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DISTRIBUTED LAG APPROXIMATION TO LINEAR
TIME-INVARIANT SYSTEMS'

By P. M. ROBINSON
Harvard University

An infinite distributed lag system is approximated by a truncated one,
which can be consistently estimated. We investigate the rate at which the
parameter space in the approximate model can be increased as sample size
increases, in such a way that these estimates will provide consistent estimates of
the underlying system.

1. Introduction. Let two time series, y(n), z(n) observed for 1 < n < N, and
one unobservable time series, x(n), be related by :

(L) y(n) = zﬂ—mﬁ(j)z(” —J) + x(n), n=0x1,---,
where Ex(n) = 0, Ex(m)z(n) = 0, all m, n. Assuming the means of y(n) and z(n)
exist and are independent of n, there is no loss of generality in taking them to be
zero also. In practice (1.1) is often replaced by the finite-parameter approx1mate
model
(1.2) E(y(n)lz(m), —o0 <m < o) = ZI__,b(j)z(n —j),
for some p, ¢, 0 < p, g < oo0.

The B() in (1.1) may be thought of as coefficients in the Laurent expansion of a
function B(s), so

B.(S) = zo—oeo B(.])SJ’ s # 0.

From the Weierstrass approximation theorem, it follows that if B(s) is continuous
on the circle |s| = 1, one can choose p, ¢ and the b(j) such that, for any ¢ > 0,

max, 1|5, (s) — B(s)| <e, B, (s) = 29 _,b(j)s.

However, in practice, p and g are limited by sample size. For estimates based on
(1.2) to be reasonably precise, p + g needs to be substantially smaller than N. On
the other hand, if p and ¢ are too small, the discrepancy between (1.1) and (1.2)
may be such as to produce serious bias in the estimates. In practice, therefore, the
values of p and g should depend on N.

Define by by,,(j) a consistent estimate of b(j), for given, fixed p, g. Define also

5Npq(s) = 25= —prpq(j)sj'
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The preceding remarks suggest that the construction of a relevant asymptotic
theory would include finding functions p = p(N), ¢ = q(N), such that, as N, p, ¢
— 0,

max|s|.,1|51qu(s) - E(s)l -0

in probability or with probability one. In this paper we obtain such functions, for
estimates by,,(/) that are closely related to the least squares estimates. (Our ¢
sequences apply immediately to the one-sided case 8(j) = 0, all j < 0.) It is likely
that very similar results will hold for other estimates. We do not assume x(n) is
white noise so for given p and ¢q it may be possible to find more efficient estimates
of the b(j); for such estimates when x(n) is stationary (which we do not assume)
see Hannan [4, Chapter VII], Wahba [10]. However, Sims [9] has shown that the
asymptotic (N — o0) covariance matrices of ordinary and generalized least squares
estimates of (1.2) are identical in the limit as p, ¢ — oo, even when x(n) is not white
noise. Results of this kind supply grounds for using the computationally simplest
consistent estimates.

Sims [7], [8] discusses other issues in the approximation of (1.1) by (1.2).
Brillinger [3] considers a frequency domain approximation to (1.1). He suggests
estimates of 3(e™) based on estimates of spectra and cross-spectra, and investigates
their asymptotic behavior as N — o0 and a bandwidth parameter — 0. Berk [1],
Shibata [6], consider autoregressive estimates of the spectral density, and obtain
information on how fast one can increase the autoregressive order as N — oo.

2. Main assumptions and definitions. The initial assumptions are as follows.

CONDITION A.

1) z(n) = 272 _00)8(n — ), Z5L_ol0())| < oo;
(2.2) E($(n)|$(m), m < n; x(m), —c0 <m < o0) =
(2.3) E($(n)’|8(m), m < n) = 0® < o0;

(24) E|$(n)* <K, some », 1<»<2

(Throughout, K represents a finite constant, not necessarily the same one, that may
depend on » but is independent of p, ¢, N and the {(n) and x(n))

ConpITION B. E|x(n)/* < K.

ConprtioN C. 3% _ | B()| < oo.
It follows from (2.1)-(2.3) that z(n) is wide-sense stationary, with
c(j) = Ez(n)z(n — j) = 0’ZF- _0(k)8(k — j), —o0 <j < oo,
|e(j)| < K. Although x(n) and y(n) are not necessarily stationary, Conditions A, B
and C imply
d(j) = Ey(n)z(n — j) = Z¥. _ B(k)c(k — j), —o0 <j < oo,
|[d(/)] < K. Now define the (p + ¢ + 1) X (p + g + 1) matrix 4,,, having (j, k)th
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element ¢(j — k), and the (p + ¢ + 1) X 1 vector a,, having (j + p + 1)th ele-
ment d(j), —p < j < q. Note that if (1.1) were the true model, the (p + g + 1) X

