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A COORDINATE-FREE APPROACH TO FINDING OPTIMAL
PROCEDURES FOR REPEATED MEASURES DESIGNS

By STEVEN F. ARNOLD
The Pennsylvania State University

A repeated measures design occurs in analysis of variance when a particu-
lar individual receives several treatments. Let X; = (x;, * - - , X;)" be the vector
of observations on the ith individual. It is assumed that the X; are indepen-
dently normally distributed with mean p; and common covariance = > 0. The
researcher wants to test hypotheses about the p;. Lete; = (g, - - - , &,) = X; —
;. For this paper, in order to get powerful tests, the simplifying assumption that
the g, - - - , ¢, are exchangeable is made. We assume that the design is given
and use a coordinate-free approach to find optimal (i.e., UMP invariant, UMP
unbiased, most stringent, etc.) procedures for testing a large class of hypotheses
about the .

1. Introduction. A repeated measures design occurs in analysis of variance
when a particular individual (person, rat, field, etc.) receives several treatments.
Therefore, the observations cannot be assumed independent as they are assumed in
the usual independent measures design. Let X; = (x;;, - - -, x;,)” be the vector of
observations on the ith individual. It is assumed that the X, are independently
normally distributed with mean g, and common covariance = > 0. The researcher
wants to test hypotheses about the y,. Ideally, he would make no assumption about
3. If w, = p, Giri (1977) finds the UMP invariant test for testing that u € W vs.
p € V, where W and V are specified subspaces of R,. Unfortunately, the re-
searcher usually does not have enough measurements to get a good estimator of Z.

Therefore, tests for this model are often not very powerful. Let ¢, = (g, * - -, &)
= X, — . In order to get more powerful tests the simplifying assumption that the
&, -+, &, are exchangeable is often made. This is equivalent to assuming that
1 p -+ p
p 1 -+ p
(1.1) S =0%. . _,02>0,—p—l—1<p<1.
o p -+ 1

This covariance structure can also be derived from assuming that the effect due to
a particular individual is an additive random effect. However, under this model, p
would be nonnegative. For the main body of this paper we assume only that p
satisfies (1.1). For an extensive bibliography on repeated measures designs see
Hedayat and Afsarinejad (1975).

Most previous work on optimality for repeated measures designs has been
concerned with the design of the experiment. In this paper we assume that the
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REPEATED MEASURES DESIGNS 813

design is given. We use a coordinate-free approach to find optimal (i.e., UMP
invariant, UMP unbiased, most stringent, etc.) procedures for testing a large class
of hypotheses about the p,. We first write y, = 6,e + §; where &’ = (1, - - - , 1), 8, is
a scalar and §; is orthogonal to e. (This factorization is always possible. See Section
3.) We consider testing hypotheses about 6§, (type A), and hypotheses about the §;
(type B). We show that these two types of problems are analyzed differently. For
either type of problem the mean square for the effect being tested is the same as it
would be if the measures were independent. However, the mean square for
variance is different for the two types of problems. If the treatment being tested is
handled in such a way that each individual receives only one treatment, then the
hypothesis is of type A. Most others are of type B. In the language of split plot
designs, type A hypotheses involve whole plot effects while type B hypotheses
involve subplot effects.

For example, consider a two-way analysis of variance in which each individual
receives one a treatment level together with each B treatment level. (This model
might occur if the a treatment represented sex, race or degree of illness, for
example.) Hypotheses about the a treatment would be of type A, while those about
the B treatment would be of type B, as would the hypotheses about the interac-
tions. (See Example 3, Section 2.) We also consider testing the hypothesis that
p = 0, i.e., that the repeated measures really are independent. This hypothesis is
called type C.

In Section 3 the problem is defined and in Section 4 it is transformed to an easier
problem. In Section 5 results about products of problems are used to derive
optimal procedure for the three types of hypotheses. In Section 6 we show that, if
we have the formulae for the equivalent independent measures model, we need to
compute only one other statistic in order to test the hypotheses in question. These
results can also be used to show that the F-tests that we derive are identical with
those used in applications. (See, for example, Winer (1971) for some specific
formulae.)

