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ASYMPTOTIC NORMALITY OF PERMUTATION STATISTICS
DERIVED FROM WEIGHTED SUMS OF BIVARIATE FUNCTIONS

By C. P. SHAPIRO AND LAWRENCE HUBERT

Michigan State University and University of California at Santa Barbara

Statistics of the form H, = 3d;,h,(X;, X;) are considered, where
X, Xy, - - -, are independent and identically distributed random variables, the
diagonal terms, d,,, are equal to zero, and h,(x, y) is a symmetric real valued
function. The asymptotic normality of such statistics is proven and the result
then combined with work of Jogdeo on statistics that are weighted sums of
bivariate functions of ranks to find sufficient conditions for asymptotic normal-
ity of permutation statistics derived from H,,.

1. Introduction. Suppose that X, X,, - - -, are independent and identically
distributed random variables. For each n = 1,2, - - -, let h,(x, y) denote a sym-
metric real valued function such that Eh,(X,, X,)* is finite, and let D, denote an
n X n symmetric nonzero matrix with elements {d,,} such that d,, =0 for all
i=1,---,nand all n. Statistics of the form

(11) Hn = Ei;&jdtjnhn(xi’ X/)

are considered. Such statistics have been widely studied with various restrictions on
D, or A, If h(x,y)=f(x)f,(y), then H, is a quadratic form and results on
limiting distributions have been reported by Whittle (1964), deWet and Venter
(1973) and Sen, A. (1976), among others. If 4, =1, then H, is a U-statistic
(Hoeffding, 1948). If d,, is restricted to O or 1, recent results have been reported by
Brown and Kildea (1978).

The primary purpose of this work is to find sufficient conditions for the
asymptotic normality as n — oo of permutation statistics derived from (1.1). To
accomplish this, the limiting distribution of H, is studied in more general situations
than mentioned above. The limiting distribution of H, in this more general setting
is of interest in its own right. For example, in biometry, A,(x, y) = |x — y| has been
suggested by Mantel (1967) to define H, as a raw index of disease contagion.
Royaltey, Astrachan and Sokal (1975) also use 4, = |x — y| to define a measure of
spatial autocorrelation in geography. The existing literature does not yield asymp-
totic normality for H, derived from 4, = |x — y| except for special d; values such
as d; =1, j =i+ 1, which gives H, equal to a sum of two-dependent random
variables. In addition, practitioners are well aware of the lack of general results
(Mantel, 1967), and the limiting normality for more general 4, and D, should
encourage the definition of other statistics more appropriate in their fields.
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The use of permutation statistics derived from (1.1) has been suggested by
Mantel and Valand (1970) in biometry, Cliff and Ord (1973) in geography, and by
Hubert and Schultz (1977) in clustering studies. The major work on limiting
distributions for such permutation statistics was done by Jogdeo (1968) but limiting
normality was not shown in generality. Some additional work has been done by
Abe (1969) in the graph theory setting (restricting dj;, and 4, to values 0 and 1).

In Section 2, the asymptotic normality of H, is proven (Theorem 2.1). In Section
3, the results of Theorem 2.1 are used to extend some of Jogdeo’s work (Theorem
3.1) and to develop sufficient conditions for the asymptotic normality of permuta-
tion statistics derived from H, (Theorem 3.2).

2. Asymptotic normality of H,. Define 4, and D, as in Section 1 and recall
that Eh,(X,, X,)* < oo is assumed. The following notation will be needed:
ER,(X, X;) = 0,, i #J;
&(X, X)) = h(X,, X)) — 6,5
G, = zi;-sjdxjngn(xv X,)’
gr(X) = E[ g,(X. X)|X,].  i#J;
di-n = 2 jdijn;
= 22,d.,87(X).
Finally, let
o2 = Var g}(X,) = Cov[ ,(X,, X,), £,(X,, X)),
o}, = Var g,(X,, X,) = Var h,(X,, X,).
Throughout the paper, assume that =,(d;,)* > 0 and o > 0 so that G} is never
identically zero.
With the notation above, E(G,|X,) = 2d,,8¥(X;) and G} is the projection of G,
onto the linear space composed of L, = = f(X;) where Ef(X,)* < c0.