1 vector b,,, with jth element b(j — 1 — p), would be identified as qu Ay
Now introduce

. 1 . . 1 .
can()) = M—_Lzﬁﬁzﬁlz(”)z(” =7, d()) = ‘mzﬁl-l_n}’(”)z(" )

_ 1 _ 1

Yim = ‘mzﬁﬁz,ﬂ}’(")’ ZiM = ‘MTZ27=L+1Z(”)’
for 0 <K L <M. For N >p + g define the (p + ¢ + 1) X 1 vector

brpg = Anpgnpg
where by, has jth element by, (j — 1 — p), Aypgisa(p+g+ D)X (p+g+1)
Toeplitz matrix with (j, k)th element (j > k) ¢;_; y(j — k) — Z3y, and ay,, has
for0<j<gq.
3. Six lemmas. Lemma 1 will not be proved as it is a special case of Lemma 1

of Robinson [5].

LemMa 1. For L < M, let
1 o
(3.1) Sim = mzynu(”), u(n) = I,m=—eozvlm(n)’

E(vlm(n)lvlm(n - 1),0,(n—-2),-- ) =0, as,
Jor all I, m, n. For some v, 1 <v < 2, let there exist n,(]), n,(I), — 0 < < o0, such
that
(32 E|o,(n)]” < [ny(Dna(m)l', ZE _o|n,()] < oo, J=12
for all I, m, n. Then
E|S; < K(M — L)'™".
In the next two lemmas, we derive bounds on the central moments of c;,,(j) and
d;,(j) that are independent of j.
LeMMA 2. Under Condition A,
Elcza(j) = () < K(M — L)'~
ProOOF. Note that ¢;(j) — ¢(j) has the form of S;,, in Lemma 1 if v,,(n) =
0O = j)E(n = 1 = %), m =1~ j; = 8()0(m){(n — D¥(n — j — m), m #1
— J. To see this, observe that (3.1) is true because (2.2), (2.3) imply
E(¢(n)* — o¥¢(n — I — 0% 1> 0) =0,
EQ(n)¢(m)|¢(n — D§(m — 1),1 > 0)
= E(E(§(n)$(m)|8(n — 1),1 > 0)[$(n — )$(m — 1),1 > 0)
= EQ(m)EQ(n)[$(n = 1),1 > 0)|§(n — 1)§(m — 1),1 > 0)
=0, m<n.
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Also, (3.2) is true because, by (2.4),
E|o, () < |8(1)0( — )P2AE|S(n — D + ¢*) < K|6(1)O(I - j)I",
m=1[—j
Elo(n)l’ < |8(1)8(m)P"(E|$(n — DIPE|$(n — m)[*)? < K|0(2)8(m)[",
m#l—j.
Then the result follows from Lemma 1. []
LeEMMA 3. Under Conditions A, B and C,
Eldp(j) — d(j) < K(M — L)'
PrROOF. Write
din(J) — d()) = erp()) + fm()s
en(J) = 220-—003(")(%—/(, m—i(J — k) = c(j — k)

ful) = 5 S LX)z = J).

Now by the c,-inequality and Jensen’s inequality,

(3.3) Eld y(j) — d)l" < 2E|ey (NI + 2E| fra)I.

By Holder’s inequality and Lemma 2,

Eleps(DP < (B BE)) ™2 BUElep i w-i(G = k) = ¢(j = k)’

< K(Z|BMR)) (M - L)' = K(M - L)'

To handle f; ,,(j) take

Ope(n) = 0(1)¢(n — DNx(n), m=0; =0,m+#0

in Lemma 1 and note that by (2.2), (2.4) and Condition B,

E(m)x(n)|§(m — Dx(n — 1),1 > 0)

= E(x(n)E(§(m)|$(m — 1),1>0; x(I), —0<I<0)|§(m — Dx(n — 1),1>0) =0,
E[S(m)x(n)’ < (ER(m)PE|x(n)”)? < K.

