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EMPIRICAL BAYES ESTIMATION OF A BINOMIAL
PARAMETER VIA MIXTURES OF DIRICHLET PROCESSES

By DONALD A. BERRY! AND RONALD CHRISTENSEN
University of Minnesota

The theory of Dirichlet processes is applied to the empirical Bayes estima-
tion problem in the binomial case. The approach is Bayesian rather than being
empirical Bayesian. When the prior is a Dirichlet process the posterior is a
mixture of Dirichlet processes. Explicit estimators are given for the case of 2
and 3 parameters and compared with other empirical Bayes estimators by way
of examples. Since the number of calculations become enormous when the
number of parameters gets larger than 2 or 3 we propose two approximations
for estimators of a particular parameter and compare their performance using
examples.

1. Introduction. The random variables X, i = 1,- - -, k, are binomially dis-
tributed with parameters n, and 6, and are independent given 0 = (8,, - - - , ;).
The values n; are known and 8 is a vector of chance observations, each component
from a probability distribution G which concentrates its mass on [0, 1]. The
measure G and the values of @,,..., 0, are unknown. The empirical Bayes
problem is to make inferences about G, or a particular §,, using the information
from X = (X, -, Xp)-

There are many applications of empirical Bayes problems. We are particularly
interested in clinical trials in which k is the number of medical centers in a
multicenter study or the number of strata in the population being considered, or
the product of the two. The stratification may be so fine that each individual falls
in his own stratum in which case n; = 1 for all i.

Most procedures (see Maritz 1970) for estimating 8,, say, first use X, - - - , X, _,
and ny, - - -, m_, to estimate G. This estimate G is taken as the prior distribution
of 6, which is modified by (Xj, n,) using Bayes’ theorem to obtain an estimate of
the posterior distribution of 6, :

dH (81X, n) « 51 — 6% dG(8,).

The approach taken here is in the mainstream of Bayesian statistics, rather than
being empirical Bayesian, in that G is regarded as a random probability measure,
the distribution of which is modified by (X, n;; - - - ; X}, n,) in making inferences
about G or 8, say, where in the latter case (X, n,) plays a special role. In
particular, following the approach developed by Thomas Ferguson, G is assumed
to have a Dirichlet process prior distribution.
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The reader is referred to Ferguson (1973) and Antoniak (1974) for the funda-
mentals of Dirichlet processes and mixtures of Dirichlet processes, respectively.
These will be essential for following the details of the current development. A
theory for the general empirical Bayes problem is presented in the next section. The
binomial problem for the special cases k£ = 2 and 3 are treated at length in Section
3. Since, for k large, there are an enormous number of terms to consider in the
mixture of Dirichlet processes we propose an approximation of a Dirichlet mixture
with a single Dirichlet process in Section 4. In Section 5 we propose two approxi-
mations for the problem of estimating a particular §;; one uses the approximation
developed in Section 4 and the other appeals directly to the results for k = 2
obtained in Section 3. These estimators are compared with other empirical Bayes
estimators using examples.

2. The empirical Bayes problem. Let the prior distribution of the probability
measure G be a Dirichlet process with parameter a, written G ~ 9 (a). Then, as
shown by Antoniak (1974), the posterior distribution is a mixture of Dirichlet
processes:

6)) GIX ~ fD(a + (S 8,) dFyx

where the measure 8, assigns mass 1 to # and O elsewhere, Fygy is the posterior
distribution of 8 given X.

For example, consider the binomial case with k = 2 and take a = MBe(a, b),
where M is a positive constant and Be(a, b) is the measure on [0, 1] that has a beta
distribution with parameters a and b. Then

Gle’ X2 ~ f[O, ]]26D(MBe(a, b) + 801 + 802) dFo|x(01, 02)
and, applying Proposition 1 of Antoniak (1974),

0, ~ Be(a, b), 6,0, ~—1—W—I_T_—1(MBe(a, b) + &)

The joint prior distribution of (8,, 8,) is a measure on the unit square that is a
weighted sum of the product of two beta measures with parameters ¢ and b and a
measure concentrated on the line §, = 8, that has a Be(a, b) distribution. The
respective weights are P(0, +6,) = M/(M + 1) and P(6, = 0,) = 1 /(M + 1).