2. Preliminaries.

2.1. Products of problems. Let P be the testing problem in which we observe X
and X, independent random vectors, X; having distribution F(x;, §). We want to
test the hypothesis that §, € 4,, 8, € A, vs. the alternative that 8, € B,, §, € B,.
Note that there is no relationship between 6, and 8, under either hypothesis. We
then say that P is a product of the problems P, and P,, where P, is the problem in
which we observe X; having distribution F(x;, §,), and are testing 8, € A, vs. the
alternative that §, € B,. If A, = B,, we say that the problem P, is trivial. In Section
5 we show that hypotheses of types A and B are each a product of two problems P,
and P,, in which P, is trivial. In this situation it seems evident that any sensible
procedure would ignore X,, since the hypotheses really only involve §,, and the
distribution of X, is independent of both X, and #,. Theorem B of Arnold (1973)
(see Arnold (1970) for a proof) makes this idea rigorous by establishing that if a
critical function ¢(X,) has one of several optimal properties as a procedure for P,,
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it has that property for the product of P, and a trivial problem. The optimal
properties include: UMP, UMP unbiased, UMP invariant, most stringent, Bayes
and admissible. In Arnold (1973) it is also stated that a likelihood ratio test (LRT)
for P, is a LRT for P. A counterexample to this result is given in Arnold (1978). It
is true however, that if ¢(X,) is a LRT for P,, and there exist maximum likelihood
estimators (MLE’s) for P,, then ¢(X)) is the LRT for P.

2.2. Notation. In this section we define the notation used in this paper. Let V'
be a subspace of R™, and let y € R™. Then Py is the orthogonal projection of y
on V, and VL is the orthogonal complement of V. If W is a subspace of V, then
VIW=V WL If WCR",V CR"” are w and v dimensional subspaces,
define W X V to be the v + w dimensional subspace of R™*" defined by (y}, y5)
€ W X Viffy, € W,y, € V(y, € R™, y, € R"). Define V" recursively by V* =
V=l x Vv, V! = V. Itis easily verified that

(Vi X V(W X W) = (V|W) X (VoW,), (V X W)L =V1XWL,

y
1Py 3 I = 1Pl + 1 Pual?

provided all the expressions are meaningful.

The following special matrices are used. I, is the n X n identity matrix, E,, is the
n X n matrix of 1I’s, and e, is the n X 1 vector of 1’s. Also A*B is the Kronecker
product of 4 and B. That is, if B = (b;) then

Ab, -+ Ab,
A*B =
Ab, - Ab

rc

We use the following notation. We write X ~ N,(u, Z) to mean that X has a
multivariate normal distribution with mean vector p and covariance matrix 2. We
write that y ~ F, ,(8) to mean that y has a noncentral F distribution with a and b
degrees of freedom and noncentrality parameter 4.

3. Setting up the model. Let X, - - -, X, be independent p-dimensional nor-
mal random vectors such that
3.1
1 p -+ p
5 ] 1 .. p 5 5
X ~N,( i 2), T=0"|. . .| =01 —p)I, + 0°pE,,
p P 1

W = Ore, + 8

where 6, is a real number and 6, Le, Let U be the 1 dimensional subspace
spanned by e,. Then w = Pyw + Py, y, so that Pyw = bie,, Py, py = &
Hence this representation for y, is not restrictive and is unique. Therefore, the
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transformation from p, to (4, ;) is just a reparameterization of the problem. Let
My 6, 6,

(32) p=|:Lo=|:[8=]|:
P 9 8

Thenp=0=+e, + 6,0 €ER" 6 €(UL).