It follows that E|f,,,(j)’ < K(M — L)' ~”. Finally, apply (3.3). ]
From Lemma 2 of [5] and Conditions A-C it may readily be shown also that

(34) E|zZjy” < K(M - L)
E‘);LMlzy < EIZB(k)Z_L—k, M-k + ELMP"
< 2{(EI BRI S BURNE|ZL— s i + ElFpal™ )
(3.5) < KM - L),
where x;,, = (M — L) '{(x(L + 1) + - - - +x(M)).
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Let || X|| be the square root of the greatest eigenvalue of XX’, where X’ is the
transposed of X. Define Ay,, = Ay,, — 4,
LEMMA 4. Under Condition A,

E|lAys Il <K(p+q+1)’(N=-p— 9", N>p+gq

PROOF. Because App, is symmetric, [|Ay,,|l is its greatest eigenvalue. Then from
a theorem of Perron
(3.6) ”ANpq” < max0<j<p+q27c:%1C|j—k|,N(|j — k|) — Z_(Z)N —c(j — k)
< 22f:g(1‘}N(j) - c() + Z_(Z)N),
the second inequality resulting because Ay, is Toeplitz. Thus from Lemma 2, (3.4)
and Minkowski’s inequality

EllAnll < 4(p + g + 1) '2228{ Elcn(j) — c() + ElZonl” }
<K(p+q+ 1y '2rg{(N-)""+ N~
<K(p+q+1)(N-p-9' " 0

Define dy,, = ay,, — @y,
LEMMA 5. Under Conditions A, B and C,
EllAy, ' <K(p+ g+ 1)(N-p—9) ", N >p+q.
PrOOF. In this case
E|18ypqll” < E{S72_|do, way() = FonZon — dU)|
+39_oldn(J) — Fowzow — d)I}
< 4p” 'SILE|dy o)) — dO)I + Mg + 1) ZEE|dN()) — dO)I

1
+2p+q+ 1)”{E|)70N|2”E]z‘0~]2"}2
<SK{pP(N-p)'""+(q+1)V(N—¢q)' "+ (p+ g+ )N}
<K(p+q+1))(N-p—9q) 7"

using Lemma 3 and (3.4), (3.5). [
For the final lemma we introduce

ConpITION D. 2%, __ 0(j)s’ is bounded away from zero on |s| = 1.
This is equivalent to the power spectrum of z(n) (which exists under A) being
bounded away from zero.

LEMMA 6. Under Condition D,
4, < K.

Proor. If ||Ap;'|| exists it is the reciprocal of the smallest eigenvalue, p, of 4,,,.
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Thus for some real numbers w;, 0 < j < p + g, wi + +w,,)r =1
p=Z22%LoZwic(j — k)w, = 022”*,;2, 227 _ WD+ j — k)w,
= 0%[1q=1|Z225w;s PIZ52 _ 0())s'|* ds > K/, - IIE”ié’w s’ ds

j=0
by Condition D. The last expression is 27K(w3 + - - p+ P =27K >0, so
-1
p” <K. [

4. Weak convergence. We introduce nonnegative integers u, v and real values
£ x 0 < & x < 1, which describe the smoothness of S(s) as follows:

ConprrioN E. 39__  B(j)s’ is u-times differentiable on |s| = 1, its uth deriva-
tive satisfying a Lipschitz condition of order &; 3%, B(j)s is v-times differentiable
on |s| = 1, its vth derivative satisfying a Lipschitz condition of order x.

This condition implies C when £ >1 and x >3 (Zygmund [11, page 64]).

Let B,, be the (p + g + 1) X 1 vector with jth element B(j — 1 — p).

THEOREM 1. Let Conditions A, B, D and E hold, with u + £ >1, v + x >3.
Then

(4.1) plimy , o seollbapg = Byl = 0,
if
(42) g < Kp***9~e p < Kg*°+0~e  any &> 0,
@) (b + @)/ NO~" 0.
PROOF. Write

brpg = By = Al;pfl(aNpq - ANM'BM)
= Al;.mll(aNpq ~ BppgBog + Gy — quﬂpq)
so that
(4'4) ”prq - qu” < “ANpq“(”(szq” + “ANpq“ ”qu” + ” ququ“)’
Now
I 4rpgll < I Anpy = Apg Il + 114,5" 11 < (1 Ampill 18npgll + 11145,
) :
l4ulI(1 = 4,51 1A% 1) < l14,5']-
By Markov’s inequality it follows from Lemma 4 that ||Ay,, || — O, in probability, if
1—=»
(p+q+1))(W=p—-¢q)' 70, ie, (p+ q)'N'”"(l - E%) -0
Thus from Lemma 6
p limN,p,q—»oo”ANpq” < l q—»co”Ap;I“ < o,
for sequences (4.3). We are left with the factor in parentheses in (4.4). By Lemma 5
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and Markov’s inequality, ||8y,,|| — 0 i.p. for sequences (4.3). The second term — 0
1.p. since ||Ay,,|| = 0 i.p. and

I Bogll = (= ,-_,,,3(1)) < ZI_ I BO < Ziz_ ol BU)I < o0,
by E and u + £ v + x > 1. Finally, for p and q that are not too small,

1y = ApaBll = {20 _(d0i) — B4 _, B0 + B}
= (59 (ST B + K) + Spo 0 B + B))
= 2 (S8, (BT BRI + 35, B)s)S 52 B()s P ')

<cO)(p+g+ 1)5{max|s|-1|2:‘;"/3(k)skl + maxy, - |27, B(Kk)s“|}

In In
< K(pz + qz)(pufe + qv:]x)

(Zygmund [11, page 120]). From u+§, v + x >3 and (4.2), this >0 as p, ¢ - . ]

When B(j) = 0, allj < J, some J > — oo, the conditions for (4.1) are that A, B,
D, and E hold, with v + x >3, and gN®~P/* 50 as N — 0.

