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DENSITY ESTIMATION IN A CONTINUOUS-TIME STATIONARY
MARKOY PROCESS

By HunG T. NGUYEN
University of California, Berkeley

This paper deals with a general class of recursive estimates of the density
function in a continuous-time stationary Markov process. Under the condition
G, of Rosenblatt sufficient conditions for almost sure convergence of such
estimates are given.

1. Introduction. The problem of density estimation in a stationary Markov
sequence has been investigated by Rosenblatt (1970) and Roussas (1969). In a
stationary and mixing discrete-time process, the problefn has been studied by Bosq
(1973, 1975).

Recently, in order to solve a class of nonlinear identification problems (of
dynamical systems represented by stochastic differential equations) Banon (1976)
considered the density estimation in a continuous-time Markov process. In Banon’s
work, under some specific conditions on the stochastic differential equation, the
process which is the solution of this equation is a diffusion process satisfying
condition G, of Rosenblatt (1970), and recursive estimates of Deheuvels (1973,
1974) are extended to continuous case and used to obtain quadratic mean conver-
gence.

In this note, we consider a general class of recursive estimates of the density
function in a continuous-time stationary Markov process satisfying the condition
G,. These estimates have been considered by Deheuvels (1974) in the independent
and discrete case, with Yamato’s estimates (1971) taken as a particular case. We
study the uniform convergence of expectations and the uniform, almost sure
convergence of such estimates.

2. Convergence of expectations. Let {X,}, 1 € R*, be a stationary stochastic
process. Let f be the probability density (on the real line R) of each X,. In the
sequel, we shall consider recursive estimates of f of the following general form:

XER  1>0,  f(x) =[fh(s)H(h(s))ds]™ [(H(h(s)K{(X, — x)/h(s)} ds

where ‘

(@) h: R* > R™*, positive and A(s) \y 0 when s > + o

(b) s — h(s)H(h(s)) is locally integrable on R* and [{h(s)H(h(s))ds —> + oo
when ¢ —» + oo, H being a mapping from R* to R*.
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Note that, in the discrete case, H(u) = 1/u corresponds to Yamato’s estimates
(1971), and H(u) = 1 for all u € R* corresponds to the estimates studied exten-
sively by Deheuvels (1974).

(c) The kernel X is in general assumed to be positive, bounded and [ K(y)dy =
L.

PrOPOSITION 1. Let {X,},t € R*, be a stationary and measurable stochastic
process. If the probability density f is continuous, bounded and the kernel K is
bounded, then

lim, , ,  Efi(xo) = f(xo), x, €ER.
PROOF. By measurability of the process and the fact that K is bounded, we
have:

Ef,(xo) = 1/8(1)[tH(h(s)) EK((X, — xo)/h(s))ds
where g(f) = [{h(s)H(h(s))ds, t > 0. By the construction of g, we may write:
Ef(xo) — f(x0) = 1/8() foh(s) H(h(s))[ E(1/h(s))K((X, — x0)/h(5)) — f(xo) ]ds.
By Lemma 1 of the appendix it is sufficient to show that
lim, [ E(1/h(s)K((X, = %0)/h(s)) = f(x0)] = 0.
We have:
E(1/h(s))K((X, = x0)/h(s)) = f(x0) = [aK(W)[ fxo + h(s)y) — f(x0) ]db.

For & > 0, denote 8(¢, Xo) = supy, .| f(Xo + 2) — f(xo)|- By the continuity of f at
Xo and for & small, there exists & = &(£, x,) such that

8(e, xo) < €/2.
For such an ¢, we write:
|E(1/ () K((X, — x0)/ h(x)) = f(xo)|
< [ini=e K[ fxo + h(s)y) — f(xo) |y
+ [ (vl <ey KO [ fxg + h(s)y) — f(xo) |
< 20| flloo (1> y7ns)y K@ + sUP(yiacsy <el fxo + A(s)y) — f(xo)]
< 20 flloof (i1 >eC y/asy K(¥)d + €/2, where | ||, stands for supg f(x).
Since K is integrable and A(s) \y 0 as s — oo, there exists § = §(x,, &) such that:
5 2 5= [(y1>eo/mn KD <E/4] fllo
i.e., given £ > 0, there exists 5(x, ) such that:
s > §=|E(1/h(s)K((X, — x0)/ h(s)) = fxo)| <&.