In order to define the parameter space, let 7 be a ¢-dimensional subspace of
R™, t < n, and let V be a v-dimensional subspace of R" such that ¥ ¢ (U.L)" and
v < n(p — 1) (the dimension of (U.L)"). In this paper it is assumed that the
parameter space is given by

(3.3) 06T,8€V,o2>0,—;7—1—1<p<1.
(The last inequality is equivalent to assuming that = > 0.)
We consider three different hypothesis testing problems for this model. For all
three problems the alternative set is the parameter space defined in (3.3).
A. LetS C T be an s-dimensional subspace, s < ¢. In the first problem, we test
that 8 € S.
B. Let W C V be a w-dimensional subspace, w < v. The second problem is to
test that 6 € W.
C. The third problem is to test that p = 0.
In C we are just testing that the repeated measurements on a particular
individual are in fact independent. We now give some examples of types A and B.

ExAMPLE 1. Suppose that iy, = (y + @}, - - -, ¥ + &), Za; = 0 (1 is indepen-
dent of k). This model corresponds to a one-way analysis of variance where each
individual receives each treatment. We want to test that «; = 0. In the notation of
3.1, 6, = v, 8 = (ay, - - -, &,). This hypothesis, therefore, is of type B.

ExaMPLE 2. Suppose that y, =(y+a; + 8, -, v+ o, + B, ,vy+a,
+ B.), where Za; = 0, £B; = 0. This model corresponds to a two-way anova with
no interaction where each individual receives each pair of treatments. We want to
test that a; = 0, and we also want to test that B; = 0. In the notation of (3.1),
0. =v,8 =+ B, --,a +B). Thprefore, both these hypotheses are of type
B.

A similar model would be possible allowing for interactions between the « and 8
effects. In fact, any balanced replicated analysis of variance model can be used to
generate a model of this type by assuming that the kth replication in each class is
made on the kth individual, or, equivalently, that every individual receives each
treatment combination. All hypotheses of interest for this sort of model would be
of type B.

The following model gives an example of a situation in which the p, are different
and we are interested in hypotheses of type A.
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ExampLE 3. In this example we use a doubly indexed collection of random

vectors, Yy,j=1,---,¢ k=1---,m We assume that the Y, are indepen-
dently normally distributed with covariance matrix given by (3.1). Suppose p; =
EYy=(@+a+ B +aBy, -,y +a+ B+ aB,), where Za; =0,26 =

0, Z;aB8; =0, Z;af; = 0. This model corresponds to a two-way analysis of vari-
ance in which each individual receives one B treatment level and all the a
treatment levels. In this model 8, =y + B, and & = (a; + aBy, " - -, a, +
aB,). (It is clear that w; = e, + &, and that ¢,'5;, = Z(a; + B;) = 0.) There-
fore, the hypothesis that 8, = 0 is of type A, while the hypothesis that o; = 0 is of
type B, as is the hypothesis that af; = 0.

In the last example it is not necessary to assume that the same number of
individuals receive each treatment. In fact, the general model given at the begin-
ning of this section would include any model in which each individual was
measured the same number of times and each treatment was of one of the
following two types:

1. each individual receives only one level of the treatment (type A); or

2. the average treatment effect for each individual is O or only the deviations

from the average effect on each individual are of interest (type B).

We now consider an example with a covariate which does not fall into the above

framework.

ExampPLE 4. Let X, ~ N,(i, Z), as before. Suppose that p, = (y + a; +
gy, - -+, Y + a, + eu,). This would be a one-way analysis of variance with each
individual receiving each treatment level and each measurement having a covariate.
Then 6, = vy + &y, 8; = (o) + e(uy — i), - -, &, + e(uy — u,)). We want to
test the hypothesis that ¢ = 0. If &, = 0 for all k, this hypothesis is of type B. If
u, = Uy, or, in other words, if the covariate depends only on the individual, not on
the treatment level, then the hypothesis is of type A. If neither of these conditions
is satisfied, then the model is not of type A, type B or type C, since it involves both

0. and §,.

