ¢ i=12:-:

where the errors ¢, ¢,, - - - are ii.d. random variables with mean zero and
variance o2. Unless otherwise stated, the above notations and assumptions will be
used throughout the sequel. We shall always assume that the regression function
M(x) is a Borel function satisfying the following three conditions:

(1.2) M(8) = 0 for a unique # and M’(8) = B exists and is positive;
(1.3) infsq)r_gj<s-{M(x)(x — 0)} >0  forall 0<8<1;
(1.4) IM(x)| <c|x| +d  forsome ¢,d >0 andall x.

Suppose that in (1.1) x; is the dosage level of a drug given to the ith patient who
turns up for treatment and that y, is the response of the patient. Suppose the mean
response of the patients under treatment should be at some optimal given level A.
Without loss of generality, we shall (replacing y; by y; — h if necessary) assume that
h = 0. To achieve this mean response h = 0, if the unique (by (1.2)) root @ of the
equation M(#) = 0 were known, then the dosage levels should all be set at §. Since
@ is usually unknown, how can the dosage levels x; be chosen so that they approach
0 rapidly? In the choice of the dosage levels x; our primary objective here is in the
treatment of the patients rather than in finding an efficient design to estimate the
ideal dosage level 8. Calling 37(x; — 8)* the cost of the design at stage n, we have
announced in [8] that the apparent dilemma of choosing between a small cost and
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a good estimate of # can be resolved by using a suitable adaptive design. In the
present paper and its companion papers [10], [11] and [12], we investigate the
properties of the adaptive designs announced in [8] and prove the theorems that
were stated without proof in [8]. We also consider some other adaptive designs and
analyze their performance.

In an adaptive design, the choice of each level x; will depend on the data so far

observed, i.e., x; is a function of x, y;, - - -, x;,_, ;_;. Consider first the simple
case where M(x) is linear so that
(1.5) yi=B(x—0)+¢g i=12---

Suppose that 8 is in fact known. To estimate 6 at stage n, it is natural to use the
least squares estimator

(1.6) =%, - B Y(=0-B""%).

(Here and in the sequel, we use the notation &, for the arithmetic mean n~'2%a; of
any n numbers q,, - - -, a,.) The last equality in (1.6) shows that irrespective of how
the levels x; are chosen, whether preassigned or sequentially determined,

(1.7) E(0r - 8)" = a*/ (nB?),

and

(1.8) ni(6* — 0) >.N(0,0%/B%)  as n—> oo,

where —; denotes convergence in distribution. In particular, if we use the adaptive
design

(1.9) xi+1=0i*=fi_ﬁ_ly_i i=12---

and let x, (= initial guess of §) be a random variable with finite second moment,

then it follows from (1.7) and (1.9) that the expected cost of the design (1.9) at stage
n is of the order of log n, i.e.,

(1.10) E{Z%(x; — 8)*} = (¢°/B?)log n + 0(1).

While the desirable properties (1.8) and (1.10) for the adaptive design (1.9) have
been obtained under the assumption of the linear model (1.5) with 8 known, the
following theorem says that similar properties still hold in the general nonlinear
case, provided again that 8(= M’(9)) is known.

THEOREM 1. Let ¢, €, €, - * + be i.i.d. random variables with Ee = 0 and Ee? =
o2. Let M(x) be a Borel function satisfying (1.2), (1.3) and (1.4). Let x, be a random
variable independent of €|, ¢,,- -+ . Fori= 1,2, - -, define inductively y; by (1.1)
and x; ., by (1.9). Then
(1.11) ni(x, — 8) —>N(0,02/B?)  as n— oo;

(1.12) lim,_, x, = 0 a.s., and in fact,

lim sup,_, . (n/2 log log n)%lx,, — 0| =o0/Bas;
(1.13) lim,_, . {S%(x, — 8)*/log n} = 0*/B? ass.
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Theorem 1, which was stated without proof in [8], is a special case of Theorem 2
below. The almost sure convergence results (1.12) and (1.13) are of particular
interest for the kind of applications described above. As time progresses, one
obtains more and more subjects for treatment; and the choice of the dosage levels
is a continuing process. Theorem 1 says that if one uses the adaptive design (1.9),
then with probability 1 the levels x, will converge to the ideal level 6, the cost
S%(x, — 0)* will eventually grow like (0?/B%log n, and that x, will still be an
efficient estimator of 4 in the sense of (1.11).

In practice, the slope B of the regression function at the level § will be unknown.
In ignorance of B, if one simply substitutes for 8 some guess b of its value in the
recursion (1.9), then the following analogue of Theorem 1 holds.

THEOREM 2. Let ¢, €, €,, - + - be ii.d. with Ee = 0 and Ee* = o°. Let M(x) be a
Borel function satisfying (1.2), (1.3) and (1.4). Let x, be a random variable indepen-
dent of €, e, ++ . Fori=1,2,-- -, define inductively y; by (1.1) and x; ., by
(114) Xiv1 = ix - b_57i’

where b is a positive constant.
() Let (1) = 1/{tQ2 — 1)} for 0 <t < 2. If b < 2, then

(1.15) n3(x, = 0) >eN(0, (%/ BIf(b/B));
(1.16)  lim sup,_ (/2 log log n)?|x, — 8] = (a/B)f*(b/B) as.;
(1.17) lim, o {Zi(x; — 8)*/log n} = (a*/BH)f(b/B) as.

(ii) Assume that M(x) further satisfies
(1.18) M(x) = B(x — 8) + 0(|]x — 8|'*") as x — 8 for somen > 0.
If b > 2, then there exists a random variable z such that

(1.19) nf’t(x, — ) > z as.,

and, therefore,

(1.20) {Zh(x, — 8)*/n'~CE/O} 5 22/ (1 — (2B/b)} ass.
(iii) Suppose b = 2 and that M(x) further satisfies (1.18). Then

(121) (n/10g n)*(x, — 8) >¢N(0, 0*/b?),

and

(1.22) {1(x; = 6)*/ (log n)*} —>¢(a/b?) [ow?(1) db,

where w(t), t > 0, is the standard Wiener process.

In Section 2 we shall prove a more general result that contains Theorem 2 as a
special case. Theorem 2 says that if in (1.14) b < 28 then the cost Z7(x; — §)?
grows like a constant times log n and that n%(x,, — 0) is asymptotically normal.
The factor f(b/B) in (1.15)—(1.17) has its minimum value 1 for b = B, and
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fb/B)=1~r)7"if b= (1 £ r)B (0 <r < 1). Thus, even if our guess b of 8 has
a relative error of 50%, the variance of the asymptotic distribution of n%(x,, -0
and the asymptotic cost Z7(x; — 6)* for the adaptive design (1.14) only exceed the
corresponding minimum values for b = 8 by a factor of ;. On the other hand, if
b > 2B, the cost is of a much larger order of magnitude and the rate of conver-
gence of x, to @ is much slower.

The adaptive design (1.14) sticks to an initial guess b of B8, and its asymptotic
performance is unsatisfactory when b exceeds 2. Instead of adhering to an initial
guess of B, it is natural to consider the possibility of estimating 8 from the data
already observed and using that estimate in the choice of the next x-value. This
means replacing the recursion (1.14) by
(1.23) X1 =X — b7,
where b, = b(x,,y," * +, X;, »;) is some estimate of 8 based on the data already
observed. Adaptive designs of the type (1.23) will be discussed in [11], where we
shall show that by a suitable choice of b, the desirable asymptotic properties (1.11),
(1.12), and (1.13) still hold for the design (1.23).

In this paper we consider an alternative way of modifying the adaptive design
(1.9) when B is not known. We first note another way of expressing the recursive
scheme (1.9), or more generally (1.14), in the following lemma.