PROPOSITION 2. Under the hypothesis of Proposition 1 and if, in addition, f is
uniformly continuous, then:

lim, , Ef(x) = f(x)  uniformly in x.
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PrOOF. By virtue of Lemma 4 of the appendix, it is sufficient to verify that
there exists ¢ € £} [h(s)H(h(s))ds] such that:

sup, cléx(s)| < ¢(s).
We have:
6.()] < [R(1/B()K((y — x)/ RN D + ||l
<2 fllo = ¢

3. Almost sure convergence of estimates. By virtue of Proposition 1 and Proposi-
tion 2, we are led to consider the almost sure convergence of f,(x) — Ef(x) to 0
when ¢ — o0.

Now assume all hypotheses of the previous paragraph. Let

W(1) = fi(x) — Ef(x) = 1/8(£)[6Z,(5)ds
where
Z,(s) = H(h(s))[ K((X, — x)/h(s)) — EK((X, = x)/h(s))]-

The almost sure convergence of W, () is similar to the almost sure stability
problem [Loéve, page 487). We shall follow the technique employed in Loéve.

ProposiTION 3. If:

(a) For each x € R, Var K((X, — x)/h(t)) = O[H ~%(h())], t — o0,

(b) g(1) ~ 15, t > (0 < B < 1), and for each x € R, 1/t* ([T (s, s")dsds’ <
d/t"® for t large (d > 0), where T, is the covariance of the second order process
Z (s), with yB > 2(1 — B), then

W.(t)>0;, t— o0, almostsurely.

ProoF. T,(t, 1) = H*(h(¢))Var K((X, — x)/h(t)). Using (a) and (b), the asser-
tion follows from Lemma 5 and Lemma 6 of the appendix.

ExaMpLES. (Condition a). Note that
(1 Var K((X, — x)/h(£)) < M| flloh(2) + || flI3%A*(2)
where M = [pK*(x)dx < + oo (since K is integrable and bounded).
(o) Hu) =1,Vu > 0.
By the above inequality (1), it is clear that:
r.(t,t) =0(1), ¢— co (uniformly in x).

(B) Hu) = 1/uz, u > 0.

We have T' (¢, ¢) = 0(1), t = oo (uniformly in x).

Additional hypothesis on the process {X,}, t € R*. To obtain condition (b) in
Proposition 3, we shall assume, in addition, that the process {X,},? € R* is a
Markov process verifying the condition G, of Rosenblatt [7].

Denote by P,,t € R*, the semi-group of transition operators of the stationary
Markov process {X,}¢ € R*. Recall that the process {X,}7 € R* is said to satisfy
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the condition G, if there exists s € R* and a(0 < @ < 1) such that:
|P s|2 <a
where

|Psla = supy 11| Peoll2/ l1ll2

with ¢ measurable and bounded, || - ||, denoting the norm in L*(f(x)dx), and ¢ L1
meaning [grp(x)f(x)dx = 0. As a consequence of this condition G,, one has (see
Banon (1976))

VieR*, |P|,<8/a with 0<8<1.

Let
T .(t,5) = EZ(t)Z(s),- x€ER

and
C.(t,5) = E[ K((X, — x)/h(1)) — EK((X, — x)/h(1))]
[K((X, — x)/h(s)) — EK((Xo — x)/h(s))].
It is known (Banon (1976)) that:
@) Vx €R,  C(1 s) < c(h(1)h(s))78]t — s].
Thus:
Vx €R,  T,(ts) < cH(h(t))H(h(s))(h(t)h(s))?8]t — s].