4. The basic results. In this section we show how to transform the problems
defined in the last section to problems that are easier to handle. Let C, be a

(p — 1) X p matrix such that
l ’
pie
C

4

T =

P

is orthogonal. Define

Ylk Yll Y21
4.1 =X, Y, = , Y,= ,
( ) ( Y2k) Pk ! ( Yln 2 Y2n

where Y,, is one-dimensional and Y,, is (p — 1) dimensional. Since T, is an
invertible matrix that does not depend on any unknown parameters, observing the
X, is equivalent to observing Y, and Y,. We now find the joint distribution of Y,
and Y,.
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LemMma 1. Y, and Y, are independent. Y, ~ N, (pzl0, o¥(1 + (p — l)p)In),
Yy ~ Ny o (CorL,)8, 61 = p) L,y ).

Proor. It is easily verified that

k[ Y o*(1+ (p — 1)p) 0
= ()= 2o )|

0 o*(1 - P)I(p—l)
and that the Y* are independent. The result follows directly. []

p%ai
Cpsi

LEMMA 2. C,+1, is an invertible function from (UL)" to R"®~V,

ProoF. Note that the rows of C form an orthonormal basis for U. Therefore
C,z is an invertible function from U L to R” ~land

CZ
z=\( *!
(CP* H)Z (CpZn)

is, therefore, an invertible function from (U_L)" to (R?~ )" = R*»~D ]
Define

(42) B, =pi8, By=(CxI)8, 12=0 1+ (p+ 1)), 3=0%1-p).

COROLLARY. The transformation from (9, 8, 62, p) to (a;, ay, 712, 1'%) is an invert-
ible function.

Therefore B,, B8,, T2, 77 is just a reparameterization of the problem.

FKor any subspace Q c (U.L)", define Q* to be the image of Q under the
transformation C,*1,. Q* is a subspace and by Lemma 2 has the same dimension
as Q. The following lemma follows directly from the definitions.

LeEMMA 3. a. If Q is a subspace of T, then § € Q iff B, € Q.

b. If Q is a subspace of V, then § € Q iff B, € Q*.

c. 62>0,-1/(p—1<p<liffr?>0,72>0.

d. p=0iff r? = 72

e. p> 0iff 72 > 72

The important fact about Lemmas 1 and 3 is that they factor the problem into
two pieces. Y, and Y, are independent and the parameters of their distributions are
unrelated. We are now ready to derive optimality results.

5. Optimal procedures.

5.1. Tests concerning . We now consider the problem of testing hypothesis A
of Section 3. After transforming to (Y,, Y;) and (B, B, 73, 73), (using Lemmas
1-3), this problem becomes the testing problem in which we observe Y, and Y,
independent,

(5.1) Y, ~ N,(Bi, 111,), Yy~ Ny 1y( B 35— 1))
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and we are testing
Hy: B ES™>0B€V:2>0
H :BET,>0B,€V*2>0.

Call this problem P. P is then the product of the testing problems P, and P, where
P, is the independent measures model in which we observe Y, ~ N,(8,, 7’I ) and
we are testing

Hy:B, €S, >0,
H :B ET >0,

and P, is the trivial problem in which we observe Y, ~ N, ,_,(B,, 73I,,_) and
we are testing

Hy:B,€V*72>0
H :B, Vx>0
Since P, is a trivial problem, a good procedure for P, will be good for P. Therefore,

let F; be the usual F statistic and ¢, the usual F critical function for testing P,.
That is

_ ”PT|SY1”2 n—1
|Pr Yy £ =S

(5.2) F, , o(F)=1 if F,/>F¢
=y if F,=F¢

=0 if F,<F®

where F{* is the upper a point of a central F distribution with # — s and n — ¢
degrees of freedom.

THEOREM l' a. Fl ~ F‘t—s,n—p(”PT|SBl”2/712)'
b. ¢, is size a, UMP invariant, most stringent, Bayes, admissible and the
likelihood ratio test for P.