In finding the posterior distribution Fyy it will be shown that Bayes’ theorem can
be applied separately to each part of the measure on (#,, #,) and then the parts can
be combined with their respective posterior weights. Since the general case is no
more difficult than the specific, this will be shown in more generality than is
needed here. We take X and # to be univariate with # € R, but the proofs hold
with only minor modifications when X and 4 are multivariate.

Assume Fy,.., is a discrete probability distribution function almost surely (dFy)
defined so that

P(X < x,0 € 5) = [sFxjg-,(x) dFy(»),
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for all measurable S, and that it is absolutely continuous with respect to counting
measure m. Then the Radon-Nikodym derivative fy,_, exists. It is assumed that
Sxjg=y(x) is a Borel-measurable function of y for all x. The following four proposi-

tions are standard and are given without proof.

PROPOSITION 1. The measure corresponding to Fy(x) is absolutely continuous with
respect to counting measure and its Radon-Nikodym derivative fy(x) is

Sx(x) = fefx|o=y(x) dFy(y) as. (m).
PROPOSITION 2. For any measurable S and B,
P(0 € S, X € B) = [5/p dFxjp-,(x) dFg(y).
The next two propositions are variations of Bayes’ theorem.
PROPOSITION 3. The distribution function of 0 given X is
f(—co y]fX|0=t(x) dFo(t)
Fpx-(y) = ‘ as. (dFy).
) = e ) dF0) R
For measurable S such that P(§ € S|X = x) > 0 a.s. (dFy), define

_P((0<y)n (0 ES)X=x)
Fyjxeax,pes(y) = P(6 € S[X = x)

and

Fryest) = 2L <D0 CE ),

For measurable S such that 0 < P(§ € S|X = x) < 1 a.s. (dFy),
(2 Fyxeyoes(y)P(0 € S|X = x) + Fyyoy ges(¥)P(0 & S|X = x)
= Fyx=x(y) as. (dFy).

PROPOSITION 4.

— J—wopifxip=i(X) dFgpes(1)
Fyxmx0es(y) = Tofx—i®) dFppes(0) as. (dFy).

Equation (2) and Proposition 4 show that we can apply Béyes’ theorem to the
separate parts of the distribution of (#,, #,) and recombine them with the ap-
propriate posterior weights. The next proposition demonstrates how to compute the
posterior weights.

PROPOSITION 5.  For measurable S such that P(8 € S|X = x) € (0, 1) as. (dFy),

P(8 € S|X = x)

_ P(0 € S)/sfxjg=i(x) dFyq (1)
P(0 € S)fofrip=i(x) dFypes(t) + P(0 & S)fefxjp=(*) dFgges(t)
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PrROOF. Using a relationship similar to Equation (2),

- P(6 € S)[sfxjp=i(%) dFyees(t) + P(8 & S)[sfyjo-i(x) dFypges(?)
P(8 € S)fefrip=i(x) dFges(t) + P(8 & S)fefxip=i(%) dFgges(t)

The result follows since the second term in the numerator is zero. []

Proposition 5 will be applied to the binomial problem with k = 2 and & = 3 in
the next section.

3. The binomial problem. The simplest case is k = 1:

at+ X
3 =" 1
) EGIX) = Ty
M 1
E(G|X)) = ST 1Be(a b) + W 1Be(a+X|,b+n|—X|).