THEOREM 2. Let Conditions A, B, D and E hold, with u + £ > 1, v + x > 1.
Then

D thp q—»oomaxhl II Npq(s) - B’(S)I =0,

if
(4.5) q < Kp“*¢7 5, p < Kg°*X~¢, any €>0,
(4.6) (p + q)/N@=D/3 0,

PrROOF. By the triangle inequality

maX,j=1|bupg(s) = BN < e _lbpg(/) = BOI + Z72Z01 BOD| + 232414l BO)I-
The last two terms on the right — 0 as p, ¢ > co. The first term is bounded by

(p+q+ l)%||prq — B,,ll, from the Schwarz inequality. Thus the theorem is
proved if

1 . . 1
p limN,p, q—>oo(P + q)zllANpq” =D hInN,p, q—>oo(p + q)zllaNpq”
1
= hmp q—»oo(p + q)z”apq - ququ” = 0.

The first two limits are zero under (4.5), from Lemmas 4 and 5. Finally, as in the
proof of Theorem 1,

1 Ingq
(P + 9)lla,y — ApeBygll < K(p + q)( i q°+><) -0,

from Zygmund [11, page 120], u + &, v + x > 1, and (4.5).
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Conditions (4.2), (4.3), (4.5) and (4.6) limit the ultimate rate of increase of p and
q relative to one another, and to N.

5. Strong convergence. The mode of convergence can be strengthened if the
growth of p and ¢ is further restricted, to a small degree.

THEOREM 3. Let Conditions A, B, D and E hold, with u + £ >3, v + x >3.
Then
limN,P, q—»oo”prq - qu” = 0, a.S.,

under (4.2), and the conditions

5.1) p+q<C2, some C<I,
where [ is an integer such that 2' < N, and
(5.2) p+q<KNC7/{(InN)**PInIn N}.

Proor. The proof follows that of Theorem 1 as soon as we prove
limN,p, q—>oo”ANpq” = limN,P, q—>oo“8Npq” = 0’ a.s.

To establish the first limit, consider (3.6). The term 2(p + ¢ + 1)z3, in this has »th
moment

( pt+qg+1 )" K
K| < >
N N(ln N)"*'(in In N)*
under (5.2), and thus —0 as. by Markov’s inequality and the Borel-Cantelli
lemma. The other term in (3.6) is twice

21281600) - 0l < 228{ (574 )lwh) = <Ol + (=5 )l = <}

< g+ hy,
P L p+q o o+
Sy e — 202816 () — (),
__ L e o
h, = L—p-— qmaxL<N<2L2j=o leLn (/) — (),

forp + ¢ < L <N < 2L. Consider g;. For N not too small,
Egl < (p+q+1)7'L(L~p— q) "2226E| () — (I
<K(p+q+1yL(L-p-g'™
<K{L/(L-p— g} {(n L)y (nn L)},

from Lemma 2 and (5.2). Now if we choose L = 2/, [ integer, and use (5.1), the last
expression is bounded by K/~*. Thus by Markov’s inequality and the Borel-
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Cantelli lemma, g, — 0 a.s. For A,
Eh} < (p+q+ 1) 'L(L-p- q)—vzf:(;lE{maxL<N<2L|cLN(j) - c(NHIY
<K(p+q+1)L"(L—-p- q) "(log, 4L)’L'""
< K(log, 4Ly {(In L)’ '(InIn L)’} ™' < K1~ '(In 1) 7,

using Billingsley [2, page 102], Lemma 2, (5.1) and (5.2). Thus 4, —» 0 as. by
Markov’s inequality and the Borel-Cantelli lemma, completing the proof that
lAnpgll = 0 a.s. The proof that ||8y,,|| — 0 a.s. is very similar so we omit it. []

THEOREM 4. Let Conditions A, B, D and E hold with u + §> 1, v + x > 1.
Then

.

limN,p, q_’wmax|s|=l|b~Npq(s) - B-(s)l = O, a.s.,
under (4.5), (5.1) and
p+q <KNCC-D// {(In N)CC+D/3(1y 1y N)g}_

The proof is omitted because it uses Theorem 3 in precisely the way the proof of
Theorem 2 used Theorem 1. '
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