PrOOF. F; has the given distribution for P, and hence for P. The results for ¢,
are known for the problem P, (see Lehmann (1959)) and by Theorem B of Arnold
(1973) they are true for P. (It is clear the maximum likelihood estimators exist for

Py) 00

We note that the assumption that ¥, and hence V*, be a subspace is overly
restrictive. The only property of P, used in this theorem is the existence of MLE’s
for P,. Therefore V could be an arbitrary set such that MLE’s exist. It could not,
for example, be the whole of (U _L)".

5.2. Hpypotheses about 8. In this section we consider testing hypotheses of type
B. After transforming the problem and applying Lemmas 1-3, this problem
becomes the problem in which we observe Y, and Y, independent, having the
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distributions given in (5.1), and we are testing
Hy:BET,71>0,8,€ W 2> 0
H :B €T, >0, V*2>0.

Call this problem Q. As before, Q is the product of a trivial problem Q, and the
independent measures model 0, in which we observe Y, having the given distribu-
tion and we are testing

Hy:B,eW*12>0
H :B,eV*>0.
Since @, is trivial, a good procedure for Q, is good for Q. Therefore, define

_ |l Pyojips Yol n(p—1)—o

(5.3) F,
| Py, Yyl v—w

s &(F) =1 if F,>F;

=y if F,=Fy
=0 if F, <F§

where Fj is the upper a point of a central F distribution with o — w and
n(p — 1) — v degrees of freedom. The following theorem follows in exactly the
same way as Theorem 1.

THEOREM 2. a. F,~ F,_. n(p—l)—v(”PV‘|W"32”2/T§)'
b. ¢, is size a, UMP invariant, most stringent, Bayes, admissible and the
likelihood ratio test.

As before, the assumption that 7 be a subspace is more restrictive than it need
be.

5.3. Testing that p = 0. Now, consider the problem of testing that p = 0. After
transforming to ¥, and Y,, this problem becomes the problem in which we observe
Y, and Y, independent, having the distributions given in (5.1). We are testing

HO:,BIET,,BZEV,TIZ=T§
Hl:,BlE-T,,BZEV,T%>O,'r§>O.

This problem is not a product of problems. However, it is already a problem about
which much is known. It is the problem in which we have two independent
measures models and are testing for the equality of variances. Let

(5.4)

P Y 2 _ _ =1 if F>a or F<b
3=II L 1II2 n(p _l)t O, fb(F,) =y if F=a or F=5
1Py Yyl n =0 if a>F>b.

The following theorem summarizes some results about F, and ¢ °. (It is proved in
the same fashion as for the two-sample problem.)
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THEOREM 3. a. (13/T)F3~ F,_, 4(,_1)_(0).
b. There exist a and b such that ¢5-° is UMP unbiased.
. There exist a and b such that $5° is the likelihood ratio test.

6. Calculating the statistics. In order to calculate the statistics, F;, F, and F;,
one could choose a particular C,, and hence a particular T,, and use it to compute
the Y;. He could then compute the various projections, and hence the F statistics.
In this section we derive some elementary results that make such calculations
unnecessary. We show how it is possible to get almost all the appropriate formulae
from the formulae for the similar independent measures model. We assume that
these formulae are known. Define

M= || Prys Yull? M= | Pyoyur Yall® M. = I Pry Yyl

! t—s 2 v—w =~ 3 n—1t ’
M. = 1Py Yol
Cn(p-1D -0’

These quantities are the various mean squares, and
M M M
=1 F==2 F=22.
M, M,
Now consider the independent measures model, i.e., the model in which it is
assumed that p = 0, or equivalently that 77 = 72. We consider this model in the
transformed problem. Define

Y
e

If p =0, then Y ~ N,(B, 1-21@). Testing the hypothesis that
Hy:B,€S,B,EV, >0,
HI:BIE T,Bze V,72>0,

is equivalent to testing that

F

Hy:BESXV, >0,
H :BETXV,m>0.