If k = 2 then Proposition 5 yields, in terms of odds,
P(6, = 6,]X,, X5)
P(0, # 65X, X3)

P(0 - a)I'(a +X1 +X2)T(b+ n + ny —Xl —Xz) P(a +b)
1= T(n, + n, + a + b) T(a)T(b)
P(0 0 )r(a + Xl)r(b + nl il Xl + b)r(a + Xz)r(b + n2 - x2)r(a + b)r(a + b)
1 7% T(a + b + n)I(a + b + m)T(@)T(B)T()I(B)
_ @ X+ X)pmtm—Xi—Xy) [ pa(X0) g(X2) p(m—X1) p(my=X2)
(a + p)m*m (@a+ b)™(a+b)™

where c® =c(c+1)---(c+n—1).
Letp = P(6, # 02|X,, X,), then

4) E(8,)X,, X,) =p(_ai) + _p)( a+ X, + X, )

a+ b+ n, a+b+n+n
and ,
E(Gle,X2)=
D M Be(a, b) + 1 Be(a + X, b + n, — X))
M+27" M+2 v o
1
+M+2Be(a+X2,b+n2—X2)]

+(l—p)[MA_{2Be(a,b)+ Mi_zBe(a+X,+X2,b+nl+n2—X,—Xz)].
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The mean of G|X,, X, is

M ( a )+ 1 a+ X, + 1 a+ X,
Plu+2\axs) " mv2\avb+n) P wr2\avs 40

M a 2 a+X1+X2

+(1-p) M+2(a+b) M+2(a+b+n1+n2
_ M a P a+ X, a+ X,
_M+2(a+b) M+2la+b+n a+b+n,

20—p) a+X +X,
M+2 a+b+n+n’

-+

The extension for & = 3 requires the following weights:
P(8, # 0, # 05 #0,|X,, X5, X;) =p

P(6, = 0, # 05| X, X5, X3) =py,

P(8, = b5 # 0, X,, X5, X3) =py3

P(8, # 8, = 65X}, X5, X3) =pas

P(8, = 6, = 03|X,, X, X;) =pys.

The computation of these quantities is straightforward but tedious. The desired
estimates of #; and G are

a+ X a+ X, + X
E(65]X,, X5, X;) =[p +p'2](m-r§n_3) +P13(a s +ln, +3n3)

+ a+ X, + X, a+ X, + X, + X;
P\ e ¥ b+m+n) PP\ Gt b+n +n,tn

and (where k € {1, 2, 3} —{i,j})

E(G|X), Xy X3) =

M 3 Be(a, b)

- X;
+p[M+32Be(a+X,,b+n )]

2
+2>,pu[M+3Be(a+X +X,b+n+n—X - X)

+

1
M+3Be(a+Xh,b+nh—Xh)]

3
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TABLE 1
Empirical Bayes estimates of 0, and 0,
Data (X, n)): 4,5 (1,5 (3,5 (1,35 (17,19 (1,19 (10, 19)
Estimator (X, ny): (9, 10) (8,10) (7,10) (9,10) (28,29) (28,29) (21, 29)

Maximum likelihood .800 200 600 200  .895 053 526

900 .800 700 900 .966 .966 724
Pooled .867 600 667  .667 938 .604 646
Minimax 707 293 569 293 821 136 521

.804 728 652 804  .893 .893 .689
Copas’ first 815 293 615 .308 901 138 545

.888 728 .688 816 960 .894 709
Copas’ second .850 314 650 208 930 058 625

.850 730 650  .855 930, 962 643
Griffin-Krutchkoff 800  .333 600 289  .895 .058 526

.900 741 700 860  .966 962 .643
Dirichlet mixtures 787 333 619 304 906 095 .586
witha=b=M=1 827 725 654  .821 923 935 673
[P(8; = 8,|X,, X)) [.663] [.156] [622] [.064] [.778] [6 X 1019 [.534)
Dirichlet mixtures .761 320 584 282 .900 .070 .604
witha=M=5b=2 .771 632 600 - 727 901 905 632
[P(8, = 6,)X,, X))] [936] [349] [.879] [.204] [987] [3x10~° [.852]
Approximation 1 753 324 598 317 .882 095 553
a=b=M=1 .830 730 660 817 948 935 .692
Approximation 1 670 342 521 253 .860 .070 .538
a=M=U5b=2 765 718 600 739 .903 905 .661

Table 1 gives the values of various empirical Bayes estimators of 8, and 8, for
several different combinations of (X, n;), (X5, n,); see (Martz and Lian 1974). It
also gives the posterior weights for the Dirichlet mixture estimator. The last two
rows in Table 1 correspond to an approximation suggested in Section 5. Table 2
gives the values for the same estimators but for 8, §,, and 6, using different
combinations of (X, n;), (X5, n,), (X3, n3). In addition it gives estimates for a
second approximation suggested in Section 5.