LeMMA 1. Let {x;,i > 1} and {y,, i > 1} be two sequences of real numbers. For
any constant ¢ and positive integer n, the following two statements are equivalent:

(1.24) Xig1=X,—cy; forall i=1,--- n
(1.25) Xpqa=x—c;fi forall i=1,--- n.

1

Lemma 1 is easily proved by induction on n. Now, the recursion (1.25) with
¢ > 0 is a special case of the general stochastic approximation scheme

(1.26) Xio1 = X; — CY; i=12---

introduced by Robbins and Monro [15], where {c;} is an arbitrary sequence of
positive constants such that

(1.27) 3P = o and =P’ < oo.

For the regression model (1.1), under the assumptions on the errors ¢ and on the
regression function M(x) described in the first paragraph, it is known (cf. [1], [15])
that (1.27) is a sufficient condition for the x, generated by the stochastic approxi-
mation scheme (1.26) to converge to 6 in mean square and with probability 1. It is
also known (cf. [3], [16]) that if ¢; = (ib)~', where b is a positive constant < 28,
then the x, generated by (1.26) has an asymptotically normal distribution as given
by (1.15). Therefore, by the equivalence in Lemma 1, the asymptotic normality
(1.15) in Theorem 2 follows immediately. It is also known that if the ¢, are of a
larger order of magnitude than i ™', then x, may converge to  in distribution at a
rate much slower than that of (1.15). In particular, Chung [3] has considered
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¢;=i"U"% for certain positive values of 8§ <3 and has shown under some
restrictive assumptions that

(1.28) n1=972(x — §) 5:N(0, 6%/ (2B)).

He has also noted that an asymptotically optimal choice of ¢; for the stochastic
approximation scheme (1.26) is ¢; = (iB) ", at least for the linear case M(x) = B(x
— @) (cf. Sections 6 and 7 of [3]).

In ignorance of B, it is natural to try using ¢, = (i)~ "' in (1.26), where
b, = b(x,y," "+, X;,y;) is some estimate of B based on the data already ob-
served. Of course, we want b, to be a strongly consistent estimator of 8 so that
hopefully the asymptotic properties (1.11), (1.12) and (1.13) will be preserved. We
shall call any adaptive design

(1.29) X1 = % — ¥/ (i),

where b, is a strongly consistent estimator of B(= M’(#)), an adaptive stochastic
approximation scheme, and in Section 2 we shall show that adaptive stochastic
approximation schemes have the desirable properties (1.11), (1.12) and (1.13) of
Theorem 1. More generally, if b, in (1.29) converges to some positive constant b
with probability 1, we shall call (1.29) a quasi-adaptive stochastic approximation
scheme. An asymptotic theory will be developed in Section 2 for quasi-adaptive
stochastic approximation schemes, and these general results not only include
Theorem 2, and therefore Theorem 1 as well, as special cases, but also establish the
desired asymptotic properties (1.11), (1.12) and (1.13) for adaptive stochastic
approximation schemes. In Sections 3 and 4 we shall describe two different
methods of constructing adaptive stochastic approximation schemes and apply the
results of Section 2 to the analysis of these procedures.

2. Asymptotic properties of quasi-adaptive stochastic approximation schemes.
Throughout this section the following notations will be used. Let e, ¢, - - -+ be ii.d.
random variables with Ee = 0. (Although we shall often also assume that Ee? < oo,
there are certain places where we can relax this assumption.) Let M(x) be a Borel
function satisfying (1.2), (1.3) and (1.4). Let x, be a random variable independent

of €&, Let ¥, denote the o-field generated by x,, and for £ > 1 let &,
denote the o-field generated by x,, €, - - ,g. Fori=1,2,---, lety, = M(x,)
+ ¢, where {x;} is a stochastic approximation scheme defined by

(2.1) X1 = X — y;/ (iby),

and {b,} is a sequence of positive random variables.
The following representation theorem, stated without proof in [9], is a very useful
tool for analyzing quasi-adaptive stochastic approximation schemes.

THEOREM 3. Let b be a positive constant and let {b,} be a sequence of positive
random variables such that lim, b, = b a.s.

n—soo-n
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(i) For the stochastic approximation scheme (2.1), if lim,_ x = 0 a.s., then the
following representation holds:

(22) Xp1 =0 + (7% /7,){Z18,8 + 0o},

where py, 7, and 8, are random variables having the following properties:

(2.3) w>0 and 8§ = —k¥/Y"\r /b, k>1;
(249 P(1,yy— 1, =0(1,/n) as nooo]=1

(i) Suppose that b, is F,_,-measurable for all n > 1, and assume either that
E(|e|log|e]) < oo or that € is symmetric. Then for the stochastic approximation scheme
(2.1), lim,,_, . x, = 0 a.s., and in the representation (2.2) we further obtain that

(2.5) 7, and therefore 6, also are %, _ -measurable for all k > 1.

(iii) Assume that E|e|” < oo for some r > 1, that M(x) also satisfies (1.18), and
that

(2.6) P[ b,—b=o(n"*asn— oo] = 1 for some positive constant \.

Then for the stochastic approximation scheme (2.1), lim,_  x, = 8 a.s., and in the
representation (2.2), the random variables T, and 6, satisfy (2.3) and

7)) P[1,4i/7, =1+ o(n""*P)asn— o] = 1 for some positive constant p.

Consequently,
(2.8)

lim,_, 7, = 7 exists and is positive a.s.,and P[1, =17+ o(n"?)asn—> o] = 1.

n—»o0'n

Moreover, if b, is %, _,-measurable for all n > 1, then (2.5) also holds.

REMARKs. In the particular case b, = b for all n, and under the stronger
moment condition Ee? < oo, similar representation results have been obtained by
Major and Révész [13], Kersting [7], and Gaposhkin and Krasulina [6]. Gaposhkin
and Krasulina [6] have obtained the representation (2.2) for this particular case and
established the properties (2.3), (2.5) and

(2.9) P[{r,)} is slowly varyingas n — o0 ] = 1.

(A sequence {L(n)} is said to be slowly parying as n — oo if L([cn])/L(n) — 1 for
all ¢ > 0. If {L(n)} is slowly varying, then the sequence {n°L(n)} is said to be
regularly varying with exponent a.) By Theorem 4 of [2], (2.4) implies (2.9); in fact,
a sequence { L(n)} of positive numbers is slowly varying if and only if there exists a
sequence {c,} of positive numbers such that L(n)/c,—>1 and ¢,,, —c, =
o(c,/n). The property (2.4) is a very useful tool for studying the limiting behavior
of the stochastic approximation scheme (2.1) and of the cost 2%(x; — )* for the
design. It enables us to reduce the problem to that of the martingale =7¢, /b, (When
b, is ¥;_,-measurable for all i) via a partial summation technique (cf. [9]).

The representation considered by Major and Révész [13] is somewhat different
from (2.2). They assume that M(x) = B(x — 0) + U(x) where U(x) = 0((x — 6)?)
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as x — @ (i.e., (1.18) holds with n = 1) and obtain the representation
Xpp1 =0 — ”_B/b{z’llk(ﬁ/b)_l(l + O(k_l))(fk + U(xk)) + Po}

for the case where b, = b for all n and under the assumption Ee? < oo. Again, for
this special case b, = b, and under the assumptions Ee? < oo and (1.18), Kersting
[7] recently showed that if b < 28 then

Xpe1 =0 — ”_B/bz’llk(ﬂ/b)_lsk + p,

n

where the p, are random variables such that n*p, — 0 a.s. for some + < A < 8/b.
The methods of Kersting and of Major and Révész depend very heavily on the
assumption that b, = b for all n. The following proof of Theorem 3 is based on a
generalization of the argument of Gaposhkin and Krasulina.