Since g(f) ~ t?, we have:
if H is bounded, then:

Vx €R,  [5[iT (s, s")dsds’ < c;tP  for t large.
If H(u) < d/u?, u > 0, then:
Vx €R,  [ifeT. (s, s)dsds’ <ct  for ¢t large.
Thus:
(i) H bounded and 2< B8 < 1=
1/28[4iT (s, s')dsds’ < d,/t™  for t large,
with y = 1 and 8 > 2(1 — B).
1
(i) Hu) <d/u?and 3<B< 1=
1/¢% fafgrx(s, s)dsds' < dy/t™  for t large,
with y8 =28 — 1 > 2(1 — B). Thus:
THEOREM.
(@) {X,,},t € R*, is a stationary measurable Markov process (with probability
density f continuous, bounded) satisfying the condition G,.

(b) The kernel K is a bounded probability density.
(©) h: R* > R*, h(s) \ 0 when s — 0.
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H : R* - R* such that s — h(s)H(h(s)) is locally integrable on R* and.
g(t) = f4h(s)H(h(s))ds > o0  when ¢— oco.
(d) If either one of the two following conditions is satisfied:
() H is bounded and g(t) — t? with 2/3 < B < 1
(i) H(u) <d/u3,u >0, and g(t) — tP with 3/4 < B < 1 then:
fi(x) = f(x), t — oo, almost surely.

COROLLARY. Under the hypotheses of the above theorem, if, in addition, the
probability density f is uniformly continuous, then

f(x) > f(x), t— o0, almost surely, uniformly in x.

Proor. This assertion follows from Proposition 2 ‘and the fact that the right-
hand sides of (1) and (2) are independent of x.

ReEMARK. Under conditions (a), (b) and (c) of the above theorem and the
assumption that f is uniformly continuous, it follows that f,(x) — f(x), in quadratic
mean, uniformly in x, if either one of the following conditions is satisfied:

(i) H is bounded

(i) H(u) < d/u?, u >0 and t/g*(t) = (1), t - co.

APPENDIX

LemMMA 1. (Generalized Toeplitz lemma). Given a function G : Rt X R* > R
such that:
(i) Vs € R*, G(-, 5) is zero at infinity.
(i) V¢t € R*, G(¢, -) is locally integrable on R* and there exists a positive
constant ¢ such that:
Sup,er+/6l G(2, 5)|ds < ¢ < +o0.

(iii) For t large, we have:
ljo, ()| G(2, x)| < g,(x),

Vy € R¥, (I, y)(*) denotes the indicator of the interval [0, y]), and where g, is
Dpositive integrable on R*.

If ¢ : R* - R is such that:

(@) ¢() is zero at infinity,

b) ¢ € QLc[gy(x)dx], Vy € R* (locally integrable with respect to the measure
g,(x)dx),
then

t— [0G(t, x)¢(x)dx  is zero at infinity.

PrOOF. Let ¢ > 0. There exists x, = x4(e) such that x > x,=> |¢(x)| <e/c.

Suppose that (iii) is satisfied for ¢ > ;. For ¢t > T = max(x,, ,), we have:

1166(2, x)p(x)dx| < [o| G(, X)lle(x)|dx + [7|G(2, x)||p(x)|dx
< [3lG(5 x)llo(x)|dx + e.
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By (iii) we have:
I, (X)|G(2, x)le(x)| < gr(x)|p(x)| € L(R™).

The assertion follows from the dominated convergence theorem of Lebesgue (for a
family of integrable functions), from (i) and letting ¢ — 0.