4. Approximating a mixture of Dirichlet processes. In many applications & is
quite large. For example, in clinical trials kX may be as large as 1000. It is evident
that for k large the bookkeeping difficulties in calculating Dirichlet mixture
estimates become enormous. The number of combinations of equality and inequal-
ity among #,, - - -, 6, is large indeed, being the number of partitions of k£ objects,
or the Bell exponential number B, ; see (Berge 1971, Section 1.11). The value of B,
is 15, Bs is 52, By is 203, and in general B, = e~'S%, j*//!. The sequence {B,}
can be generated by the recursion

By = z:If=o( k)Bi

i
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TABLE 2
Empirical Bayes estimates of 6, 0, and 8;

Data (X, m): (2% 1,5 G5 105 610 910 (©2
Xz n): (3,5 (G100 (7,100 6,100 (10,12) (1,12) (1, 10)
Estimator (X5, n3): 5 2,5 (4,10) (3,10) (6,12) (10,12) (20,20)
400 .200 600 200  .900 900 0

Maximum likelihood .600 .300 700 900  .833 .083 .100
400 400 400 .800  .500 .833 1

Pooled 467 300 560 720 735 .588 656
431 293 569 293 .804 .804 207
Minimax 569 348 652 804 759 177 196

431 431 424 728 500 759 909

421 231 590 334 .863 .829 152
Copas’ first 559 .300 .668 836  .813: .200 164
421 369 440 760 555 .782 .884

467 300 567 329 816 876 .033
Copas’ second 467 300 567  .853 790 119 .105
467 300 567 771 .620 818 994

400 200 600 355  .810 .876 .054
Griffin-Krutchkoff .600 300 .700 .858  .791 119 104
400 400 400 < 774 616 818 .995

Dirichlet mixtures with 455 .309 564 .336 .800 .833 .180
a=b=M=1 506 322 .606 812 .781 .143 151
455 351 494 .780 572 .820 954

Dirichlet mixtures with 414 273 524 316 723 794 .109
a=M=U5b=2 434 288 541 752 720 104 107
414 296 499 746 .633 .793 911

Approximation 1 440 299 569 346 815 .829 232
a=b=M=1 538 327 640 818 .786 156 159

440 386 453 762 552 .801 950
Approximation 1 369 223 492 289 757 773 126

a=M=S5b=2 392 283 5719 762 741 133 112
369 312 418 711 532 757 905

Approximation 2 445 302 .566 321 812 .833 217
a=b=M=1 531 327 632 822 .79 143 159
445 3718 462 761 .549 .803 954

Approximation 2 387 251 510 301 731 an 120
a=M=5b=2 445 285 566  .752 719 .105 113
387  .306 447 703 .583 758 910

for k=0,1,---, where B, = 1. To avoid extensive calculations and bookkeep-
ing complications it seems desirable to find an approximation of a mixture of
Dirichlet processes for which calculations are easy. We propose one form of
approximation here, and consider its application to the problems of estimating
G(0) and, say, 6,. '

The exact distribution of G|X,, - - -, X, is given by (1). Consider the random
probability defined by

(5) 0Xyp, - -+ 5 X)) ~ Do + Shwary ),



EMPIRICAL BAYES ESTIMATION 565
where ay, is the posterior probability measure of 8, given X, and n;, assuming the
prior is proportional to a; so that

8%(1 — 0i)n.~—X,- da(6;)
f[o, 1]“){’(1 - u)n.--X,- da(u)

dax,.(oi) =

Assume a = MBe(a, b), then
6)  Q(Xy,- -, X))~ D(MBe(a, b) + Ztw,Be(a + X, b + n, — X))).