PrOOF OF THEOREM 3. Suppose that lim,_, x, = 8 a.s. Without loss of general-
ity, we can assume that # = 0. Therefore, in view of (1.2),

(2.10) M(x,) = (B +¢&)x,  where § —0as.
Hence by (2.1),
Xp41=(—n"'d)x, — ¢,/ (nb,), where d,=(B+¢)/b,
It then follows that
(211) xn+1 = Bm—l,nxm - 2'I'c—mﬁknek/ (kbk)’
where
Bkn = 7=k+1(1 _j_ldj)’
k=0,1,---,n—-1,8, =1

Clearly d, — B/b a.s. Therefore, for almost all w, if k is sufficiently large, say
k > ky(w), then

(2.12) B = Y,vi! for n >k,
where
(2.13) ¥, = o y(max{1 - j~'4, 1}).

Since d, » B/b as., it is easy to see from (2.13) that with probability 1, v, is
regularly varying with exponent — B8/b (cf. [2]). Let 7, = (n#/%y,)~'. Then 7, is
slowly varying with probability 1. To show that , satisfies (2.4), we note that with
probability 1,

7/ Ther =1+ n D21 — n=Y(B/b + o(1))} =1+ o(n™").
From (2.11) and (2.12), we obtain that
Xne1 = — (”p/b/"'n)zrllk(p/b)_l'rksk/bk
+ {(”_ﬁ/b/’rn)zlf"k(ﬁ/b)_lfksk/bk + :Bko,nxko+1}'
Hence (2.2) holds. {
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To prove (ii), suppose that b, is ¥,_,-measurable for all n > 1, and assume
either that E(|e|logle|) < co or that & is symmetric. Then by Theorem 4 of [9],
lim, ,x, = 0 a.s. Moreover, since b, is %,_,-measurable for all n, so is £, (as
defined by (2.10)). Hence d,(= (B + £,)/b,) and therefore v, (as defined by (2.13))
also are %,_,-measurable, and (2.5) follows.

To prove (iii), suppose that Ele|” < oo for some r > 1 and that {b,} satisfies

(2.6). Then
‘ S1(ib) e, = Su(ib) e, + S1(ibb) (b — b)e,

Since Ele|” < oo, 27i~ ', converges as. by the three-series theorem. Moreover,
since E(Z%~'"|g]) < o0 and so S~ g| < oo a.s., therefore by (2.6), with
probability 1

Efo(ibi)_llb - bil Isil = E‘l"’o(i_l_xlsil) < co.

Hence 37(ib)~'; converges a.s. Therefore, using the same argument as in [1] (see
also Lemma 5 in Section 3 below), it can be shown that lim,__x, = 0 a.s., and so
the representation (2.2) holds.

We note that by (2.3),

(2.14) =78.¢ = —b_l(E'l‘k(ﬂ/b)_l'rkek) — {Z?k(ﬁ/")_lfk(bk_' - b_')sk}
= -b"'U,, - U,, say.

Take 0 < p <A and ¢ > 0 such that 8/b > g and p > g. Then by (2.6) and 2.9),
T.lb, ' — b~ = o(n") a.s., and therefore with probability 1

(2.15) |Uy,| < nB/D=a5m0(ka1=0|g,|) = 0(n(B/5)9),

since p > g implies that Z°k?~'~*|g | < oo a.s. Without loss of generality, we can
assume that r < 2 and B8/b > 1 — r~'. Let S, = 37, Then n=1'S 0 as., and
by (2.4),

KE/O= 1 — (k+ 1)~ — (578 — 1)KB/D=2 a5,
Therefore, in view of (2.9), with probability 1
(2.16) Uy, = n/D7 17,8, + SH=H KB/ Vg, — (k + 1)/ s,
= O(nB/D=1+r7'r .

Let 0 <{ < min{g, 1 — r~'}. Then from (2.2), (2.9), (2.14), (2.15) and (2.16), it
follows that lim,_  nx, = 0 a.s.

Assume that M(x) also satisfies (1.18). Then with y given by (1.18) and ¢,
defined by (2.10), since n‘x,, — 0 a.s., we can write

(2.17) ¢, =&n™%  where ¢ —>0as.

Without loss of generality, we shall assume that n <1, and so {n < 1. Let
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p = min{{n, A}, where A is given by (2.6). Then by (2.6) and (2.17),

(2.18) d(=(B+¢&)/b,) =B/b+¢&n", where £ —0as.
From (2.13) and (2.18), it is easy to see that (2.7) and (2.8) hold. []

We now make use of the above representation theorem to obtain the following
generalization of Theorem 2 to quasi-adaptive stochastic approximation schemes.

THEOREM 4. Assume that Ee* = 0* < oo, and suppose that {b,} is a sequence of
positive random variables such that b, is %,_,-measurable for all n > 1 and
lim,_, b, = b as., where b is a positive constant. Let {x,} be the quasi-adaptive
stochastic approximation scheme defined by (2.1).

(i) Let b < 2. Then (1.15), (1.16) and (1.17) hold.

(i) Let b > 2B. If M(x) further satisfies (1.18) and {b,} further satisfies (2.6), then
there exists a random variable z such that (1.19) and (1.20) hold.

(iii) Let b = 2B. If M(x) further satisfies (1.18) and {b,} further satisfies (2.6),
then (1.21) and (1.22) hold.

(iv) Suppose b < 2B. Let b} be a sequence of positive random variables (not
necessarily %, _,-measurable) such that

(2.19) P[b} = b, = o(n"v,) asn > 0] =1,
where v, vy, - - + are iid. positive random variables such that Evi < co. Let
xt=x,andfori=12,-- -, definey* = M(x}¥) + ¢ and x}¥ ., = x} — y*/(ib}).

Then (1.15) and (1.16) still hold with x¥ in place of x;. If condition (2.19) is
strengthened to

(2.20) P[ b — b, = o((n log log n)_%vn) asn— oo] =1

and there exists a positive integer m such that b} is F,

n+m-measurable for all n > 1,
then (1.17) still holds with x} in place of x;.

ReMARk. The first three parts of this theorem deal with quasi-adaptive
stochastic approximation schemes whose estimate b, of 8 at the nth stage is based
only on (x;,yy,* * *, X,_1,¥,—1)- Although y, is also observed, it is not used to
estimate B, for otherwise b, would not be %,_,-measurable. The requirement that
b, be %,_,-measurable gives a martingale structure to the sum X}8.¢, in the
representation (2.2), and our proof of Theorem 4(i)—(iii) depends on this martingale
structure. On the other hand, since y, has also been observed, it seems artificial not
to use it in b, simply because this would destroy the expedient martingale property.
In this connection, Theorem 4(iv) is of particular interest. It implies that given an
estimator b¥(= b¥(x, v+ * * , X, ¥,), if bF is close to b, = b¥_, in the sense of
(2.20), then the desired conclusions still hold, at least in the important case b < 2.
We shall see in Section 3 and [10] that most “reasonable” estimators b} for the
present problem satisfy the approximation property (2.20) with b, = b¥_,. Note
that Theorem 2 is the special case of Theorem 4 with b, = b for all n. We shall
need the following three lemmas in the proof of Theorem 4.
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LEMMA 2. Let z,, z,, - + - be i.i.d. random variables with E|z,| < oo.