Particular cases.
(a) Let h: R* - R* be positive, locally integrable and g(?) = [{h(s)ds — o0
when ¢ — 0. Define
G(t, s) = h(s)/g(?), t>0.
Then:
@i Vs € R*, lim,_, G(t,5) =0
(i) Vi € R*, G(¢, s) is locally integrable and
sup,cp+/6G(1, s)ds = 1.
(iii) Let ¢, be such that ¢ > 7, => g(#) > 1. Then for ¢ > ¢, we have:
1[0,y](x)G(t, x) < llo,y](x)h(x), Vy (S R+.
(B) Let G(t,5) = 1/t,¢t > 0, s € R*. In'this case ¢ = 1 and g,(x) = 1o ,(x).
LeEMMA 2. Let {X,}, t € R*, be a stationary and measurable stochastic process. If

the common probability density f of the X,’s is uniformly continuous, bounded and the
kernel K is bounded, then:

lim,_, ¢.(s) =0,  wuniformlyin x.
where ¢.(s) = E(1/h(s))K((X, — x)/h(s)) — f(x), x ER, s € R*.

Proor. With the notations at the end of the proof of Proposition 1, the uniform
continuity of f implies that: given &, there exists ¢ = ¢(€§) which depends on £ but
not on x, such that

8(e, x) <&
Thus the sets of the form {y : |y| > &/h(s)} do not depend on x any longer.

The following lemma is straightforward.

LeMMA 3. If G (¢, s) is a family of positive, measurable functions which depend on
the parameter x € R, and satisfy the conditions:
(i) There exists a positive integrable function F (on R*) such that:

G.(t,5) <F(s)y Vx€eER, VieR"
(i) lim,_, G, (¢, s) = O, uniformly in x.
Then:
lim, ,  [g+G,(t,s)ds =0,  uniformly in x.
LemMa 4. If f is uniformly continuous and
Sup,. erlt(s)| < ¥(s)
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where € L (h(s)H(h(s))ds) then
lim,  1/g(¢)[6h(s)H(h(s))p.(s)ds = 0,  uniformly in x.
ProOF. The proof is similar to that of Lemma 1. Since
(h(s)H(h(s))/8(1)).(s)] < h(s)H(h(s))Y(s) € Lo (R™)
for large ¢, and
lim,_, ,(h(s)H(h(s))/g(1))$.(s)| =0,  uniformlyin x,
the assertion follows from Lemma 2 and Lemma 3.

LEMMA 5. Let Z(?), t € R*, be a measurable second order process (with EZ(t) =
0,V: € RY). Let g : R* - R™ be such that:

g(t)>0 for t>0 and lim, g(t) = + oo0.

If:

() g(t) ~ tP at infinity, 0 < B < 1;

(ii) there exists a positive constant c¢ such that for large t, we have: I'(t, f) < c,
where T denotes the covariance function of Z(?), t € R,
then: Va such that 0 < a <3(1 — B)

W(t) — W(m?®) >0, t— o0, almost surely,
where
W(1) = 1/8(1)[oZ(s)ds
and {m®},,cn is a sequence of positive real numbers.
PrOOF. For m? <t < (m + 1)%,
(8(2)/g(m*)) W (1) — W(m*) = 1/g(m®)[,,.Z(s)ds = Y(m*, 1).
Let
V(m®) = SUP,ya s (m+1)° Y(m?4, 1)|.
Since
V(m?) < 1/g(m?)[5EV"|2(s)\ds,
E|V(m*)P <[1/ (g(m)f5+"[T(s, 5)]2ds?.
By (i) and (ii) we have:
Zn=1ElV(mO)P < Z3_ (/g (m*))(m + 1)* — m?]?
—_ 2:= l(c,/n12aﬂ+2(l—a))
< + o0, since 2aB8 +2(1 — B) > 1.

LEMMA 6. Under the hypotheses of Lemma 5 and if, in addition,
(iii) For large t, we have:

1/ 2214141 (s, s')dsds’ < d/t"®, d>0
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with yB > 2(1 — B), then:
W(t) —0, t — o0, almost surely.

Proor. By Lemma 5, choose a such that 1/y8 <a < 1/2(1 — B). Our asser-
tion will be proved if W(m?)— 0, m — oo, almost surely. But:

ZnE[W(m®)? =251/ (m®) 5[5 'T(s, s)dsds’
~Z2_1/m*¥" < +0, since a>1/yB.
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