Lemma 2.1. If
(AE) [olznzi;ejld;n]/ [Ufzkdkzml -0
1

then G,(Var G,)” 2 — G¥(Var G¥)™2— 0 (in probability).

ProOOF. Dropping the subscript n, direct computation yields
(2.1) 0 < Var G — Var G* = 23, d?(o — 207).
Bound (2.1) implies that

E[G(Var G*) ™2 = G*(Var G*) 2 | < 2013,.,d?/[40°S,d2]

which tends to zero by (AE). Furthermore, bound (2.1) and (AE) imply that
Var G/Var G* tends to 1 which completes the proof.

Next, conditions yielding the asymptotic normality of the projection, G*, are
needed. Define ¥, = g¥(X)), 4y, = [,d3]7/|d,.,|, and 4, = min, _, ., Ay,
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LEMMA 2.2.

(N1) If for each & > 0, 0, %[ (1, 5.,e4,) Yn 4P =0,
then G¥*(Var G¥)™2— Z (in distribution), where Z is normal with mean zero and
variance 1.

Proor. Let Y,, = g*(X,). Then the normal convergence criterion (Loeve, page
295) requires that for each ¢ > 0,

(22) - [szdjzn] - lz(dlzn)f(b’kd)onﬁ/‘kn}y’?" ap

tend to zero. But 4, = min 4,, and Y, equal in distribution to Y, imply that (2.2)
is less than or equal to

(2.3) 0, %[ (1) > oet,} Ve AP
which tends to zero by (N1).

In applications it is useful to have other conditions which imply (N1). Define
(1)—(iii) below:

() liminf,_ o2 > 0, and max,,, d%/=dZ, —O0.

(i) The sequence { Y;?} is uniformly integrable.

(iii) For some & > 0, E|h,(X}, X,)**? is uniformly bounded in n.
Then condition (N1) of Lemma 2.2 is implied by either

(N2) (i) and (ii), or

(N3) (i) and (iii).

The main theorem follows immediately from the lemmas above.
THEOREM 2.1. Conditions (AE) and (N1) imply that
(H, — EH,)(Var H,)~ 57 (in distribution)

where Z is normal with mean 0 and variance 1.

Note that Var G* may replace Var H, in Theorem 2.1. The theorem above does
not prove asymptotic normality for all statistics of form (1.1) which are asymptoti-
cally normal. Rather, the theorem yields asymptotic normality for those H, whose
projections are asymptotically equivalent to H, and also asymptotically normal.

Special case 1. Suppose that h, = h for all n. Then 67 = ¢ > 0 and conditions
(AE) and (N1) become '

(AE), Ei#‘tfn/ Y kd;?n -0,

(NT), maxl<i<ndi'2n/2kdlzn -0,
which are easily checked. If A(x, y) = xy, then EX? < oo and o® = [EX,Var(X,)
> 0 are required along (AE), and (N1), on the {d,} to conclude that H, is
asymptotically normal from Theorem 2.1. These conditions are not comparable
with Whittle (1967) who requires 4 + moments on the X,’s along with square
summability of {d;} where d; = d,_;. Also, EX, # 0 is needed to obtain 0? > 0 for
this choice of 4. That is, if EX,; = 0, then G} = 0 and Theorem 2.1 does not apply.
Such degeneracy will occur whenever A(x, y) = f(x)f(y) and Ef(X,) = 0.
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Special case 2. Suppose that h, = h and d;, =0 or 1 for all i,j, n. If the
number of 1I’s in each row and column is at least K*, and at most K¥, respectively,
then (AE), and (N1), are implied by K*K,2 — 0. If K* = K+, = K, then this is
equivalent to K, — oo. Brown and Kildea (1978) obtained asymptotic normality
using moments in this special case without the restriction of K, — oo. Thus,
Theorem 2.1 essentially gives a subclass of (1.1) with d;, =0 or 1 which are
amenable to projection methods or asymptotically equivalent to their projections.
Also, if d; =1, j =i+ 1, then H, is a sum of two-dependent random variables
and is asymptotically normal. However, the (AE) condition is not satisfied since D,
contains too many zeros.