(1) liInn—»co(zrl‘i—lzi)/(log n) = Ezl a.s.
(ii) Let {r,} be a sequence of random variables such that P[r, = o(n"") as
n — o] = 1 for some 0 < p < 1. Then, with probability 1,

(2:21) 21z = o(n'™P) if p<l1,

o(log n) if p=1.
Proor. To prove (i), let S, = 37z;. We note that

(222) STl =3 - G+ )T + a7l

ne

Asi—o0,i”'— (i + 1)"' ~i"?and i”'S, > Ez, a.s. Hence it follows from (2.22)
that %~ 'z, ~ (Ez,)log n as.
To prove (ii), let S, = Zf|z;| and note that
S5 e|z) = 7P - (i + 1)7)S) + oS,
As i—>o00, iTP—(i+ 1)7P~pi~®*V i~IS/ 5 E|z|| as. and |r,| = o(i"") a.s.
Hence (2.21) follows. [

LemMMA 3. Let z,,z, - - be iid. random variables such that Ez, = 0 and
Ez? =02 < 0. Let 8, C 8, C - - - be an increasing sequence of a-fields such that
z; is 8;-measurable and is independent of G,_, for all i > 1. Let u;, u,,- - - be a

sequence of random variables such that u; is G,_,-measurable for all i > 1 and
lim,_ u, = A as. for some constant A. Then, redefining the random variables on a
new probability space if necessary, there exists a standard Wiener process w(t), t > 0,
such that

(2.23) maxm<,,|2',"k‘%ukzk — Aow(log m)|/ (log n)%—>,,0 as n— oo.
Proor. Write
(2.24) STk~ ruz, = ASTk 2z, + STk (u, — A)z,.

Redefining the random variables on a new probability space if necessary, there
exists a standard Wiener process w(?), ¢t > 0, such that

(2.25) max

,,,<,,|E’,"k‘5lzk — ow(log m)|/ (log n)%——>,,0 as n-— oo,

(cf. [5]. Let & = (; — A1y, _ 4<1)- Since lim, , u, = A4 as. and (2.25) holds, it
remains to show that

(2.26) max,, < |37k~ 24z, / (log n)? 0.

Noting that E(S"k ~ 2,z = 6?7k ~'Eii? = o(log n), (2.26) follows easily from the
martingale inequality. []

LEMMA 4. With the same notations and assumptions as in Lemma 3, suppose that
{7,} is a sequence of positive random variables satisfying (2.7) and therefore (2.8) as
well. Then, redefining the random variables on a new probability space if necessary, we
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have as n — o0
(2.27) maxm<,,|2'1”k“;'rkukzk — Aomw(log m)|/ (log n)% —50.

PrOOF. Let S(m) = E'I"k‘%ukzk. By partial summation,
(228) STk iz =27 (1, = 1) S(K) + (1., — 1)S(m) + S(m).
By (2.7), 2.8) and Lemma 3, for 1 < m < n,
(229) E77 I = el [S(R)| + |7, — 7] |S(m))|

= Z77'0(k V) {|w(log k) + A,(k)[} + 0(m™?){|w(log m) + A,(m)|},

where A,(m) are random variables such that
(2.30) max,, . ,|A,(m)|/ (log n)? = 0.
From (2.28), (2.29), (2.30) and Lemma 3, (2.27) follows immediately. []

PrOOF OF THEOREM 4(i). By a partial summation technique, we have shown in
[9] that the central limit theorem (1.15) and the law of the iterated logarithm (1.16)
follow from the representation in Theorem 3 and certain martingale limit theorems.
We now prove the asymptotic behavior (1.17) of the cost =%(x; — 8)>. By Theorem
3(ii),

(231)  Zi(x = 0)* = (x, = 8)" + ZiZhi T/t AT Bk + w0}

where p,, 7., and §, are random variables satisfying (2.3), (2.4) and (2.5). Let
a=2B/b (> 1). Define

(232) S, =Si8ee S, =S, +pp aln) =2, ~n""*1/(a ~ 1).

We note that
(2.33)

2’1"'_“”':_251'2 = 2’1'71'_25}2(“(") —a(i+1))
= Z'Z‘a(i)('ri_z - Ti_—zl)S~i2 + Ega(i)Ti_—zl(jiz - S~:2— 1) —a(n + I)Tn_2'§n2
+a(1)72S2.

By (2.4) and (2.9), with probability 1,
(2.34)

;a(i)lfi_z - i_—ZI|S~i2 = (2 + o(1))Z3a(i)|7, — ’Ti—ll"'i_3s~i2 +0(1)
= o(Z7(a(i)/ )77 2S7) + 0(1) = o(Z7i~r,2S?) + 0(1).

(We add the 0(1) term in (2.34) because we have not yet shown that =7 ~%,~2§2 —
oo with probability 1.) Obviously,

(2.35) na(i)r23(S? — S2)) = S5a(i)r,22(82%2 + 28,6,S,_1 + 28,6p0)-
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Since the summands are nonnegative, it follows from (2.3), (2.9) and (2.32) that
with probability 1

(2.36) Sha(i)r, 3877 ~ (257 '€?)/ {b*(a — 1)}
~ (a’log n)/ {b(2B — b)}.

The last relation above follows from Lemma 2(i) since Ee? = 02> < 0. We
note that a(i)7,_49;S,_, —» 0 as. by (1.16), (22) and (2.9). Moreover,
(=r.,a()7,238;S,_1&, F,n > 2} is a martingale transform. Therefore, using a
standard truncation argument like that used in the proof of Lemma 3 (to ensure
finite expectations) and the strong law for martingales (cf. [14], page 150), we
obtain that with probability 1

(237) Z5a(i)7738,e,S;,_, = o(23a*(i)1, 248787 ) + 0(1)

iCii—1
= o(Z771i7r7282) + 0(1) = o(Z77 i~ 7257) + 0(1).

The 0(1) term in (2.37) indicates that 33a(i)7,-38,¢S;_, converges as. on
[E5°i %7 2S? < oo]. To see the last relation in (2.37), we note that S2 < 2(S2? + p3)
and that 3%~ %,72 < oo a.s. since @ > 1 and (2.9) holds. Since

Sra*(i)r, 487 = 2F0(i 17 %) < o as.,

it follows from the (local) martingale convergence theorem ([14], page 148) and a
standard truncation argument like that used in the proof of Lemma 3 (to ensure
finite expectations) that

(2.38) Sta(i)7 38  converges as.

In view of the law of the iterated logarithm (1.16) and the representation (2.2), we
obtain that

(2.39) (n=8%/1,)S, = O(n‘%(log log n)%) a.s.
Therefore, with probability 1,
(2.40) a(n + 1)7,72382% = o(log n).

From the relations (2.33)-(2.40), the desired conclusion (1.17) for 2%(x; — 6)*
follows. 1

To better understand the partial summation technique in the preceding proof of
(1.17), consider the special case b = 8 and M(x) = B(x — #). In this case, as
indicated in Section 1, x,,, = § — B~ '¢, and so (1.17) reduces to the following
interesting corollary on the fluctuation behavior of sample means.

COROLLARY 1. Let ¢, ¢, + - be i.i.d. random variables with Ee = 0 and Ee* =
02, Then

lim,_,(27e?)/ (log n) = o a.s.
To analyze 37&% = =7 2(Z'iej)z, partial summation is the natural method.
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PrOOF OF THEOREM 4(ii). Since b > iB, 382 < oo a.s. Hence the martingale
transform X7, ¢, converges a.s. as n — oo. Therefore, by Theorem 3(iii),

™mP/b(x, — 0) — py + T8, ¢, as.
Hence (1.19) holds with z = 7~ !{p, + =°§,¢,}. The relation (1.20) is an immediate

consequence of (1.19). [J

Proor oF THEOREM 4(iii). We note that since b = 28, §, = — k_%'rk /by Let
S, = po + Z78,¢, as before. Since lim,_, b, = b a.s. and 7, satisfies (2.7) and (2.8)
by Theorem 3(iii), Lemma 4 implies that, redefining the random variables on a new
probability space if necessary, there exists a standard Wiener process w(?), t > 0,
such that

(241) max, .|, — (o/b)w(log k)|/ (log n)Z— 0.

From (2.2) and (2.41), the asymptotic normality result (1.21) follows immediately.
We note that with probability 1,

242) Stk 'w(log k) = [t~ 'w*(log t) dt + o(log n
1
= [LE"w2(s) ds + o(log n), setting s = log ¢.