Because it has a Dirichlet process distribution, calculations involving

Q(X,, - - -, X;) are straightforward. The expected value of Q may be considered
an estimate of G|X,, - - -, X;:

1 k
(1) EQXy, -+, X)) = M+—2w,~[MBe(a’ b) + Zw.Be(a + X;, b + n, — X,.)].

For estimating G(f) the weight w; should be a measure of the information in
(X;, n;). One such measure is the proportion of reduction in variance in observing
(/Yia ni):
Var, () — Var,(|X;, ;)

Var,(") '

So defined, 0 <w;, < 1, w; =0 if n, =0, and w; »> 1 as n; —» co. Assuming a =
MBe(a, b) these weights are

w; = w(X, ;) =

a+ X a+X,+1  a+X
a+b+n|la+b+nm+1 a+b+n
@) wi=1- a a+1  a
a+b[a+b+l a+b

In the same sense that the distribution of G is approximated by Q, a subsequent
observation from G is approximated by:
1 { Ma r at X

M+ 3w, a+b+2'wia+b+ni

Eyf =

If, instead of obtaining incomplete information about 8, from (X;, n;), the values
of §, were themselves observed, then the posterior of G would be a Dirichlet
process with parameter a + 2% 8(,). The distribution of Q defined in (5) can be
viewed as a smoothed version of this distribution. While the distribution of Q
cannot be made to converge to that of G as min n;, — co for any definition of w;
(compare, for example, the distribution of the partition ([0, 8,], (8,, 1]} under Q
and under G for n, large), the corresponding estimates do converge for w; defined
by (8).

THEOREM 1. If the parameter a is of the form MBe(a, b) and if w; > 1 as n;, > o0
for each i, then EQ given by (7) is a consistent estimator of G in the sense that

(9) limmjnn,--)ooEQ(Xl’ ) Xk) = ﬁmminm—»ooEGIXl’ ) Xk'
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ProOF. The right-hand side of (9) is

1
(e + S5 8(8).
Since w; — 1 it suffices to show that the probability assigned by Be(a + X, b + n;
— X;) to every open interval containing 6, approaches 1 as n, - oo. But the
expected value of Be(a + X, b + n, — X;) is (a + X;)/(a + b + n;) which con-
verges to §; a.s. as n; —> 0. [

The weights given in (6) are somewhat arbitrary. Other measures of information
that increase to 1 as n; increases will suffice. If the n; are moderately large then w;
can be taken to be 1 and the resulting algebra will be simplified.

5. Estimating 6,. For estimating a particular 8, say 6, assume G has the same
distribution as Q(X,, - - - , X, _,) defined in (6). Then,

8| X, ~ (M + Z%~'w,) "' [ MBe(a + X,, b + n, — X;)
+3f"'wBe(a + X; + X;, b+ n, — X, + n, — X,) ],
so that
(10) 6, = Eyb,)X,

a+ X,
a+b+n

+X.+X
+E’f“wa ik

= k—1,)"!
= (M+27w) | M ‘a+b+n+n |

If n,, - - -, m_, are fixed then 0; is a consistent estimate of §,. However, if both
n, and n; with i+ k are allowed to increase together, then 6, is no longer
consistent. Using the exact distribution of G given by (1) to estimate 6, the
contribution of (X, n;) is very small when both n, and n, are large, unless X;/n; is
close to X, /n,. This suggests that the weight given to (X, n;) in estimating 6,
should depend on (X, n;) as well as on (X;, n;). One way of accomplishing this is
to let the weight of ay in (5) depend on ay_as well as on ay, and a. A definition
with some good characteristics that are evident is

(11) wi =3 (wy + W),
where w; is defined in (8) and

a+ X a+ X,
a+b+n a+b+n’

Yaue=1-

The examples in Tables 1 and 2, for k£ = 2 and 3, respectively, were reconsidered
using Equation (10) to estimate §, with w/ defined in (11) in place of w;. This
estimator is called Approximation 1 in those tables. Since w; depends on (X, n;)
this estimator is no longer the expected value of 6| X, with respect to Q.