Alternate centering of H,. An alternate centering for H, not involving 8, is
obtainable in most situations by using the deviations 6§, = dj;, — d,, with d, =
23, j4;,/n(n — 1) in place of the original dj,,. However, if the row sums are all
equal, then §,, = O for all i which gives G¥ = 0 and this centering will not work.

3. Permutation statistics. In this section the results of Jogdeo (1968) are
combined with Theorem 2.1 to complete some of Jogdeo’s work (Theorem 3.1) and
to conclude the asymptotic normality of a large class of permutation statistics
derived from (1.1).

Let ¥y, V,, - - -, be independent and identically distributed random variables
with a continuous distribution function, and let R,, denote the rank of ¥; in the
sample V,,- - -, V,. Suppose that X-values, x,, - - -, x,,, are observed. The per-
mutation statistic derived from (1.1) can be expressed as
(3.1 S, = zi;&jdijnhn(me’ XR,,,),
or
(32) zi#:de,-,,R,,,nhn(xi’ x_l)

In his 1968 paper, Jogdeo considers statistics of the form
(3.3) T, = Zi4j4jn0R, &,

where for each n, D, and A, are nonzero symmetric n X n matrices with elements
{d;,} and {a;,}, respectively. Note that 7,, = S, with the identification of a;, and
h.(x;, x;). Jogdeo showed that under certain conditions, there exist symmetric

functions {a,(u, v)} on [0, 1* such that T} is asymptotically equivalent to

(34) W, = Eiséjdijnan( U, U[)’
where Uy, - - -, U, are independent uniform on [0, 1] and U; = U,(R;,) with U, (k)
the kth order statistic in (U}, - - -, U,). However, asymptotic normality of W, is

not proven in general. Since (3.4) is exactly the type of statistic shown asymptoti-
cally normal in Theorem 2.1, Jogdeo’s conditions for asymptotic equivalence of
(3.3) and (3.4) can be combined with the asymptotic normality conditions of
Theorem 2.1 to deduce the asymptotic normality of (3.1), (3.2) and (3.3). Since the
diagonal terms are not involved in any of the sums, g, = 0 and h,(x, x) = 0 are
assumed for the remainder of this section.
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The particular construction of functions a,(u, v) to be used here is
i—1 i j-1 J
(35) an(u,o)=2i,jaij-,,1 T<u<;,—n—<v<; ,
where I[-] is the set indicator function. Let @ , = n~’%, a;, and @;, = n~'S a,,,
To state the Jogdeo conditions for the asymptotic equivalence of (3.3) and (3.4),
several definitions are needed.

(3.6) A set of n” numbers {a;} is A-monotone if

Giy1je1 = G je1 — Gyy; + @ ; > 0foralli, or

< Ofor all 4, .

3.7 A set of n* numbers {a;} is piecewise A-monotone if
a; = Z,_,af where each set {a§™} is A-monotone and
k does not depend on 7.

Listed below are conditions needed to derive the asymptotic normality of T,
(Theorem 3.1). The first set of conditions are on the coefficients, { djn }-

(D1) Forall n, 2,42, > 0.

(D2) Asn— oo, max,d2,/=,d?, —0.

(D3) Asn— 0,3, d2 /S, d2, —0.

(D4) Both ,_,d> and 3,d?, are uniformly bounded in n. Next, the condi-
tions needed on {q;, } where a,(u, v) is defined by (3.5) are given.

(A1) There exists 6 > 0 such that n=?S, |a,,[**? is uniformly bounded in n.

(A2) liminf, . n~'S4(a, —a,)>>0.

(A3) The {a,,} are piecewise A-monotone.

(A4) Asn— o0, n”! max, (a,, — a,)*—0.

Conditions (D1)-(D3) appeared in Section 2, and (D4) essentially forces the
preliminary normalization of the constants. If the original d,, do not satisfy (D4),
then use d}, = d;,/3|d,,,|. Also, note that with a,(u, v) defined by (3.5),
n~?%|a,,** = Ela, U, U)P** and o = Covia,(U,, Uy), a (U, Uy)] =
n—lzj(&.jn - a..n)z-

Lemma 3.1.  If (D1), (D2), (D3), (A1), (A2) are satisfied, then

(W, — EW,)(Var W,,)v—%—> Z (in distribution).