Since [§®"w?(s) ds has the same distribution as (log n)*/iw*(¢) dt, it then follows
from (2.41) and (2.42) that

(2.43) (772217 % 'S2)/ (log n)* —e(0%/b?) [iw(2) dt.
The desired conclusion (1.22) then follows from (2.43) and the fact that
(244) Zi(x, — 0)’ = (x, - 0 + =Nk~ /1) S~ 72 k" §2as. ]
PROOF OF THEOREM 4(iv). Assume that (2.19) holds. We note that
S(ib¥) e = (b)) e + Zj(ibb¥) T\ (B, — bY)e,.

Since b, is ¥,_,-measurable and I{°(ib)"? < oo a.s., the martingale transform

S1(ib) ™', converges a.s. Since E{Z i _%v,.ls,.l} < oo and so 2 _%v,.le,.l < o as,
therefore by (2.19), with probability 1,
Z?O(ibibi*)_llbi — b gl = Efo(i_%vils,-l) < .

Hence Z7(ib*)~ fei converges a.s. Therefore, using the same argument as in [1] (see
also Lemma 5 in Section 3 below), it can be shown that lim x, = 6 a.s. Hence
by Theorem 3(i),

(2.45) Xt =0+ (n"P/r¥){Si8ke, + o2},
where 7} and 8} satisfy (2.3) and (2.4).
Let Z*(n) = Z1¢, /b and Z(n) = Zl¢, /b, Then by (2.19), with probability 1,
(2.46) |Z*(n) — Z(n)| < zqo(k-%ok|ek|) = o(n?),
since Ee? < oo and Ev? < oo (see Lemma 2(ii)). Set Z*(0) = 0 and Z*(r) = Z*(n)

n—00



ADAPTIVE DESIGN 1209

forn—1<t<nn=1,2,-- . From (2.46) and Theorem 2 of [9], it then follows
that, redefining the random variables on a new probability space if necessary, there
exist standard Wiener processes w(¢) and w*(¢), ¢ > 0, such that

(2.47) maxy,<i|r 7 Z*(rt) — (o/B)W(1)] 50  as r—> o,
and
(48)  lim,_|Z*(1) — (6/b)w*(1)|/ ( log log 1) = O a.s.

Let « = B/b — 1. We note that

(2.49) Sioke, = S (ko — (k + 1)°1¢, ) Z*(k) + n°r,Z*(n),
and

(2.50) ket — (k + 1)1}, ~ —ak®* 7} as.

by (2.4). From (2.47)—(2.50) it is not hard to show that (1.15) and (1.16) still hold
with x* in place of x; (see the proof of Theorem 7 of [9]).

Now assume that the stronger condition (2.20) holds in place of (2.19), and that
b is 9, ,,-measurable for all n > 1. We shall show that (1.17) still holds with x*
in place of x;. Let a = 28/b and a(n) = =32.,i ~“ as before and set S} = X167,
S‘,‘,“ = S¥ + pg. Clearly the relations (2.33)-(2.36) and (2.39) — (2.40) still hold with
¥, 8* S* and S* in place of 7, 8, S, and S,. Hence we need only show that in

i

analogy with (2.37) and (2.38), with probability 1,

2.51 Sra(i)T*7%*S* e, = o(27 i *725*?) + o(log n),
i i Pi—1% 1 i i

and

(2.52) "a(i)T*%6*e, converges.

To prove (2.51) and (2.52), we note that 7* and therefore S} also are
%,.m-measurable, since b* is %, ,-measurable for all n > m (see the proof of
Theorem 3). By (2.4), with probability 1,

(2.53)

=1, _(1+0(™") and 7, =7, (1+0(7") as i-oo.
As in (2.39), we have
(2.54) S¥ = 0(r2n®/D=1(log log n)?) a.s.,
and therefore with probability 1
(2.55)  Zga(@)i~'nto,_ ({%/971/br)|SE | el

= 2‘2’°0(i_%(10g log i)%)- l&)] < 0.

By (2.20), with probability 1,
(2.56) * =p, + o((n log log n)_%on),
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and therefore using (2.54),
(2.57) Z5a(i)rr~ B/ bx — by |S¥ |e
50(i"'v)e]) = o(log n), by Lemma 2.
Fori>m+LletUy = —rx, 371 j#/D~l /b and write
(2.58) S, =8*,._1+ U+ R.
From (2.53) and (2.56), it follows that with probability 1
(2.59) R, = o({z(ﬁ/”) 2(log log i)~ 2'r 2;_1 (gl + lejvjl)}),

and therefore
(260)  SFa(i)rr PO R 6] = S2j0(imHelBizl_{Ig] + lgul}) < .

From (2.53) and (2.55)-(2.59), to prove (2.51), it suffices to show that with
probability 1
(261)  Zi_para()r o ((F0 7 B)(SE ey + Uy
= o(Z17 "% *728*) + o(log n).
Since 7% ,,_y, S ,.—1, b and U, are ¥,_,-measurable, the left-hand side of (2.61)
forms a martingale transform, so using the strong law for martingales as in (2.37),
(2.62) =" ,.2a()TE (IO B)(SE .oy + U)g
= 0(2m+2a2(i)7,.*_21‘2'6/”_2(5;“_ mo1 + UY?) +0(1) as.
Since lim n'%s,, =0as. and lim n~ 20,, = 0 a.s., we obtain from (2.54), (2.58) and
(2.59) that with probability 1
S — (S*,._, + U) =28 R, — R? = o(r}%2B/6-D+1)
and therefore
(2.63) S aa2 ()T AR/ S — (Sx |+ U)?| = o(log n).

From (2.62) and (2.63), (2.61) follows as desired.
Making use of the fact that 8/b >1 and an argument as in (2.53), (2.55), (2.56)
and (2.57), to show that (2.52) holds with probability 1 we need only prove that

(2.64) S maa()TX ) iB/D=1e /b converges as.

Since 7* ,,_, and b, are ¥,_,-measurable, (2.64) follows easily from' the (local)
martingale convergence theorem as in (2.38). []

In the preceding proof of Theorem 4 (see also the proof of Theorem 7 of [9]), the
representation given by Theorem 3 is the only property of the stochastic approxi-
mation scheme (2.1) that we have used. This suggests the following more general
theorem which we shall need in Section 3.
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THEOREM 5. Assume that Ee? = 6> < oo and suppose that {b,} is a sequence of
positive random variables such that b, is F,_,-measurable for all n > 1 and

lim,_, b, = b a.s., where b is a positive constant. Let {r,} be a sequence of positive

random variables such that (2.4) holds and 7, is %,_,-measurable for all n > 1. Let
X, and p, be random variables such that for n > 1

(2.65) Xopr1=0— (n=F/1 ) {ZkB/D e /b +p,),
where B > 0 and 8 are constants.
(i) Let b < 2 and assume that
(2.66) p, = o('r,,n(ﬁ/”)'%) a.s.
Then (1.15), (1.16) and (1.17) still hold with X,, in place of x,,.
(ii) Let b > 2 and assume that
(2.67) p, converges a.s. to some random variable p,.

Suppose furthermore that 7, converges a.s. to a positive random variable T as n — 0.
Then there exists a random variable z such that (1.19) and (1.20) hold with X, in

place of x,.
(iii) Let b = 28 and assume that
(2.68) p, = o((log n)%) a.s.

Suppose furthermore that {,} satisfies the stronger assumption (2.7) instead of (2.4).
Then (1.21) and (1.22) still hold with X,, in place of x,,.

(iv) Let b < 2B. Let 7} and b} be positive random variables (not necessarily
9,,_ -measurable) such that 7} satisfies (2.4) (with 1} in place of 7,) and b} satisfies
the approximation property (2.19) for some sequence {v,} of positive ii.d. random
variables with Ev} < co. Let {p,} be a sequence of random variables such that (2.66)
holds with ¥ in place of 7,. Suppose for n > 1 that

(2.69) X =0—(n"PP /) {SkB/D" ke, /BY + p, }.