Therefore, let a be the dimension of S X V, b be the dimension of T" X V. This
model is an independent measures model, and the usual F statistic is given by

_ “PT>(V|S>(V),”2 M* = ”P(TX VyL Y”2 _ M’f

* =1
Mi b—a >3 np — b BT M}~

Similarly the problem of testing that
Hy:B,ET, B, € W,12>0,
B,ET B, EV,2>0,
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can be written as
Hy:BETXW,r*>0,
H :BETXV,7>0.
Let ¢ be the dimension of T X W,
_ 1P YIP
b—-c
Then F} is the F statistic for this problem.

_M

%
,F2

THEOREM 4. a. M, = M}, M, = M3.
b. (n—9OM;+ (n(p — 1) — )M, = (np — t — vV)M}.

Proor. The dimension, a, of S X Viss + v and the dimension, b, of T X V is
t + v. Therefore, b —a =1t — s.

| P V|S x VY”2 = ”P’I‘|SxOY”2 = ”P’I‘|SY1”2'
Therefore, M|, = M}. Similarly M, = M}.
(np — t = 0)M3$ = |Prsry L YIP = 1Py iy YIP = 1Pr Yyl
+|1Py Yo% 0

Suppose now that a person is using a repeated measures model. If he has the
formulae (or a computer that does the calculations) for the mean squares for the
corresponding design when the measurements are assumed independent, he need
only compute one more quantity, M,. The mean square for each of the treatment
effects is the same for the repeated measures design as for the independent
measures design. However, for the repeated measures design there are two different
variance estimators depending on whether the problem is of type A or type B. He
therefore computes M;. He has M¥ from the independent measures model. There-
fore, he can compute M, from Theorem 4B. (If (SS;, df;), (SS,, df,), (SS%, dff) are
the respective sum of squares and degrees of freedom for M, M, M}, then
S§S; + SS, = S8%, df; + df, = dff). To test hypotheses of type A, he puts the
mean square for the effect over M. To test hypotheses of type B, he puts the mean
square for the effect over M,. To test hypotheses of type C, he puts M; over M,.
Note also that the degrees of freedom for the effects are unchanged in the
transition from the independent measures model to the repeated measure model,
while the degrees of freedom for variance in the independent measures model is the
sum of the two degrees of freedom for variance in the repeated measures models.

The formulae for M}, M¥ and M} are usually given in terms of the original
random vectors X,. We now give a formula for M; in terms of the original X,, so
that it will not be necessary to transform to the Y, to compute any of the statistics
considered in this paper. Let X} = (xy, - -+, x,,), and X, = 3,x, /p, the average
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of the observations on the kth individual. Let X’ = (X, - - - X,). Then
(6.1) Yy = e,Xk/P% =P%A7k, Y = P%f

P, Y, P, X|?
(62) M, = 1Py Yill® _ PllPy Xl ’

n—o n—mo

1Py X [X(n — v)
”PV_L‘Y”2(O - W)

(6.3) F, =

(Note that F, can be computed by replacing each individual’s vector of observa-
tions with its average value and treating the averages as independent measures.)

REFERENCES

ARNOLD, S. F. (1970). Products of problems and patterned covariance matrices that arise from
interchangeable random variables. Stanford Univ. Technical Report No. 46.

ARNOLD, S. F. (1973). Application of the theory of products of problems to certain patterned covariance
matrices. Ann. Statist. 1 682—699.

ARNOLD, S. F. (1978). Estimation and testing in linear models with exchangeable errors. J. Amer. Statist.
Assoc. To appear.

Gir1, N. C. (1977). Multivariate Statistics Inference. Academic Press, New York.

HEDAYAT, A. and AFSARINEJIAD, K. (1975). Repeated measurements designs, I. In A Survey of Statistical
Design and Linear Models. (J. N. Srivastava, Ed.). North Holland Publishing Company,
Amsterdam—Oxford.

WINER, B. J. (1971). Statistical Principles in Experimental Design. 2nd Ed. McGraw-Hill, Inc, New York.

DEPARTMENT OF STATISTICS
PENNSYLVANIA STATE UNIVERSITY

219 POND LABORATORY

UNIVERSITY PARK, PENNSYLVANIA 16802