PrROOF. The result follows directly from Theorem 2.1. Condition (N3) is implied
by (Al), (A2) and (D3). Condition (AE) follows from (D2).
LemMa 3.2.  If (D4), (A3), (A4) are satisfied, then
W, — T, + B, — 0 (in probability),
where
B, =Zd;,n?3, [a,(U, U,) — a,,]-
ProoF. See Jogdeo, 1968, Theorem 4.1.
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THEOREM 3.1.  If conditions (D1)—(D4) and (A1)-(A4) are satisfied then (T, —
ET,))(Var T,)”2— Z (in distribution).

ProoF. Note that (Al) and (D4) imply that B, — 0 in probability. Thus,
(T, — EW,)(Var W,,)_%—> Z (in distribution). The proof is completed by noting
that 1 < Var W,(Var T,)"' < 1+ O,(n"") and EW, — ET, = O,(n"") so that
ET, and Var T, can replace EW, and Var W,

Theorem 3.1 can be used directly to prove asymptotic normality of S, with
a;, = h,(x;, x;). However, several of the conditions become quite tractable when
h, = h. Note that a,(u, v) is not necessarily A,(u, v).

THEOREM 3.2. Suppose that h, = h for all n, (D1)—(D4) hold, and that for almost
every X sequence, {h(x;, x;), i,j =1,---,n} is piecewise A-monotone. If
n~' max, c; < (X, X))* >0 as., and

(Al), there exists a >3 such that E|h(X}, X))|*** < oo,

(A2), . there exists B > 2 such that E|h(X,, X))h(X,, X3)|'T# < o,

then for a.e. x sequence, (S, — ES,)(Var Sn)_%—> Z (in distribution).

ProOF. In light of conditions for Theorem 3.1, it suffices to show that (Al),
and (A2), imply (A1) and (A2) for a.e. sequence. For (Al), using g, = A(X,, X)),
choose § such that « — & > 3. Then

n_22|a,.j,,|2+8 = n"2Z|h(X, Xj)|2+8.

But, by Theorem 3 of Sen (1960) giving the a.s. convergence properties of
U-statistics, the left hand side above converges a.s. to E|A(X, X,)|**? if there exist
a, § with a — & > 1 such that E|h(X,, X,)**3+@=® < oo. This holds by (A1), and
the choice of §.

For (A2), n~'2(a,, — a_,)* is equal to

(3.8) nZ(Zh(X, X)) — (1722, h(X,s X,))

The right term tends a.s. to (Eh(X,, X,))* again using Theorem 3 of Sen (1960). The
left term in (3.8) is equal to

(3.9) n’% 3.3, h(X, X)h(X,, X,).

Define f(x, y, z) = h(x, y)h(x, z) + h(x, y)h(y, z) + h(x, z)h(y, z). Then f is sym-
metric in the three arguments and Theorem 3 of Sen (1960) implies that

(3.10) n S AX,, X, X,) > Ef(X,, X,, X3) as.

if Ef(X,, X,, X3)'*® < oo for some ¢ >2. This is implied by (A2),. Since (3.9) is
merely 1 of (3.10), then (3.9) tends a.s. to Eh(X,, X,)A(X,, X;). Thus, (3.8) tends
as. to o? = Cov(h(X,, X,), h(X,, X,)) which is assumed positive throughout the
paper.

The piecewise A-monotone property is essentially a property of the function A,
and many functions satisfy the even stronger property of A-monotonicity. For
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example, if A(x, y) = xp, then h(x, x;) is A-monotone. If A(x,y) = f(|x — y|) > 0
with f(0) = 0, then the A-monotonicity of {A(x;, x;)} is implied by convexity of f.

Often the function 4 is converted to a dimensionless quantity by considering
h(x;, x;)/ B,(x, - + * , x,). If B, tends as. to some B, then Theorem 3.2 can be
used on the original A. Otherwise, as long as B, is symmetric, Theorem 3.1 can be
used directly on {h(x;, x;)B,”'}.
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