Then (1.15) and (1.16) still hold with XY in place of x,. If condition (2.19) is
strengthened to (2.20) and there exists a positive integer m such that b} and 7} are
%, + m-measurable for all n > 1, then (1.17) still holds with X* in place of x;.

Proor. We shall only consider Part (i) of the theorem, since the argument for
the other parts is similar. In the proof of Theorem 4(i), we have actually established
that Theorem 5(i) holds for the special case p, = O for all n. This in turn obviously
implies that the central limit theorem (1.15) and the law of the iterated logarithm
(1.16) also hold for the more general case where {p,} satisfies (2.66). Let

S, = Zk®/D" 10 ¢ /b,
For the special case p, = 0 for all n, the relation (1.17) can be written as
(2.70) =182/ (j*#/*1}) ~ o*(log n)/ {b(2B — b)} as.
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We now show that (2.70) implies that (1.17) also holds in the more general case
where {p,} satisfies (2.66). By (2.66) there exist positive random variables n; such
that

2.71) B, —>oas. and 7(lp| + 1) = o('rf.i(ﬁ/b)‘%) as.,
and therefore

(2.72) (el + 1)/ (j%/%?) = o(log n) a.
From (2.72), it follows that with probability 1

273) 2187/ (7*/*1]) = 2185 o)/ (7777 + o(log n)

= (1 + o(1))Z}(S; + %)21[|s,|>1,,(|p,|+1)]/ (/%74r2)

+o(logn)  (sincen, — oo a.s.)

= (1 + o()ZU(S; + p;)*/ (j*#/12) + o(log n).
From (2.70) and (2.73), it then follows that (1.17) also holds under the assumption
(2.66). 0

3. Venter’s design and some modifications. In [17] Venter proposed a modifi-
cation of the Robbins-Monro stochastic approximation scheme (1.26) to obtain
successive estimates of the unknown slope 8 which have the desired property of
converging to B with probability 1. Venter’s design requires that at the mth stage
(m=1,2,- ) two observations y, and y,, be taken, at levels x,, = x,, — a, and
X, = x, + a,, where {a,} is a sequence of positive constants such that

3.1) a,, ~ am™" for some constantsa > Oand 3 <y <3,

and x,, is the mth approximation to 4, defined recursively by

(3.2) X,
X1 = % — ¥,/ (ib).

The quantity y; in (3.2) estimates the (unobserved) response at the level x;, and is
defined by

initial guess of 6,

(3.3) yi =200/ +¥/).
Assuming that positive constants b and B are known such that
(34) b<B<B,

Venter defines the slope estimate b, in (3.2) by
(3.5) by=bVv{BAi~'S_\(y - )/ (2a)},

where the symbols V and A denote maximum and minimum respectively.
We note that forj =1,2,- - -,

(3:6) V=M —a)+¢, y'=Mx+a)+e,
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where the errors €/, €5, - - - , €/, &), - - - are i.i.d. with mean 0 and variance o®. In
particular, for the linear case M(x) = B(x — ), (3.6) implies that
) W = = 2B+ (o — 1)

which depends only on B but not on §. Since y <3, 2% """ < o0, and
therefore in view of (3.1) it easily follows that

(3.8) ' m~ (e — €)/a, > 0as.

Hence b, defined by (3.5) is strongly consistent, at least in the linear case. This
argument was extended by Venter [17] to general regression functions M(x) which
satisfy (1.2)-(1.4) and

3.9

Sup| <4/ M(x + y) — M(x)| < A* forsome A,A4* >0  andall x;

(3.10) M(x) is k-times continuously differentiable in some neighborhood of 4,

where k > 2 is an integer satisfying k8 > yB.

At stage m, Venter’s scheme has taken n = 2m observations. Let §, = x,,., be
the estimate of # and ,é,, = b, be the estimate of B given by (3.2) and (3.5)
respectively, and let

(3.11) G, = ZP(x/ — 0 + Z7(x/ — 0)°

be the cost of these n observations. The following theorem, which can be proved by
using Theorem 5, shows that although 67,, approaches # at the asymptotically
optimal rate given in (1.11) and (1.12) of Theorem 1, the cost C, incurred by
Venter’s scheme is of a much larger order of magnitude than the logarithmic cost in
(1.13) of Theorem 1. As to the conditions of the theorem, we are able to relax
Venter’s assumptions on M(x) and also to remove the assumption (3.4) on prior
knowledge of bounds for B.

THEOREM 6. Assume that M(x) satisfies (1.2)—(1.4) and (3.10) with k = 2. Let a,,
be a sequence of positive constants satisfying (3.1) and let §,, > §,, be two sequences of
positive constants such that

(3.12a) lim sup,, ,.$,, <B <liminf, £,

(3.12b) =e(it) ™ < oo,

and

(3.12¢) 32>ig) " = .

Let €), &5, -+ - ,¢f, €, -+ beiid. with mean 0 and variance a2

(i) Define x, y,, ¥/, v! by (3.2), (3.3) and (3.6), and b, by

(3.13) b=4v{&AG - D=0 =)/ (2a)}, i>2,b,=%,.



1214 T. L. LAI AND HERBERT ROBBINS

Letn—2m,0 —x,,,+1,,3 b,, and define C, as in (3.11). Then as n — o,

(3.14) 6, 0and §,— B as.,

(3.15) lim sup(n/2 log log n)?|d, — 8| = a/B as.,
(3.16) ni(f, — 8) >N (0, 62/ ),

3.17) C,/n'"%" 5 44%/ (1 — 2y) as,,

(3.18) n77Y( B, — B) »eN(0, 0%/ {4a*(1 + 2v))),

where a > 0 and § <y <3 are given by the condition (3.1) on the sequence {a,,}.
(ii) Assume in place of (3.12b) the stronger condition

(3.19) SPiTIE T < oo,

Suppose that in (i) we replace b, as defined in (3.13) by

(320 X =GV {ENITIZ () - )/ (2a)), i> 1
Then the relations (3.14)—(3.18) still hold.

REMARKS. (a) Venter [17] proved (3.14), (3.16) and (3.18) in Theorem 6(ii) for
the special case §, = b <8 < B =§, under the more restrictive smoothness
conditions (3.9) and (3.10) with £ > 2 such that k8 > yB. The asymptotic behavior
(3.17) of the cost C,, however, has not been considered in the literature.

(b) Dropping Venter’s assumption (3.4) on prior knowledge of bounds for 8, we
can choose {,, > 0 and §, — oo such that (3.12c) and (3.19) hold. Obviously the
condition (3.12a) is then also satisfied.

(c) For the case M"”(8) # 0, Venter has shown that the constant y in condition
(3.1) has to be chosen >§ and that (3.16) actually fails to hold if y =§ (see
Theorem 3 of [17]).

(d) Fabian [4] has proved (3.14) and (3.16) in Theorem 6(i) for the special case
§, = c;m~*and §, = c,log(m + 1) with 0 < ¢, <c¢, and 0 < « < 3. His proof is
simpler than that of Venter and does not require Venter’s smoothness conditions
and the assumption (3.4) on prior bounds for 8. However, his method requires that
the last summand (y;” — y/)/(24;) be dropped in b*, and therefore he considers b,

instead of b*. His argument depends heavily on the fact that b, is ¥;_,-measurable,
where
(3.21) T = B(xp, €, 8,0+, & &) Fo = B(xy).