A more appealing approximation for estimating 6, can be obtained as follows. In
each of k — 1 separate problems 6, is estimated from (X, n;) and (X,, n,) ignoring
the remainder of the data by applying the results of Section 3 with k = 2. For each
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i <k, @, is estimated to be 0} using (4) with / and k in place of 1 and 2:

5 a+ X, a+ X, + X,
0"_1,'.(a+b+nk)+(1 Pi)(a+b+ni+nk)’

where
l—p, qgx+x) b(n|+n2—X|—X2)( a+ b)(nl)( a+ b)(nz)

P M(a+ b)™*(a + b)) (a + b)™
The estimate §; will be close to (a + X;)/(a + b + ny), the posterior mean of ay ,
if (X, n)) and (X, n;) suggest that 8, # 6, ; otherwise, it will be weighted towards
(@a+ X; + X)/(a+ b+ n + n). A simple average of these separate estimates
then leads to an overall estimate:

(12) 0 = S5l
Perhaps a more reasonable definition is the weighted average
i llwiéli/ 5w
where w; is defined in (8). When the n; are moderately large there is little difference
between the two definitions; (12) will be used because it is simpler.

Estimates of 6,, #,, and 8, were calculated for the examples in Table 2 using (12),
called Approximation 2 in the table. Naturally, Approximation 2 is exact for k = 2
so no comparisons are made in Table 1.

An additional example with k = 6 is provided by Martz and Lian (1974): “The
Portsmouth Naval Shipyard, Portsmouth, N.H., routinely must assess the quality of
submitted lots of vendor produced material. The following data consist of the
number of defects x; of a specified type in samples of size n» = 5 from past lots of
welding material. The past data are (0, 1, 0, 0, 5) and in the current, i.e., sixth, lot,
x =07

First consider Approximation 1 for estimating 8. Takinga = b = M = 1 means
W = w3 =w, = ws = wg = w; = w; = w, = .8163, w, =.6939, wj = .5349, and
wj = .0496. Evaluating (11) using weights w; yields f; = .1143. Similarly, §, = 6§, =
94 = .1143. For estimating 6, the weights become wj = wj = wj; = wj = .5349,
wj = .1135 and 4, = .2178. For estimating 0 the weights become w) = w} = w), =
wy = .0496, wj = .1135, and f5 = .7795. These estimates are compared with those
of various other estimators in Table 3.

6. Summary. The theory of Dirichlet processes is applied to the empirical
Bayes estimation problem in the binomial case. The approach is Bayesian rather
than being empirical Bayesian. When the prior is a Dirichlet process the posterior
is a mixture of Dirichlet processes. Explicit estimators are given for the case of 2
and 3 parameters and compared with other empirical Bayes estimators by way of
examples. Since the number of calculations become enormous when the number of
parameters gets larger than 2 or 3 we propose two approximations for estimators of
a particular parameter and compare their performance using examples.
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TABLE 3

Empirical Bayes estimates for Portsmouth
Naval Shipyard data: 0, 1,0,0, 5,0; n, = 5.

Estimator 9, 4 [/
Maximum likelihood 200 1 0
Pooled .200 .200 .200
Minimax 293 845 155
Copas’ first .200 753 .062
Copas’ second .200 960 .010
Griffin-Krutchkoff 200 960 .010
Approximation 1
a=b=M=1 218 .780 114
Approximation 1 .
a=b=5M=1 .185 817 072
Approximation 2
a=b=M=1 231 .850 119
Approximation 2
a=b=5M=1 .189 906 .073
Approximation 2
a=M=.5b=2 162 7 .064
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