Our argument is different from those of Venter and Fabian and works for both b,
and b}.
The following lemma will be used in the proofs of Theorems 6 and 7.
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LeMMA 5. Let M(x) be a Borel function satisfying (1.4), and assume that (1.3)
holds for some real number 0. Let x,, u,, v,, t,, and t, be random variables such that

(3.22) Xpp1 = X, — 0,{M(x, + 1,) + M(x, + £))} + u,
n=1,2---,

(3.23) lim, .1, = lim,_,_ = 0 as.,

(3.24) 7 v, > 0andlim, , v, = Oa.s.,

and

(3.25) =M, converges a.s. as N — oo.

Then x, converges a.s. to some random variable. If, furthermore,
(3.26) v, = o aus,,

then lim,_, x, = 0 as.

ProoF. From (3.22) and (3.25), it follows that
(327) xy41 + ZE0,{M(x, + 1,) + M(x, + £,)} converges a.s. as N — co.

When ¢, = ¢, = 0 for all n, the rest of the proof is exactly like that of Blum in
Lemma 3 and Theorem 1 of [1]. An obvious modification of Blum’s argument
extends to the more general case where ¢, and ¢, satisfy (3.22). []

We now proceed to prove Theorem 6. We shall only prove Part (ii) of the
theorem in detail. The proof of Part (i) is similar and is, in fact, simpler, and we
shall comment on it after the proof of Part (ii).

PROOF OF THEOREM 6(ii). We shall first prove that
(3.28) lim, , x, = 6 as.

In view of (3.2), (3.3) and (3.6), {x,} satisfies (3.22) with ¢, = — ¢, = a,,
v, =3(nb)7", and u, = — 1(e, + ¢)/(nb?). Therefore, by Lemma 5, to prove

n

(3.28) it suffices to show that
(3.29) SV(e, + €)/ (nb*) converges a.s.

Since b* is ¥;-measurable, x,,, is also %,-measurable by (3.2). Therefore,
although b* is not & ,-measurable, a slight modification of it gives the
%,_ ,-measurable random variable

M(x; + a) — M(x; — a) Y Y

2aq; + 2 2q;

(330) b =V {g A 1[

We note that with probability 1

(331) (nb)™" — (nby) ™" = (nb2b)~'(b}, — bY)
= 0(]8,:' - r,xl/ (nzgnzan))'
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Since a, ~ an~?, it follows from (3.19) that

(3.32) SPE{(leF + [e)/ (n%7a,)} < o,

and therefore E°{|e, + €| |e, — €/|/(n*%2a,)} < o as. Hence, by (3.31),
(3.33) S¥(e, + &/){(nb)™" — (nb;)”"} converges a.s. as N — co.

Since b/ is %,_,-measurable, {Z[(¢/ + €")/(ib)), ¥,, n > 1} is a martingale. More-
over, since b, > §, and SP(ng,) "% < o0, SPE{(¢, + ¢,)?/(nb,)*} < oo. Therefore,
by the martingale convergence theorem,

(334) SV(e, + €/)/ (nb)) converges a.s. as N — 0.

From (3.33) and (3.34), the desired conclusion (3.29) follows and so (3.28) holds.
Using (3.10) (with £k = 1) and (3.28), we obtain that, with probability 1,

(3.35) M(x; + a) — M(x; — a;) = 2a(B + o(1)) as j— oo.

From (3.6), (3.8) and (3.35), it follows easily that b} — B a.s. Hence (3.14) holds.
Let ¢ = 2(¢/ + ¢&’). Then Eg; = 0 and Ee? = ;0> Since (3.10) holds with k = 2
and x; — @ a.s., we can apply Taylor’s expansion to two terms to obtain that
(3.36) %{M(Xi +a)+ M(x; —a)} =(B+n)x +w,
where 7, and ; are P (x;)-measurable random variables such that
(3.37) 7,-0 and « =0(a?)as.
We note that by (3.3) and (3.36),
(3.38) yi=3{M(x; + a) + M(x; — a)} + ¢
=(B+m)x + (& + ).

Therefore, using exactly the same argument as in the proof of Theorem 3, and
noting that b¥ — B a.s., it can be shown that

(339) Xyp1 = 0 — (nm) (S (e + )/ bE + po)
=0 — ()" {i1re/bE + o),

where p, and 7} are random variables such that 7 satisfies (2.4) and is positive and
% -measurable (since b} is ¥,-measurable), and

(3.40) pn = po + ZiT¥w,/ b}
=0(r¥n'"?)as. by (3.37).
Since 1 — 2y < 3, (3.40) implies that {p,} satisfies (2.66) (with b= B). Moreover, b,
is %, _,-measurable and, with probability 1,
(341) b*— b, =n"Ye —€)/(2a,) =0(n~ "V + |¢)| + |¢/|) as n — 0.

Hence {x,,} admits a representation of the type in Theorem 5(iv). Therefore, by
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Theorem 5(iv), as m — oo

(3.42) mi(x,, — 8) >eN(0, 10%/B%),
(3.43) lim sup(m /2 log log m)2|x,, — 8] = o/ (2:8) a.s.,
(3.44) =M(x; — 0)*/log m »10%/B* as.

From (3.42) and (3.43), (3.15) and (3.16) follow immediately. Since C, = 2{Z7(x;
— 8)* + =7a?) and (3.44) holds, while

Srat ~a¥(3n) "/ (1 - 29),
(3.17) follows.
Using (3.10) (with k = 2) together with (3.43) and the fact that a >
1 1
J~2(log log /)2 for all large j, we can sharpen (3.35) to
(3.45)
M(x; + a) — M(x; — @) = 2a,M'(x; + r;a) (where|r| < 1)
=2q{B+0(ra+ x;— 0)} = 2a(B + 0(a)) as.

J7J
Hence, with probability 1,

(346) m~'SL (M(x; + @) — M(x, — a))/ (2a) — B
= m_IZ}".lo(aj) =0(m~Y) = o(m‘(%")) since y > 5.

Since E(e] — &) = 20% and Z7a; 2~ a %m'*? /(1 + 2y), we obtain by the
Feller-Lindeberg central limit theorem that

(347)  @m): mTIST (¢ — &)/ (2a) —eN(0, 62/ {47a%(1 + 27)}).
From (3.46) and (3.47), (3.18) follows immediately. []

ProOOF OF THEOREM 6(i). Here b, is ¥,_,-measurable and, therefore, the conver-
gence of ZV(e, + ¢&)/(nb,) follows from the fact that 3P(nf,) 2 < oo and the
martingale convergence theorem. The rest of the proof is the same as that of
Theorem 6(ii), except that Theorem 5(i) can be used instead of Theorem 5(iv). []

A close examination of the preceding proof suggests that in order to reduce the
cost C, to the desired logarithmic order of magnitude we should choose the

sequence {a,,} such that
(3.48) STa? = o(logm) as n— co.

This means that y in condition (3.1) has to be chosen > ; instead. However, even
with y =1 and a,, modified to be of the form m~3(1 + log m)=® (8 > 0) so that
(3.48) holds, the relation (3.8) is no longer true, and such an a,, is too small for the
b, (or b¥) defined by (3.13) (or (3.20)) to be strongly consistent. In order to be able
to choose q,, satisfying (3.48) instead of (3.1), we shall use another estimator b,, of
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B at stage m. Let {a,,} be any sequence of positive constants such that
(3.49) a,=0(j"7) forsome y>3 but Zfa’ = .
Then, by the strong law,

(3.50) STae — ¢)/ (S7a?) > O as.

Considering the linear case M(x) = B(x — ), we note, in view of (3.7) and (3.50),
that

(3.51) 327a(y/ = y))/ (Era?) > B as.

Thus, at least in the linear case, (3.51) gives a strongly consistent estimate of 8
under the minimal assumption that ’1"aj2—> o0, no matter how slow the conver-
gence may be. In the following theorem, we shall prove that this modification of
Venter’s scheme yields the desired growth rates for both C, and n%(é,, — 0), even in
the nonlinear case.

THEOREM 7. (i) Suppose that in Theorem 6(i) we replace the assumption (3.1) on
the sequence {a,} by the weaker assumption (3.49) and also replace the definition
(3.13) of b; by

(3.52) b=§Vv {g, A %zj‘lllaj(yj” - Y;)/ (2;_-11012)}’ i22b ={.

Then the relations (3.14), (3.15) and (3.16) still hold. Moreover, instead of (3.18), we
have

1
(3.53) (=m1a?)2(b,, — B) »N(0, 10?).
If {a,,} further satisfies (3.48), then instead of (3.17), we have
(3.54) C,/logn—a*/B%as.

(it) Let {a,} be a sequence of positive constants such that
(3.55) a, ~am~3(logm)~° forsome a>0 and 0<8 < i

Then conditions (3.48) and (3.49) are satisfied. Suppose that in Theorem 6(i) we
replace the assumption (3.1) by (3.55) and also replace b; as defined in (3.13) by

(3.56) F =4V {ﬁ, A %2;-1%()’,'" - yj')/ (2;_1012)}
Moreover, in place of (3.12b), we assume that
(3.57) S2i73/%, 2(log i)’ ' < 0.

Then (3.14), (3.15), (3.16), (3.53) and (3.54) still hold.
REMARK. While b, as defined by (3.52), is ¥;_,-measurable, b* in (3.56) is not.

1

Let a, ~ am~Y(log m)~%, where a and vy are positive constants and § > 0. Then
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(3.48) fails to hold if y < 3. Obviously,
(349) holds =3 <y <3 and 8§ <3 when y=1.

2

It is easy to see that the conditions (3.48) and (3.49) are both satisfied for the case
y=3and0<8 <3

PrROOF OF THEOREM 7(i). As in Theorem 6(i), it is easy to show, using Lemma 5,
that x,, — 8 a.s. Therefore (3.35) again holds. By (3.6), (3.35) and (3.50), we still
have b,, —» B a.s. Hence, as in Theorem 6(i), (3.15), (3.16), (3.43) and (3.44) still
hold. Therefore, if condition (3.48) is also satisfied, then by (3.44), with probability
1,

2{2',"(xi -0+ ZTaf} ~ (0*/B?)log m,
and so (3.54) holds.

We note that, as in (3.45), with probability 1,

(3.58) M(x; + a) — M(x; — a) = 2a,{ B + 0(a) + O(|x; — ])}.
By (3.49), a; = o(j ") for some p > %. Therefore, by the Schwarz inequality,
1 1 1
(359) =@’ = So(ay ) < (S7o(a)) (S ) = o(214?)?).
Moreover, by (3.43) and the Schwarz inequality, with probability 1,
1
(3.60) Sta|x; — 0] = E}"o(ajj_%_”(log logj)%) = o((E’l"al?)z),
From (3.58)—(3.60), it follows that, with probability 1,
(61) {i=ma(M(x + a) — M(x, — a))/ (27=1a)} — B = o(Z7=1a?) ?).
By the Feller-Lindeberg central limit theorem,
(3.62) (Zm,a?) 23m 2a(e — &) — N(0, 20?).
From (3.61) and (3.62), (3.53) follows immediately. []

PrOOF OF THEOREM 7(ii). Define
(3.63)

b=¢V {g. A l[aA(M(x. +a) — M(x; —a)) + = a(y) — ¥ ]/( 1 )}
Then b, is ,_,-measurable and, by (3.55),
(3.64) (nb)™" — (nb,) ™" = 0(ley — €|/ {nigi(log n)'~*}) ass.

Making use of (3.57) and using the same argument as in (3.32)—(3.34), it then
follows that V(e + €.)/(nb*) converges a.s. as N — co. Hence, by Lemma 5,
x,, —> 0 as., and so, as in the proof of Theorem 7(i), b% — B a.s. Therefore, by
(3.55), with probability 1, for all large i

b = b =3a(e — &)/ (2i-1a7) = o(i"=(log ) "*(1 + [¢] + [¢/])).
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By using the same argument as in the proof of Theorem 6(ii), it follows that (3.15),
(3.16), (3.43) and (3.44) still hold. From (3.44) and (3.48), (3.54) follows. Moreover,
(3.53) can be obtained by the same argument as in Theorem 7(i). []

4. Adaptive stochastic approximation schemes using least squares estimates of 8.
In the designs of Section 3, the main reason for choosing two levels x/, and x/,
(instead of x,,) at the mth stage is to be able to estimate B in a consistent way by
using the differences y” — y/ (j = 1, 2, - - - ). As pointed out in (3.7), for the linear
case M(x) = B(x — @), these differences ¥/ — y/ depend only on B8 and not on .
It is natural to ask whether consistent estimates b, of 8 can be found for the
adaptive Robbins-Monro scheme

(41) Xne1 = Xy — yn/ (nbn)‘
An obvious choice for b, is the usual least squares estimate
(42) B = Zh(x = %) = 7)/ 255 — %),

where we set B,, equal to some positive constant b when Z7(x;, — x,)* = 0. In the
linear case M(x) = B(x — ), the strong consistency of 3, is equivalent to

(4.3) SH(x — %,)e/3(x, — %, >0as.

By Theorem 4, if ,B is 1ndeed strongly consistent and o # 0, then with probability
1, n3i(x, — 8) = 0((log log n)7), SH(x, — ) ~ (62/B3log n, and therefore

(4.4) 2% — X,)e = 2i(x; — 0)g + 0(2'1'(’51' —-9) )a

(45) (% = %) = 2i(x =~ 0)" ~ n(%, — 0’ ~ Zi(x, - )"

Thus if [?,, is indeed strongly consistent and ¢ # 0, then the sequence {x,} will
behave nicely in the sense of (4.4) and (4.5), which by the strong law for
martingales in turn imply (4.3) and hence the strong consistency of ,[?". This
suggests that a natural way of proving the strong consistency of g, is to show that
the design levels x, satisfy (4.4) and (4.5). In the case where upper and lower
bounds B and b (> 0) for B are known, we are able to elaborate this idea to prove
the strong consistency of

(4.6) b,=bV (BAB,)

and thereby to obtain from Theorem 4 the following

THEOREM 8. Let ¢, ¢, - - be iid. random variables with Ee = 0 and 0 < Eg?
= 0% < o0. Let M(x) be a Borel Junction satisfying (1.2)—(1.4), and assume that
M(x) is continuously differentiable in some open neighborhood of 0. Let b, B be
positive constants such that b < 8 < B. Let x, be a random variable independent of
€, &, * * +, and define inductively y,, x ,é and b, by (1.1), (4.1), (4.2) and (4.6).
Then lim,_, b, = B a.s., and (1.11), (1. 12), (1.13) still hold. If M(x) further satisfies
(1.18), then

(4.7) (log n)2(b, — B) —eN(0, B2).
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The details of the proof of Theorem 8 are given in [10]. It is interesting to
compare the asymptotic distribution (4.7) of b, with the corresponding result (3.53)
for the pairwise sampling scheme of Theorem 7. For this pairwise sampling scheme,
which also satisfies (1.11)-(1.13), the relation (3.53) says that the consistent
estimator b,, defined by (3.52) is asymptotically normal with variance 30?/(Z7a?),
which is of a larger order of magnitude than (log m)~! in view of (3.48). Thus the
adaptive stochastic approximation scheme of Theorem 8 uses an asymptotically
more efficient estimator of B than the pairwise sampling scheme of Theorem 7.
Some simulation studies comparing the performance of these two kinds of adaptive
stochastic approximation procedures for moderate sample sizes will be described in
[12]. While Theorem 8 assumes that prior upper and lower bounds for B8 are
known, we are able to remove this assumption by a modification of b, in (4.6) and
of the argument used. The details are given in [10].
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